Quantum Computing and Machine Learning Workshop 2025

Study of CNN Algorithms for PID System in STCF

Wanlin Lin (on behalf of STCF software team)

Central China Normal University

2025.08.22 QingDao

Outline

- I. Background
- II. PID System
- III. CNN Algorithms
- IV. π/K Identification Performance
- V. Summary

Super Tau-Charm Facility

Super Tau-Charm Facility (STCF) is a new generation of positron-electron colliders proposed in China

- Center-of-Mass Energy 2-7 GeV
- Peak luminosity 0.5×10^{35} cm⁻²s⁻¹
- higher-luminosity upgrades and beam polarization in the future

- charm quarks and τ leptons
- Non-perturbative strong interactions and hadronic structure
- Search for new physics

Tracking system(ITK 和 MDC), Particle identification system(PID), Electromagnetic calorimeter(ECAL),

Superconducting solenoid (SCS), Muon detector (MUD)

PID Requirements

Particle identification (PID) is an important tool for conducting physics research in collider experiments.

- p < 2 GeV/c, π / K misidentification rate < 2%, identification efficiency > 97%
- p > 0.7 GeV/c, μ identification efficiency > 95%;
- $0.5 \text{GeV/c} , <math>\mu$ identification efficiency > 70%
- Good neutral particle identification capability

The PID system uses two Cherenkov detector technologies:

- Endcap: a time-of-flight detector based on the detection of the internal total-reflected Cherenkov light (DTOF)
- Barrel: a Ringing Imaging Cherenkov detector (RICH) / (BTOF)

Machine learning-based PID Technology

Relying solely on information from a single sub detector makes it challenging to accurately distinguish particles

Machine learning: excellent performance in PID by extracting useful features in high-dimensional spaces

- Combining information from multiple sub detectors
- Fully use the raw detector response

Customized ML-based PID algorithms, deployable in OSCAR via ONNX.

This work develops a CNN for π/K identification using raw detector responses and track-level features to meet STCF PID requirements.

PID System — RICH

The barrel PID detector of the STCF is a Ring Imaging Cherenkov(RICH) Detector.

- Composed of 12 identical modules, covering a polar angle range from 36° to 144°
- Radiator: C_6F_{14} and the quartz
- The particle and Cherenkov photons propagate forward to the CsI photocathode, and are finally imaged on PMT

PID System—RICH

- The 2.7 \times 0.45 m² anode plane is segmented into readout channels with a pixel size of 5 \times 5 mm²
- A 90 \times 540 2D image is constructed based on the PMT channels that receive Cherenkov photons
- Cherenkov rings exhibit shapes such as quasi-elliptical, quasi-hyperbolic patterns

PID System—DTOF

As the endcap PID detector of the STCF, the DTOF employs a technology based on the detection of internally total-reflected Cherenkov light

- DTOF consists of two identical discs, containing multiple sectors
- covering in polar angles of $\sim 20-36^{\circ}$
- synthetic fused silica serves as the Cherenkov radiator to generate photons
- an array of MCP-PMTs are optically coupled to the radiator along the outer side to detect the Cherenkov photons

PID System—DTOF

Using the original response from the detector, construct a two-dimensional pixel map:

- X-label: Hit channels of Cherenkov photons received by the PMT
- Y-label: Arrival time of Cherenkov photons received by the PMT
- Value: Number of photons in the bin

- $0 \le 4$ *Channel_x + Channel_y ≤ 768
- $5 \le \text{Time} \le 20 \text{ ns}$ (Time resolution : 50 ps)
- Bin number: Channel * Time = 192 * 300

PID System—BTOF

BTOF as an alternative barrel design, adopts a principle similar to the endcap DTOF.

- 12 modules, Covering a polar angle range from 36° to 144°
- On the outer side of the quartz, 15 MCP-PMTs (each with 1×16 pixels) are arranged
- 5ns < Time < 20ns (Time resolution 50 ps)

• Bin number: Channel * Time = 240*300

Kaon- $P = 2 \text{ Gev}, \theta = 66^{\circ}, \varphi = 50^{\circ}$

Data Sample

OSCAR (2.6.2) simulates the digitized MC samples for Pion/Kaon

- $p \in 0.3\text{-}2.4 \text{ GeV/c}$
- barrel (RICH and BTOF polar angel range from $36^{\circ} \sim 90^{\circ}$)
- endcap (DTOF polar angle from $20^{\circ} \sim 36^{\circ}$)
- Select single-module, single-track events
- Input: 2D images + 3D hit position & momentum (from Tracking system)

CNN Model: EfficientNetV2

Google EfficientNet

Version1: Use a composite coefficient to uniformly scale the depth, width, and input image of the network

Version2: More lightweight, it reduces the number of parameters, thereby accelerating computation speed

EfficientNetV2-S (customized for DTOF)

阶段	操作类型	步长	输出通道	层数
图像主干路径: DTOF 输入图像(尺寸 300 × 192)				
1	3×3 卷积	2	24	1
2	Fused-MBConv1 $_3 \times 3$	1	24	2
3	Fused-MBConv4_3 \times 3	2	48	4
4	Fused-MBConv4_3 \times 3	2	64	4
5	${\sf MBConv4_3 \times 3}$	2	128	6
6	${\sf MBConv6_3 \times 3}$	1	160	9
7	${\sf MBConv6_3 \times 3}$	2	256	15
8	1×1卷积+GAP	-	1280	1
辅助路径: 粒子运动学输入向量(5维)				
8	全连接映射	-	32	1
多模态融合与分类头				
9	拼接+全连接层	-	256	1
10	π / K 概率输出	-	2	1

CNN π/k PID Performance——DTOF

The signal efficiency and background misidentification rate for pion/kaon across momentum and polar angle

adjust thresholds on the predicted probabilities to control the misid rate of kaons < 2%:

- Meet the STCF requirements for π/K identification (p<2Gev/c, eff>97%)
- The performance in the high momentum and large angle shows a decline

CNN π/k PID Performance——RICH (preliminary)

adjust thresholds on the predicted probabilities to control the misid rate of kaons < 2%:

- CNN (DTOF-like): 90×540 2D image + track info (momentum, position)
- The performance in the high momentum and small angle shows a decline

CNN π/k PID Performance——BTOF (preliminary)

adjust thresholds on the predicted probabilities to control the misid rate of kaons < 2%:

- CNN (DTOF-like): 300×240 2D image + track info (momentum, position)
- The performance in the high momentum and large angle shows a decline

Summary

- A CNN model has been developed for the STCF PID system, using raw detector responses to construct structured pixel images, combined with track-level kinematic features for training.
- The current DTOF π/K identification performance meets STCF requirements, and the end-to-end CNN reconstruction algorithm can be extended to five-class classification.
- The CNN techniques used in DTOF have been applied to RICH and BTOF, with preliminary results obtained.

#