Machine Learning for real-time data processing at Belle II

Institute of Frontier and Interdisciplinary Science, Shandong Univ. (Qingdao)

25

Roadmap of techniques for data processing

Exp.	Run time	Data (PB)	Total		Š	ž.		/	1 (S)		<i>1</i> 34		The linitial defect	
BESIII	2008-2028	0.5	10		o ter	ે ડે		487	SM	Kin On		(Facking)		(e)))
STCF	_	300-500	-		Sps. fixed taro	4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\sim \sim \sim	44C6 (2 Cg)		"COTACKING"	FCC Solvinoty.			Mon This
CEPC	_	1.5-3(H) 500-50000 (Z)	_	DRDT		2030	. 4 ·	2030-20		2035- 2040		-2045	> 2045	Š
Data	High data rate ASICs and systems			7.1				*						
Data density	New link technologies (fibre, wireless, wireline)			7.1										
46	Power and readout efficiency			7.1	• •			*						
Intelligence	Front-end programmability, modularity and configurability			7.2				v						
on the	Intelligent power management			7.2				*						
detector	Advanced data reduction techniques (ML/AI)			7.2										
40	High-perform	High-performance sampling (TDCs, ADCs)			• •									
4D-	High precision timing distribution			7.3										
techniques	Novel on-chip architectures			7.3										
Eutromo	Radiation har	Radiation hardness			• •					• •				
Extreme environments and longevity Emerging technologies	Cryogenic ter	Cryogenic temperatures												
	Daliability for	Daliability facility alayses a datastay as stud												
	Cooling			7.4				*						
	Novel microelectronic technologies, devices, materials		7.5	• •										
	Silicon photonics			7.5									Ŏ	
				7.5				*						
		with, adapting and interfa-	cing to COTS	7.5										

Important to meet several physics goals

Desirable to enhance physics reach

R&D needs being met

Data processing system (Belle II vs. LHCb)

Heterogenous computing system

- System integrated with different devices
 - System level, chip level
- FPGA widely used in frontend and trigger electrics
- •FPGA, Al engine, DPU, System On Chip, Network On Chip for computing acceleration

Luminosity frontier: SuperKEKB

- Asymmetric e+e- collider
 - e+e- $\rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
 - very clean and well-known initial state

e- 7 GeV

Beam current: KEKB x ~1.5

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \frac{I_{\pm} \xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y}\right)$$

Beam squeeze: KEKB / ~20

Nano beam scheme

Position dumping ling low emittance position Position source target

Low emittance

electron gun

Belle II detector

e+ 4 GeV

Target: $L = 60 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Achieved: 5.1 x 10³⁴ cm⁻² s⁻¹ (Record)

- Data:
 - 575 fb⁻¹ (Belle II) <-> 980 fb⁻¹ (Belle) 5

Belle II detector and dataset

Vertex detector (VXD)

Inner 2 layers: pixel detector (PXD) Outer 4 layers: strip sensor (SVD)

Central Drift Chamber (CDC)

He (50%), C₂H₆ (50%), small cells, long lever arm

Particle Identification

Barrel: Time-Of-Propagation

counters (TOP)

Forward: Aerogel RICH (ARICH)

ElectroMagnetic Calorimeter (ECL)

CsI(TI) + waveform sampling

- Features:
 - Near-hermetic detector
 - Vertexing and tracking: σ vertex ~ 15 μ m, CDC spatial res. 100 μ m $\sigma(P_T)/P_T$ ~ 0.4%
 - Good at measuring neutrals, π^0 , γ , $K_{L...}$ $\sigma(E)/E \sim 2-4\%$

e+ (4GeV

 K_L/μ detector (KLM)

Outer barrel: Resistive Plate Counter

(RPC)

Endcap/inner barrel: Scintillator

Motivation of Neural Network for L1 Track trigger

- DAQ system is designed to handle 30 kHz
 - Physical trigger ~15 kHz, require S/N = 1
 - 200350 kHz (total rate) -> ~15 kHz (physics rate)
- L1 trigger rate depends significant on background condition
- Advanced CDC algorithm to further suppress background
- A fixed latency of about 4.4 usec

Tracks z_0 distribution after trigger

Basics of L1 CDC trigger

Deep Neural Network for Z trigger

- Inputs: Drift time t_{drift} , wires relative location ϕ_{rel} , Crossing angle α for priority wires + Drift time for all other wires
- Introduce the self-attention architecture to "focus" on certain inputs
- Output track vertex z_0 , track θ and signal/background classifier output (Q)

Parameter	#Attention value	#hidden nodes	#hidden layer	activate	precision	Total multiplier
Values	27	27	2	Leaky Relu	Float 16	4,185

Development flow of DNN on FPGA

Belle II UT4

Xilinx UltraScale XCVU080, XCVU160 25 Gbps with 64B/66B

Quantization-Aware Training (QAT) for FPGA implementation

- Quantization is essential technique to speed up inference, reduce resource usage
 - Embedded system, edge device
 - Fake quantization during training
 - For example, convert 32-bit floating to 8-bit integer
 - Reduction in the model size, memory bandwidth 4x
 - Optimization item: performance vs. latency vs. resource usage

