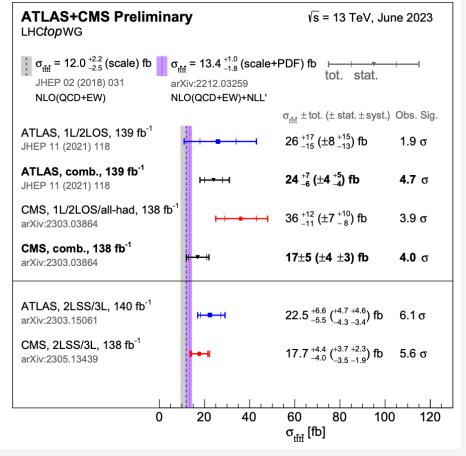


Al-assisted Four Top Quark Reconstruction


Rare Top Quark Production Process: Four-top-quark production

- $t\bar{t}t\bar{t}$ production is a rare top quark process predicted in the SM It is one of the heaviest final states accessible at LHC
 - NLO (QCD+EWK): $\sigma(t\bar{t}t\bar{t}) = 12 \text{ fb } \pm 20\% \text{ [JHEP } 02 \text{ (2018) } 031]$
 - NLO+NLL: $\sigma(t\bar{t}t\bar{t}) = 13.4 \text{ fb } \pm 11\% \text{ [arXiv:2212.03259]}$

- $t\bar{t}t\bar{t}$ cross section is sensitive to anomalous top Yukawa coupling and Higgs CP properties
- Most sensitive channels in ATLAS and CMS are lepton channels: SSML and 1LOS

The observed significance is **6.1** sigma

Top Quark Reconstruction

- Top quark reconstruction relies on the measurement of final states and jet-parton assignment is important in heavy particle reconstruction.
- 12 jets and 4 b jets: 2520 permutations 14 jets and 5 b jets: 113400 permutations


• Traditionally we use the χ^2 **method** to build each possible permutation of the event to find the best solution

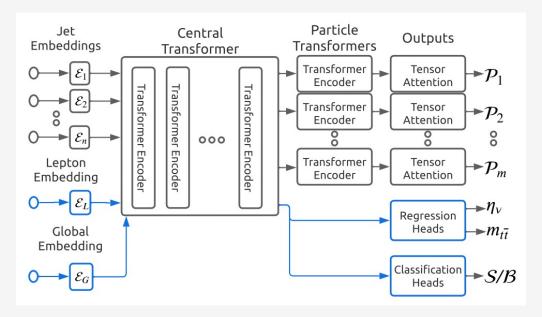
Find the best permutation with smallest χ^2

- Large number of permutations and long running time
- Hard to reconstruct leptonic top
- Depending on b-tagging

	()2	()2	()2	()2
$v^2 =$	$\pm \frac{(m_{b_1j_1j_2}-m_{top})^2}{2} +$	$\frac{(m_{b_2j_3j_4}-m_{top})}{+}$	$-\frac{(m_{j_1j_2}-m_w)}{}+$	$(m_{j_3j_4}-m_w)$
Λ	$\sigma_{ m top}^2$	$\sigma_{ m top}^2$	$\sigma_{m_W}^2$	$\sigma_{m_W}^2$

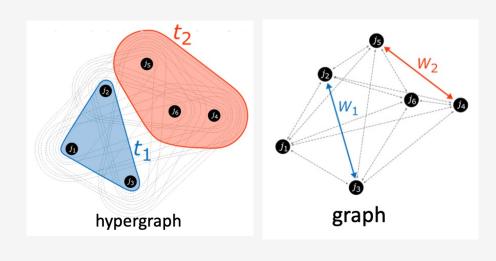
Event Type	N jet	Event fraction	Hadronic top chi2 efficiency
All Event	==6	7.9%	0.07
	==7	19.8%	0.130
	>=8	72.9%	0.1985
	inclusive	1	0.172

Machine Learning Assignment Methods


Neural Network methods' advantages:

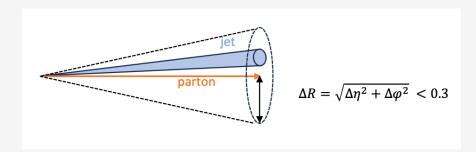
- Less time consumption in application: parallel computation by natural network
- High accuracy and can handle partial events

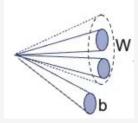
Commun Phys **7**, 139 (2024) SciPost Phys. 12, 178 (2022)

