
Reconstruction of Atmospheric Neutrinos and 
muon with Machine Learning Method in JUNO

X. Tan,1 Z. Yang,1 F.Zeng,1 J. Liu,2 H. Duyang,1 T. Li,1 W. Guo,2 X. He,2 Z. Liu,2

W. Luo,2 X. Luo,2 Y. Zhang2

1 Shandong University
2 Institute of High Energy

23 Aug. 2025



Outline

• Introduction to JUNO

•Methodology

• Introduction to ML models

•Reconstruction methods and Performances

•Summary

2025/8/23 1



Outline

• Introduction to JUNO

•Methodology

• Introduction to ML models

•Reconstruction methods and Performances 

•Summary

2025/8/23 2



Introduction to JUNO: overview
• Neutrino oscillation is of great theoretical and 

experimental interest.
• It implies that the neutrino has non-zero mass, 

which requires a modification to the Standard 
Model of particle physics. 
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Introduction to JUNO: overview
• The Jiangmen Underground Neutrino Observatory 

(JUNO)
• A next-generation neutrino experiment.
• Scientific goals:
• Determine the neutrino mass ordering (NMO);
• Improve the precision of neutrino oscillation 

parameters;
• SuperNova, Solar, Atm., Geo. etc

• Largest liquid scintillator detector and a superb 
energy resolution.
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Introduction to JUNO: detector
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More than 2 meters of water, vetoing external 
background.

PMTs to detect and collect neutrino events:
• 17,612 20-inch PMTs (used in this study);
• 25,600 3-inch PMTs.
78% PMT coverage.

20,000 tons of liquid scintillator (LS).

700m underground, blocking cosmic rays 
through rocks.



Reactor neutrinos:
Sensitivity to NMO via 
oscillation in vacuum

Introduction to JUNO: atmospheric neutrinos
• Atmospheric neutrinos are from cosmic rays 

interacting with upper atmosphere:
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Atmospheric neutrinos:
Sensitivity to NMO via 
oscillation with matter effect



Introduction to JUNO: atmospheric neutrinos
• The measure of atmospheric neutrino oscillations 

has great potential to enhance JUNO’s NMO 
sensitivity. 
• Neutrino oscillations probability 𝑃 = 𝑓(!

"
).

• Reconstruction of atmospheric neutrinos:
• Zenith angle 𝜃;
• Neutrino energy;
• Flavor (PID).
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Introduction to JUNO: cosmic ray muon
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Isotopes(9Li/8He etc.) produced by cosmic muons 
are the main background of IBD signal in JUNO.
• Classification and track reconstruction:

• Spallation isotopes are short-lived and their spatial 
distribution follows an exponential decay profile 

relative to the parent muon trajectory
• A straightforward veto strategy involves excluding 

events within a defined spatial-temporal window 

around the muon track. 
• Shower vertex reconstruction:

• Muons can shower, creating additional spallation 
isotopes. These contribute over 85% of the 

background, reducing neutrino oscillation sensitivity.



Introduction to JUNO: challenging
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• Directionality and tracker measurement in large homogeneous LS detectors, 

however, are very challenging:

1. LS detectors do not offer direct track information. 

2. Cherenkov light, while offering excellent directional information in 

Water detectors, is about two orders of magnitude weaker than 

scintillation light in a typical LS detector.

• So we turned to scintillation light for directionality, energy, pid, track, vertex



Outline

• Introduction to JUNO

•Methodology

• Introduction to ML models

•Reconstruction methods and Performances

•Summary

2025/8/23 10



Methodology: physics process

• A particle’s track depicts distict shape of nPE(𝑡)
for PMTs at different angles.

• Practically, the shape of nPE(𝑡) depends on:

• The angle between the track and PMT;

• Track starting and stopping points;

• d𝐸/d𝑥 etc.

• Therefore, the particle’s information is reflected 
in nPE(𝑡), and finally reflected in the waveform.
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Direction

PID
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• It is too complex to use full waveform as inputs to ML. So, features are 
extracted from waveforms to keep only the useful information relevant 
to reconstructions. 
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Methodology: PMT features

Directionality

Energy

PID

Track

Vertex

Pictures Features

Machine learning 
models 

PMT Waveform

Reconstruction
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Methodology: PMT features
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First Hit Time 

Total charge: The charge 
integration over the entire 
readout time window.

