





# Towards a foundational jet model:

Enhancing generalization with contrastive "gen-reco" pre-training

Zixun Kou Congqiao Li Qiang Li

Peking University

Quantum Computing and Machine Learning Workshop 2025, Qingdao 23 August, 2025

#### Universal model

- Pre-training according to scaling law, pre-training large models on comprehensive datasets can push a broad range of final states towards their sensitivity frontier
- Achieve state-of-the-art performance reach the best possible accuracy across all established tasks (e.g. A vs. B tagging, mass/ $p_T$  regression, etc.)
- Ensure strong generalization reach as better performances as possible for new tasks



Supervised approach (+X) Sophon w/ JetClass-II

#### **Computer Vision**

- models trained on ImageNet were among the earliest pretrained CV models. (serving to generalize to other CV domains)
- Modern self-supervised learning (SSL) methods (e.g. MAE, I-JEPA, ...) show strong performance and beat SL.
- but one fact is that the **supervised baseline is relatively weak** (ImageNet-1k only has 1M images)



ImageNet-1k the cornerstone of modern CV 1M dataset; 1000 labels

#### **HEP** dataset

• Establish a very strong baseline modern supervised models (e.g. SoTA taggers in ATLAS/CMS) are already trained on o(100M)-level datasets.

#### Current Sophon model

- Sophon: Signature-Oriented Pretraining for Heavy-resonance ObservatioN
- Key concept: Pre-training an expressive Transformer model on a wide range of jet phase spaces on a multiclass classification task
- Target boosted-jet phase-space explored simulate datasets QCD, resonant jets with 2, 3 or 4 prongs (188 categories)



- Provides directly usable discriminants and outperforms SOTA results
- Demonstrate broad ability to construct discriminants and sensitively probe resonances with unknown properties (QCD, V+jets, ttbar+single top, di-boson, Higgs production)

#### Way to improve

- A simple classification approach
- Jet signatures of initial state remain unused
- Enhance transfer-learning ability in other tasks



## **Next Step**

# Supervised approach









"Signature-Oriented Pretraining" ↔ pretraining with labels serving as a pretraining foundation

Further enhance model generalization with some SSL/...

Sophon

### **Next Step**

# Supervised approach









"Signature-Oriented Pretraining" ↔ pretraining with labels serving as a pretraining foundation

Further enhance model generalization with some SSL/...

Sophon

Sophon++

# **Next Step**

#### **CLIP**

- Contrastive Language-Image Pre-training
- Multi-Modality(language, image)



 $T_{N}$ 

 $I_1 \cdot T_N$ 

 $T_3$ 

 $I_1 \cdot T_3$ 

A photo of

a dog.

 $T_2$ 

## **Pre-training Setup**

Gen-Level Encoder

Input: features of dedicated final-state quarks and leptons



Jet-Level Encoder

Input: features of jet constituents (same as original *Sophon*)



Class tokens: separated token for each task Network structure: ParT for both



loss =  $\alpha$  \* contrastive loss +  $\beta$  \* classification loss

### **Pre-training Setup**

Network parameters:

| Encoder   | Particle Embedding | Pairwise Embedding | Particle Attention Block | Heads | <b>Class Attention Block</b> | FC            |
|-----------|--------------------|--------------------|--------------------------|-------|------------------------------|---------------|
| Int lovel | (E12 120 E12)      | (64 64 64 9)       | O                        | O     | 2 (for classification)       | (512, 188)    |
| Jet-level | (512, 128, 512)    | (64, 64, 64, 8)    | O                        | O     | 2 (for contrastive)          | (512,512,512) |
| gen-level | (64, 64, 64)       | (32, 32, 32, 4)    | 4                        | 4     | 2                            | (256)         |



Training parameters(*Sophon++* dev):

 $\alpha = 0.1, \beta = 1$ 

Batch size=2048

Learning rate= $5 \times 10^{-3}$ 

Steps per epoch=5000 (1024 \* 10,000/2048)

Epoch=180

Use NCCL on 4 GPU

Training parameters (original *Sophon*):

 $\alpha$ =0,  $\beta$ =1

Batch size=2048

Learning rate= $3 \times 10^{-3}$ 

Steps per epoch=5000

Epoch=160

Use NCCL on 4 GPU

## **Pre-training Setup**

Network parameters:

| Encoder   | Particle Embedding | Pairwise Embedding | Particle Attention Block | Heads | <b>Class Attention Block</b> | FC            |
|-----------|--------------------|--------------------|--------------------------|-------|------------------------------|---------------|
| Int lovel | (E12 120 E12)      | (64 64 64 9)       | O                        | O     | 2 (for classification)       | (512, 188)    |
| Jet-level | (512, 128, 512)    | (64, 64, 64, 8)    | O                        | O     | 2 (for contrastive)          | (512,512,512) |
| gen-level | (64, 64, 64)       | (32, 32, 32, 4)    | 4                        | 4     | 2                            | (256)         |



$$\alpha$$
=0.1,  $\beta$ =1

Batch size=2048

Learning rate= $5 \times 10^{-3}$ 

Steps per epoch=5000 (1024 \* 10,000/2048)