	No QAT	QAT
LUT	~46%	~27%
DSP	~64%	~56%
Latency	551 ns (70 clock)	488 ns (62 clock)

Performance of DNN algorithm

- Latency: 76 clock = **551.2** ns; require: < 600ns
- FPGA resource (UT4: Virtex UltraScale XCVU160) usage:
 - DSP: ~75%, LUT: ~45%, others <30%
- AUC do not get large drop comparing RTL and software simulation
- At signal efficiency ~95%
 - Background rejection rate ~85%

GNN based CDC track finder

- Motivations of introducing a GNN track finder (SOFTWARE)
- Low efficiency for displaced vertices
 - Efficiency decrease as displacement increase
 - Important signature for new physics search
- Higher background
- CDC wire inefficiencies
 - Bad wires or electrics
 - Decreased efficiency

Comput.Phys.Commun. 259 (2021) 107610

 Modular structure for track finding, with flexible of reconstruction sequence

Model I: GNN for CDC track background filtering

• Developed a GNN algorithm (based on X. Q. Jia (SDU) et al. BESIII's algorithm) Xiaoqian Hu (SDU) for Belle II CDC hits clean up

• Inputs: TDC, position coordinates r, ф

Hit selection efficiency: 98.4%

Hit selection purity : 97.9%

Belle II simulation (own work)

μ+ μ- (particle gun)

GNN noise filtering

Transform space

Transform a space

DBSCAN clustering

Model II: GNN for offline track finding

- Find track parameters: momentum, starting position and charge
- Find unknown number of tracks → Object Condensation (arXiv:2002.03605)
- Computing resource and time constraint may reducible

- x and y wire position
- TDC and ADC of signal information
- layer, superlayer, and layer info. with suprlayer
- Adjustable Parameters
 - 797,812 trainable parameters (3MB weight files)

Performance of GNN

- Model II (Object condensation) shows better clustering performance than model I
- Track finding efficiency do not increase that much
 - Failed in the track finding, even clustering of hits shows better performance
 - Further improvement is needed

Training samples for GNN

- Simulate 1 million events with over 4 million tracks
 - Train: Validation = 4:1
- Training samples contain different topologies that cover all interested event features, to not bias the model, **no conservation laws involved here!**
 - → crucial step to be agnostic about the physics processes
- Sample features
 - Low momentum tracks forming circles in the CDC (Pt < 0.4 GeV) <-> High momentum tracks
 - Short tracks <-> tracks penetrate all CDC layers
 - Small opening angle <-> well isolated two tracks

•

Performance of GNN

- Efficiency of displaced vertex tracks improved from 85.4% with a fake rate of 2.5%, compared to 52.2% and 4.1%
 - The other performance similar as original algorithm
- Momentum p_x , p_y , p_z starting position v_x , v_y , v_z , charge
 - Provide initial inputs for GENFIT
- GNN prediction is drawn according to the track parameters predicted by the GNN

L. Reuter et. al. (KIT) arXiv: 2411.13596

CNN algorithm for STCF PID

- DTOF as a PID subdetector of STCF
- CNN algorithm developed for Kaon/pion identification

Kaon/Pion MC simple, 800w

100.0

- 97.5

95.0

92.5

90.0

87.5

85.0

- 82.5

80.0

Heterogenous computing platform

R&D of a new general FPGA device using the AMD Versal ACAP

Heterogenous acceleration (VCK190, VCK5000 evaluation kit)

Al engine (AIE)

ADAPTABLE INTELLIGENT **ENGINES ENGINES ENGINES DUAL-CORE** RM CORTEX -A72 APPLICATION **PROCESSOR VERSAL™** DSP **DUAL-CORE ADAPTABLE** ARM CORTEX-RSF **ENGINES HARDWARE** REAL-TIME PROCESSOR PLATFORM MANAGEMENT CONTROLLER PROGRAMMABLE NETWORK ON CHIP MIPI 32Gb/s GEN5 MULTIRATE ETHERNET INTERLAKEN CRYPTO 58Gb/s LVDS W/DMA ETHERNET 112Gb/s GPIO

Figure 4: AI Engine

CNN algorithm implementation

CNN algorithm implementation

Inference result based on 10000 samples

DPU based on AMD Versal ACAP shows ~13 times(CPU)/~3(GPU) faster inference time22

Summary and prospects

- Advanced data reduction technique is essential for next-generation HEP experiment.
 - AI/ML integrated with heterogenous computing acceleration
- DNN with hardware based L1 track trigger for improving background rejection
- GNN based hit filter, and DNN were implemented on AMD Versal ACAP
- CNN based PID algorithm for STCF running on DPU has advanced performance than CPU/GPU
 - Both GPU and DPU can be a solution to accelerate data processing for online or offline data processing system