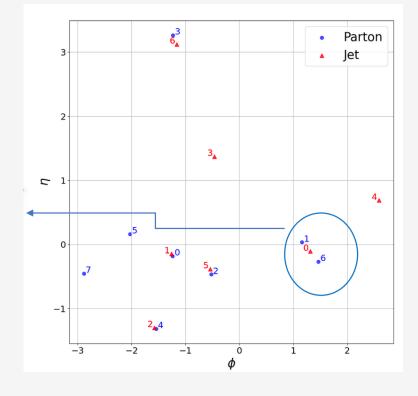

SPA-NET: use transformer to read multiple inputs from physics objects and output as sequence

 $Loss = \alpha_{reco} L_{reconstruction} + \alpha_{det} L_{detection} + \alpha_{reg} L_{regression}$

PhysRevD.111.032004

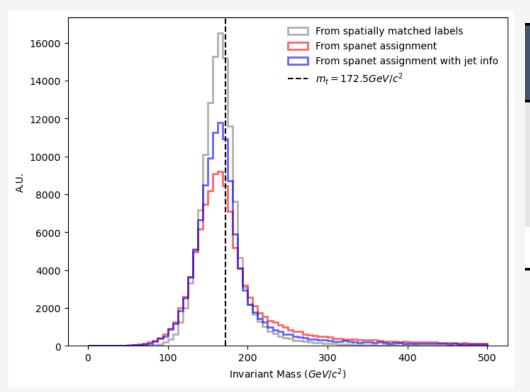

Hyper: use hyper-graph to group the top quark candidates in the graph dataset




Truth Labelling for Supervised Learning

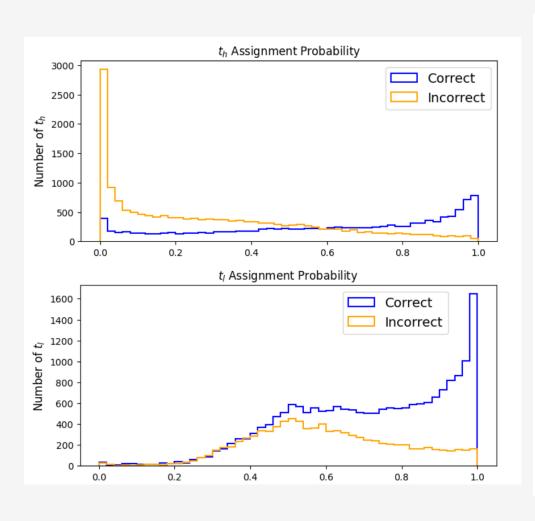
- Event generated by Madgraph5 and go trough fast simulation using Delphes
- Surprised learning: need to label the jet in the final state
 - Spatial matching based on truth-level partons in (eta, phi) plane
 - Match the nearest jet to each parton: labelling efficiency is ~75%
- ~600k 4top sample in 2L channel for training and validation

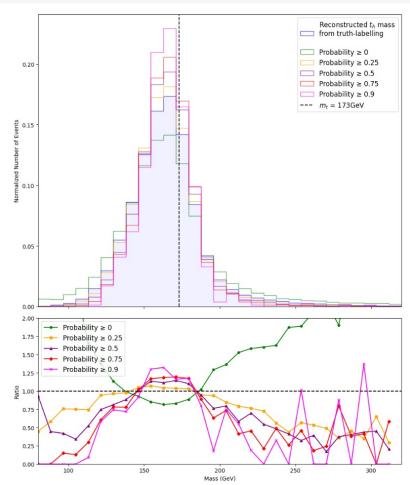
Dataset	Number of events	
Training	551k	
Validation	29k	
Evaluation	175k	



SPA-Net Performance in Four-Top-Quark Reconstruction

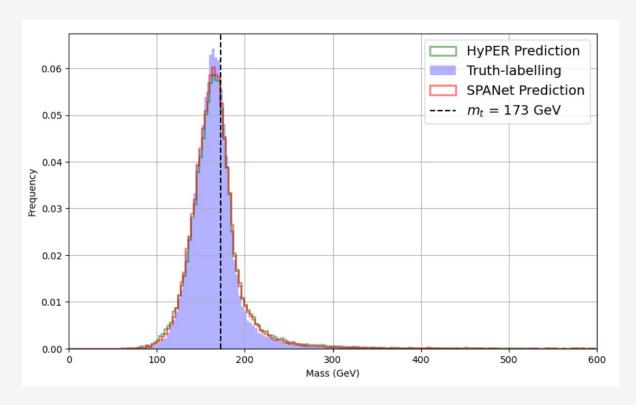
- Evaluating the performance using the top quarks which decay products are spatially matched to partons
- The machine learning method outperforms the traditional method in accuracy and speed:
 - Speed: SPA-Net improves about 3 times faster in running time(both in CPU)
 - Accuracy: SPA-Net achieves ~38% in hadronic top efficiency, ~70% for leptonic top efficiency for four-top-quark events