Epoch=180

Use NCCL on 4 GPU

$$\alpha$$
=0,  $\beta$ =1

Batch size=2048

Learning rate= $3 \times 10^{-3}$ 

Steps per epoch=5000

Epoch=160

Use NCCL on 4 GPU

# Result of classification (188 categories)



(To testify global optimization of *Sophon++*)



#### Distribution of angle between bb



•••••



#### Modifying data config(yaml card):

- Only input events labeled as 'X to bb'
- Define new variables to calculate bb\_deltaR
- Assign indices for each event according to bb\_deltaR
- Set the indices as the new label

 $0.0 \sim 0.1:0$  $0.1 \sim 0.2:1$ 0.8~0.9:8 >0.9: 9



A 10-class classification model



#### Universal model selection:

| Model                                                                                                             | Epoch Selection                                  | Accuracy    | Classification Loss                    | Contrastive Loss                       |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|----------------------------------------|----------------------------------------|
| Sophon                                                                                                            | 158                                              | 0.5241      | 1.619                                  | -                                      |
| <i>Sophon++</i> dev                                                                                               | 179                                              | 0.5230      | 1.618                                  | 0.4922                                 |
| Training parameters: Batch size=1024 Learning rate=1×10 <sup>-3</sup> Steps per epoch=5000 Epoch=20 (10 for Lines | (1024 * 5,000/1024)                              | Linear-prob | Main structure of Particle-Transformer | 00000000000000000000000000000000000000 |
| Linear-probe (train a or<br>Transfer-learning (train<br>1 GPU per training                                        | ne-layer FC with 10 noons a best FFN to get high | •           | Main structure of Particle-Transformer |                                        |

hidden-layers



performance of *Sophon++* is much better than Original Sophon!



bin 4 vs bin 5

performance of *Sophon++* is much better than Original Sophon!

- ➤ While Lorentz-boosted hadronic W/Z jet tagging has been considered in Run 1, recent deep learning advances now enable discrimination of the W boson charge
- traditional approach: uses jet charge ( $p_T$  weighted particle charge) as a discriminant
- opportunity: integrate charge determination into the standard deep learning jet tagging framework

e.g. as explored in [PRD 101, 053001 (2020)]





performance of *Sophon++* is better than Original Sophon







- $\triangleright$  Discriminating X $\rightarrow$ WW<sup>(\*)</sup> signals across varying m<sub>W</sub>/m<sub>X</sub> and against QCD backgrounds
- Exploring H/X→WW<sup>(\*)</sup> in a fully-merged topology is an emerging LHC direction
- multiple CMS results now available: SM (single/di-Higgs), and BSM searches
   SM HH→bbWW\*(4q) [CMS-PAS-HIG-23-012], H→WW\* [CMS-PAS-HIG-24-008]
   Resonant X→H(bb)Y(WW) [CMS-PAS-B2G-23-007]
- ightharpoonup Different  $m_W/m_X$  ratios probe distinct phase space regions ightharpoonup require separately optimized discriminants
- > We consider four benchmark scenarios
- $m_W/m_X = 0.2, 0.4, 0.6432$  (SM case), 0.8







performance of *Sophon++* is better than Original Sophon in Linear-probe





2025/8/22

27

#### Conclusion

- > **Sophon**, as a large-scale multi-classifier, has achieved optimal performance across various specific tagging tasks.
- note: It is implemented in CMS as part of GloParT and has been utilized for various boosted jet analyses in Run 3.
- ➤ How can we enhance its generalization capabilities?
- we are exploring contrastive "gen-reco" matching.
- while pure unsupervised models have been developed in recent years to create jet foundation models, we propose insights derived from computer vision history.
  - a "supervised + X approach" can be developed.
  - "X" refers to a methodology akin to <u>OpenAI's CLIP</u>: it continuously encodes different configurations of gen-level information into Sophon's latent space, thereby achieving stronger generalization.
- demonstrated superior performance in specific fine-tuning tasks; further optimizations are underway.
- > Sophon++ provides a promising pathway to upgrade GloParT in CMS!

2025/8/22 28







# Thanks for your attention!



# Backup: Core value of Sophon/GloParT at LHC physics

- > Sophon method implies a pre-training philosophy: "large models for large-scale classification"
- It has been applied in CMS as GloParT
- ➤ A brief summary: GloParT's role for CMS's joint Run2+Run3 analyses in the coming years:
- Greater sensitivity improvements for the planned analyses
  - H/HH/BSM search related to H→bb/cc/WW\*/ττ..., analyses requiring W/Z/t tagging, ...(several works now using GloParTv1/2/3)
- Expanding the landscape of boosted-topology search
  - Novel final states to be explored! a reminder to investigate calibration feasibility and discuss with BTV+JME
- Creating new paradigms in exploiting the AK8 jet model
  - Fine-tune GloParT at the analyses level (design custom taggers); support broad MC-free searches
  - <u>Facilitate anomaly detection via GloParT fine-tuning</u> will be a great complement to current BSM programs