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AMS-02 Experiment
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q The Alpha Magnetic Spectrometer is a high energy particle detector which was successfully deployed on the International

Space Station since 2011 and has collected over 250 billion cosmic ray particles to date.

q Through precise measurements of the energy, charge, direction, and spectrum of cosmic ray particles, AMS-02 have

revealed a series of new phenomena beyond current theoretical expectations and sparked extensive discussions on the

origin, acceleration, propagation mechanisms of cosmic rays, and indirect detection of dark matter.
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q The Electromagnetic Calorimeter (ECAL) in the AMS experiment is a 3D imaging detector;

q The detector consists of 9 superlayers with lead foils and scintillating fibers alternatively parallel to the x-axis (5 superlayers)

and y-axis (4 superlayers);

q Read out by 324 PMTs. Each PMT has four anodes, and each anode covers an active area of 9×9 mm2 (18x72 cell).

A 1.1 TeV electron event display in the ECAL
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Physics Motivation

q Anisotropy of Electrons and Positrons: The direction reconstruction from the ECAL helps in better matching the track direction

and position in the Tracker.

q High-Energy Gamma Analysis: For non-converting photons, ECAL is the only detector that can be used to measure the energy

and direction of high-energy photons.

q By analyzing gamma ray from different directions, we can get the sky map of diffuse emission and catalog of γ-ray sources.
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Shower Axis Reconstruction

q There are four conventional methods to reconstruct the shower axis in the ECAL:

1. Center of Gravity 2. Neighbor Cell Ratios 3. Lateral Shower Fit 4. 3D Shower Fit

q With Deep Learning method, we aim to reconstruct the angular and spatial information of electrons, positrons and

gammas in ECAL standalone.

j.nima.2013.02.020

3D Shower Fit

j.nima.2017.07.013
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Deep Learning Model

Input:

A face image
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Input:

ECAL image

Shower Feature
Extraction Layers

Output:

Shower axis parameters

1.1 TeV e-

Output:

Facial emotion classification

If we treat the energy deposition distribution of a electron/positron shower as a 3D image, can we benefit from computer

vision / deep learning methods in classification or regression?
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ResNet Architecture 

Residual neural network (ResNet), a state-of-the-art architecture in

the field of computer vision , was proposed by Kaiming He (MIT) and

others in 2016. The main improvement of residual neural networks is

the invention of "shortcut connections" to address the degradation

problem, greatly eliminating the difficulty of training neural networks

with excessive depth.

What is the ResNet?

This model has been widely applied in various fields such as

computer vision, particle physics, engineering, etc., with more

than 268650 total citations.

Kaiming He 
(MIT)

Weight layer

X

Weight layer

relu

relu
+𝐅 𝐱 + 𝐱

𝐅 𝐱

X identity

𝐇 𝐱 = 𝐅 𝐱 + 𝐱

shortcut connections
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ResNet18 Model

q ResNet18, 34, 50 are the most common ResNet architectures. The main difference lies in the number of residual blocks and

network depth.

q ResNet18 is chosen in this study due to its lightweight architecture. It requires less computing resources, and is sufficient to

our 18x72 ECAL input format. Our model is composed of 17 convolutional layers and a single dense layer.

q The total deposited energy Etotal is used as an additional input, to learn and constrain the energy dependence of the model's

output, ensuring self-consistency in physics.
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Model Training

Ø Loss Function: 
𝟏
𝐍
×∑𝐢$𝟏𝐍 𝜽𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧,𝐢&𝜽𝐭𝐫𝐮𝐞,𝐢

𝟐

𝛔𝐭𝐫𝐮𝐞𝟐
;

Ø 𝛔𝐭𝐫𝐮𝐞 is the resolution vs energy obtained by iteration;

Ø Learning rate(stepsize): 0.001; batch size(block): 128;

Ø Optimizer(algorithm): Adam; training epoch: 80;

Ø GPU: NVIDIA RTX A4000, CPU: 8 × Intel(R) Xeon(R) CPU E5-

2686 v4 @ 2.30GHz;

Ø  Time cost: about 8 hours for training and validation.

q We normalize the inclination angle 𝜽𝐭𝐫𝐮𝐞 =
𝜽𝒕𝒂𝒈
𝟏𝟖𝟎

 for ResNet learning, where θtag is the target value of θresnet;

q To bolster model robustness, we choose data augmentation method by adding Gaussian noise (1%, due to calibration

precision) in the 18x72 ECAL image.
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Dataset for ResNet

Data Type Electron MC (el.B1236) Positron MC (pos.B1236)

Truth Energy 2.5-4000 GeV with power law
flux 𝐄)𝟏

2.5-4000 GeV with power law
flux 𝐄)𝟏

Incident Angle θ: 155-180° θ: 155-180°

Total Event Number 3*106, 60% Training, 10%
Validation, 30% Test 9*105

q We train the model using MC electron sample, then validate it with MC positron sample and ISS data；

q The Tracker extrapolation angle on the surface of ECAL as the reference (truth) direction; 
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Ø Shower entry & exit with 2 cells away

from border;

Ø Loose cuts on Tracker-ECAL matching 

(within half cell size)

q To improve training data quality:
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Performance in MC Electron
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q ResNet model can effectively reconstruct the showers ranging from vertical incidence up to 25° inclination angle

within Tracker acceptance;

q Furthermore, the dependence on incident position (X/Y) of tracker extrapolation are verified.