Even t Type	N jet	Event fraction	Hadronic top: t _h	Leptonic top: t _l	Hadronic top (add vars)	Leptonic top (add vars)
All	==6	7.9%	0.326	0.752	0.332	0.766
Even t	==7	19.8%	0.375	0.727	0.386	0.735
	>=8	72.9%	0.387	0.692	0.402	0.700
	inclusive	1	0.383	0.703	0.397	0.711

- 200% improvement compared to χ^2 method
- Adding $\tau_1, \tau_2, \tau_3, \tau_4, \tau_5$ and ratio of charge particles over neutral particles (shown in brown column)
 - Small improvement (percent level)
- t_I efficiency drops to 0.632 if require both b-quark and lepton

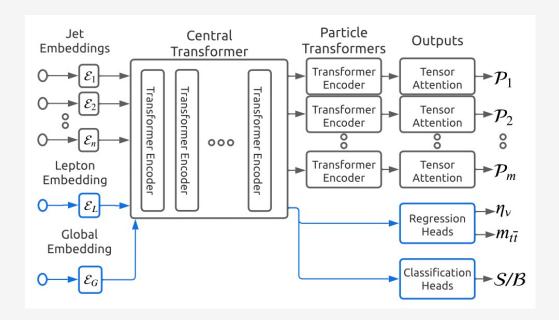
SPA-Net Assignment Probability


- The assignment probability can help to evaluate the output of the SPA-Net
 - Each top quark from SPA-Net prediction is classified as correct or incorrect by comparing it to truth label
 - Threshold on the assignment probability can help to improve the proportion of correct assignments

Result of HyPER

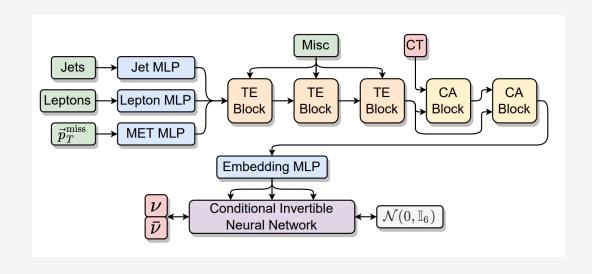
- Hypergraph can derived similar results in hadronic top quark reconstruction
- Parameter-efficient compared to SPA-Net: 500k vs.16M
- Performance reaches ~47% in hadronic top reconstruction

Event Type	N jet	SPANet (2t _h +2t _l)	SPANet (2 t _h)	HyPER (2 t _h)
All Event	==6	0.326	0.540	0.559
	==7	0.375	0.528	0.525
	>=8	0.387	0.461	0.453
	inclusive	0.383	0.471	0.467

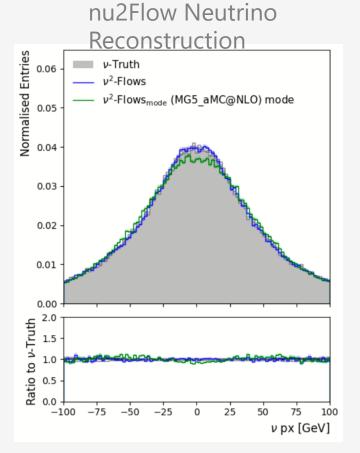

- HyperGraph has no neutrino regression and can only reconstruct t_h
- SPA-Net and HyperGraph have similar performances when reconstructing t_h only
- Adding neutrino regression should help for HyperGraph

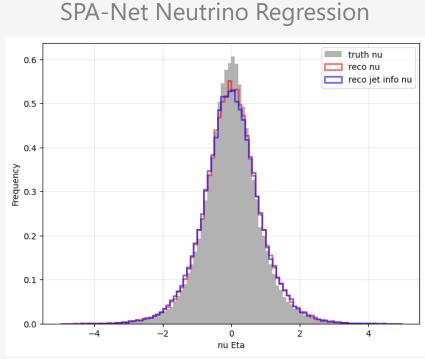
Multi-task Learning in Multi-lepton Channel