10− 8− 6− 4− 2− 0 2 4 6 8 100

1000

2000

3000

4000

5000

6000

Angular Resolution (°)

En
tr

ie
s

Energy: 8.0-10.0 (GeV)

Mean = -0.00597

Sigma = 1.004

4− 3− 2− 1− 0 1 2 3 40

2000

4000

6000

8000

10000

12000

14000

16000

Angular Resolution (°)
En

tr
ie

s

Energy: 758.0-933.0 (GeV)

Mean = -0.0338

Sigma = 0.178

12

q Defining the residual as the difference between the model's reconstructed result and the regression target:

𝛔 = 𝛉𝐫𝐞𝐬𝐧𝐞𝐭 − 𝛉𝐭𝐚𝐠

q Below are two examples of Gaussian fit to the residual in low energy and high energy range.

Residual on MC Electron
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Angular Resolution and Linearity

q The ResNet resolution reaches about 1º at 10 GeV and 0.2º above 300GeV;

q Meanwhile, the linearity is stable and almost within 0.05º in the full energy range.
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Positron Sample Validation

q As an independent crosscheck, we apply the training weights on the the positron sample for verification;

q The reconstruction result is almost identical to the electron sample.

Positron MC (pos.B1236)
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ISS Data Sample Selection

q ECAL
§ Number of hit  > 100

§ Number of shower > 0

§ BDT > 0.5

§ Likelihood < 3.5

q Tracker
§ Number of track = 1

§ Rigidityinner+L1 < 0

§ 0.8<Chargeinner +L1<1.2

§ | Trackerinner +L1 - ECAL | < 0.4 cm

§ Shower incidence point < 30.6

§ Shower exit point < 30.6

§ Log(|Energy/ Rigidityinner +L1 |) > -2 and < 

4

q AMS has a unique and high purity ISS electron sample after 14 years operation on the International Space Station.

q In order to verify the performance of angular model on the ISS electron data sample, we apply the following event selections 

with ECAL, Tracker and TRD.

These selections are widely used for electron and positron analysis

within AMS Collaboration.

q TRD
§ Number of track > 0

§ LikelihoodRatio <0.6
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Residual Comparison of ISS and MC 

q An example of Gaussian fitting for the difference between the reconstructed angle and the regression target is shown.

q Good consistency between ISS data and Monte Carlos simulation is observed.
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Angular Resolution on ISS

q The angular resolution function of ResNet model in

ISS data can be fitted with: 

3.0764𝟐

𝐄
+ 0.199𝟐

q Consistence between the ISS data and MC is observed in the full energy range from 2 GeV to 1.0 TeV.

q The slight discrepancy in the high energy region (above

200 GeV) could be attributed to detector calibration non-

uniformities and proton contamination in the ISS sample;

§ The first term originates from the shower fluctuation, and the second 

constant term is mainly related to the granularity of ECAL PMTs.
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ResNet Model for Incident Position

q By training the model with the same network structure, we can reconstruct the incident position as well;

q The minor difference lies in the output form, which is a 2D vector array of (X0, Y0).

Loss function:
𝟏
𝐍
×∑𝐢&𝟏𝐍 𝑿𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧,𝐢(𝑿𝐭𝐫𝐮𝐞,𝐢

𝟐

𝛔𝑿,𝐭𝐫𝐮𝐞𝟐
+ 𝒀𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧,𝐢(𝒀𝐭𝐫𝐮𝐞,𝐢

𝟐

𝛔𝐘,𝐭𝐫𝐮𝐞𝟐
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Residual Comparison of ISS and MC 

q In the X-direction, an example of Gaussian fitting for the difference between the reconstructed coordinates 

and the regression targets is shown.
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Residual Comparison of ISS and MC 

q In the Y-direction, an example of Gaussian fitting for the difference between the reconstructed coordinates 

and the regression targets is shown.
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Incidence Resolution on ISS

q Spatial resolution is better than 1.5 mm in X direction and 2.0 mm in Y direction for electrons at 10 GeV;

q The resolution reaches ~ 0.5 mm above 300 GeV;

q The resolution in X is better than that in Y, primarily due to more number of layers along X (10/18).
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Summary

q In this work, we utilize Deep Learning technique (ResNet Model), to reconstruct the angular and

incident position of electrons and positrons.

ü The inclination angle θ shows a resolution of 𝟏∘ at 10 GeV and 𝟎. 𝟐∘ at 1TeV in Monte Carlo sample.

ü The performance is further validated with unique AMS ISS electron data.

ü The incident position (x0, y0) is reconstructed by the dual-output model, reaching 0.5 mm precision above

300 GeV.

q Compared to existing methods, the ResNet model demonstrates significant improvement, which is of

great importance for the positrons, electrons, and high-energy gamma rays analysis in AMS

experiments.

q Additionally, this Deep Learning technique can be applied into the physics reconstruction of other high

granularity calorimeters (HERD, CMS…).