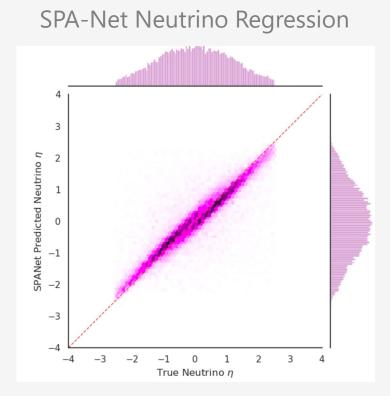
- In two lepton channel, the large missing ET coming from the neutrino arise the difficulty for reconstruction
- Machine learning method can regress or predict the momentum of the neutrino


Commun Phys 7, 139 (2024) SciPost Phys. 12, 178 (2022)

 SPA-Net: use regression heads to output the value of the four momentum of neutrino


PhysRevD.109.012005


nu2Flow: use Normalization Flow to generate the distribution of the neutrino



SPA-Net Performance with Neutrino Reconstruction

- SPA-Net and Nu2Flow can model the neutrino's momentum well
- Using neutrino momentum information significantly improves top quark reconstruction efficiency
 - SPANet's neutrino regression improves t_h efficiency by 100% and t_l by 18%

Further Improvements to SPA-Net?

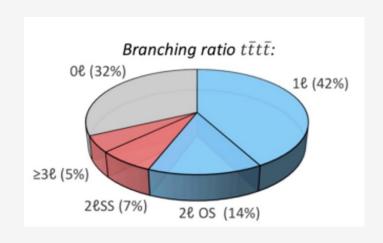
- Lossing the b jet requirement in top quark reconstruction: ~20% improvements in hadronic top
- Adding neutrino momentum from nu2Flow as the input of the SPA-Net
 - Further improves t_h efficiency by ~10%
 - Expect smaller improvement in t_l efficiency (requiring both b-quark and lepton)

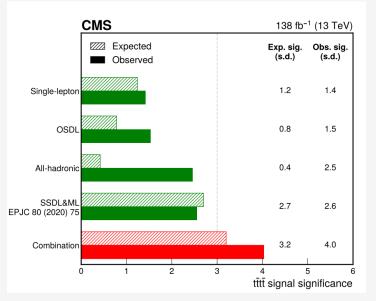
SPA-Net+neutrino regression

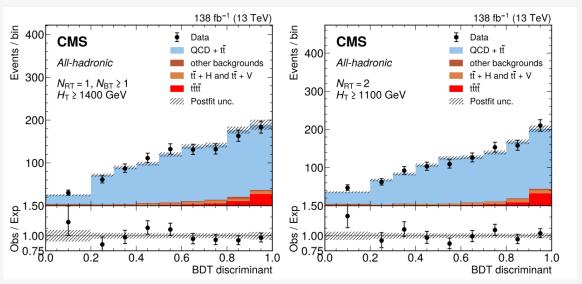
Event Type	N jet	Hadronic top	Leptonic top
All Event	inclusive	0.383	0.703

Event Type	N jet	Hadronic top	Leptonic top
All Event	inclusive	0.415	0.628

Including large-R jets?
Better b-tagging?
Better MET/neutrino modeling?

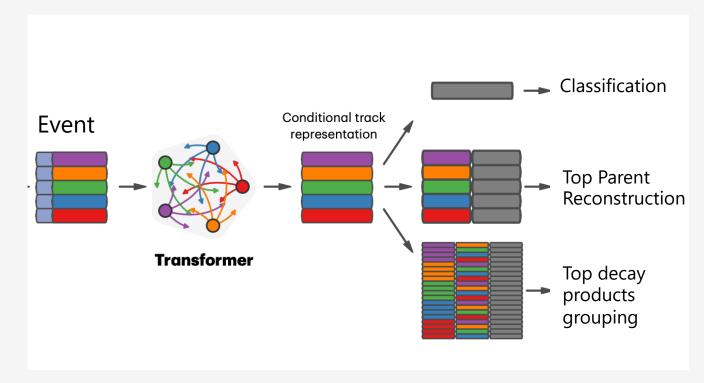



SPA-Net+no b-tagging requirement


Event Type	N jet	Hadronic top	Leptonic top
All Event	inclusive	0.502	0.701

Four-top-quark Production in All-hadronic Channel

- Although SSML channel has better sensitivity due to less background but its decay branch ratio is 13%, 2 times smaller than the BR of all-hadronic channel
- CMS derived 2.7 sigma in the all-hadronic channel, using data-driven estimation for QCD background



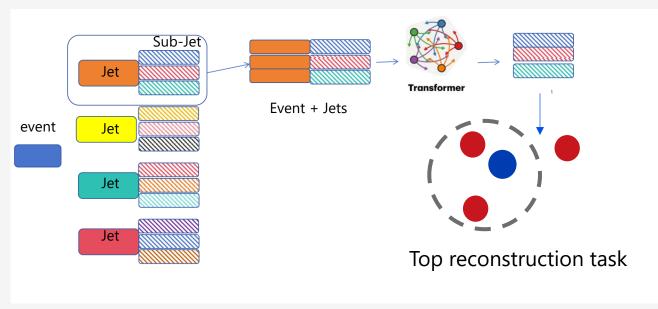
Transformer-based Framework for Four-top-quark Classification

Using the similar structure from the ATLAS transformer algorithm (GN2) but the input becomes the event level

- Considering dominated backgrounds, especially ttbar+jets
- Model inputs: jets kinematics and jet constituent-level information, event-level information

Four-top-quark Reconstruction in Full hadronic Channel

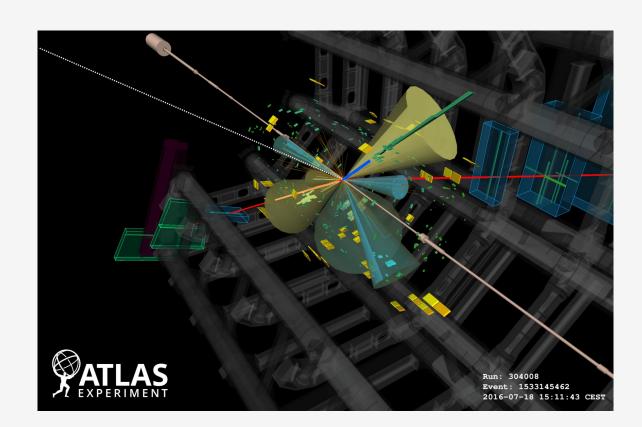
- Adding the top quark reconstruction task in the event-level GN2 framework
- Utilizing the top quark parent ID as the mask, trying to do the reconstruction like the image masking


SPA-Net Algorithm

		Event	SPA-NE	т Efficiency
	$N_{ m jets}$	Fraction	Event	Top Quark
All Events	== 12	0.219	0.276	0.484
	== 13	0.304	0.247	0.474
	≥ 14	0.450	0.198	0.450
	Inclusive	0.974	0.231	0.464

SciPost Phys. 12, 178 (2022)

- SPA-Net reaches 46% reconstruction efficiency in all-hadronic channel
- Long training time due to large number of training parameters (16M)

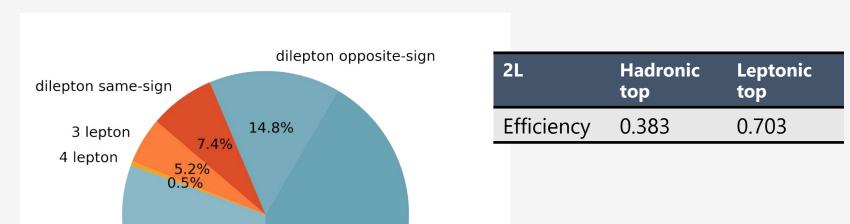

GN2 Framework

Study on-going

Summary and Outlook

- Top quark reconstruction can reduce the multitop background in the analysis
- Machine learning method can be applied for the further top reconstruction in the different 4top final state
 - Using SPA-Net for top reconstruction in SSML channel: 3 times faster and hadronic top efficiency doubled to be ~40%, leptonic top efficiency reaches 70%
 - Further optimizations such as neutrino reconstruction and jet substructures
- The sensitivity in the full-hadronic channel can be enhanced by the machine learning method
 - Classification and top quark reconstruction task using the event-level GN2 algorithm

Backups


SPA-Net Performance in Different 4top channels

- Test the SPA-Net in different 4top channels
- 2L channel has the best performance overall in top quark reconstruction efficiency

30.1%

0 lepton

With the less hadronic top quarks, better performance

1 lepton

42.1%

All-had Hadronic top

Efficiency 0.464

1L	Hadronic top	Leptonic top
Efficiency	0.305	0.604