Charge ratio: Charges in the 
first 4ns divided by the total.

Slope: Describes the average 
slope in the first 4ns.

Max charge, Peak Time

Extract feature
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Direction

Energy

Flavor

Track

Vertex

Introduction to models
2 categories of machine learning method to deal with a spherical problem:
• Spherical-image-based method: DeepSphere
• 3D-based method: PointNet++

152025/8/23

PMT 
features

Point clouds,
etc

Spherical 
projection

Spherical model

3D Point cloud 
based model



Introduction to models: PointNet++
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Directly taking 3D point clouds as input → JUNO signal more resembles point clouds.

(N.B. PointNet++ input format: for each event, N(PMT)*[x, y, z, features, ..]  )
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Introduction to models: DeepSphere
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• DeepSphere: a popular tool processing spherical data 
originally developed for cosmology studies.
• Maintain rotation covariance;
• Avoid distortions caused by projection to a planar 

surface. 

• Nside = 32
• Pixels=12×Nside

! = 12288
• If more than one PMTs are grouped into 

one pixel, information is merged:
• First hit time: the earliest;
• Totoal charge: the sum;
• Slope and others: the average.

2025/8/23

4 sets of convolution blocks, followed by one Chebyshev convolution layer, a fully 
connected layer and lastly a prediction block. 
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Reconstruction methods and Performances 
• Atmospheric neutrino reconstruction
• Directionality

• Energy

• PID

• Cosmic muon
• Classification

• Reconstruction
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Directionality reconstruction method:
Loss function
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• Predict theta directly: The result is obviously biased, and the model 
seems to prefer value closer to 90°. This is because the distribution of 
theta is not uniform, and more events are distributed around 90°.
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Bias is gone

Unit directional vector

• Then try to reconstruct the directional vector 
(𝑥, 𝑦, 𝑧) and update Loss Function (Rotation 
invariance):

Loss = (𝑥 − 𝑥#)$+(𝑦 − 𝑦#)$+(𝑧 − 𝑧#)$

2025/8/23

Directionality reconstruction method:
Loss function
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𝛼: Angle between the true and reconstructed directional vector. 
Due to the range of 𝛼 is 0 to 180°, 68% quantile is used to quantify 
the performance of 𝛼.
𝜃: Zenith angle of the true vector. Reconstructed 𝜃 - True 𝜃 reflect the 
resolution. Distribution in different 𝐸" bins can be well in line with the 
Gaussian distribution. 𝜎# is used as quantized resolution.

Directionality reconstruction performance

2025/8/23
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Cross-check with other models
Directionality reconstruction performance

2025/8/23

The blue and red line segments are the 
reconstruction results of the 
DeepSphere and PointNet++ models 
used by the high energy institute of the 
cooperative unit.

Overall, the inter-model differences 
in resolution are not much with 2°
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• Both lepton and hadron information are used in the directionality reconstruction.
• Low-threshold in LS detectors allows for more information from hadrons.

• The reconstructed neutrino direction is less smeared from true neutrino direction 
compared with the charged lepton direction. 
• An advantage for an LS detector with this method.

Directionality reconstruction performance

2025/8/23
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(a) ⌫µ/⌫̄µ-CC ✓⌫ (b) ⌫e/⌫̄e-CC ✓⌫

Figure 10. The ↵ (top) and ✓⌫ (bottom) resolutions are shown as a function of neutrino energy E⌫ for (a) ⌫µ/⌫̄µ-CC (left)
and (b) ⌫e/⌫̄e-CC (right) events in the three models. The resolution improves with increasing E⌫ . The ⌫µ/⌫̄µ-CC events in
general have better resolution than the ⌫e/⌫̄e-CC events at the same energy.

Figure 11. Comparison between two included angles: the one between the true and reconstructed direction from PointNet++
in this study (blue lines), and the one between the incident neutrino and final-state charged lepton directions (red lines) using
the same (a) ⌫µ-CC and (b) ⌫e-CC samples.



Reconstruction methods and Performances 
• Atmospheric neutrino reconstruction
• Directionality

• Energy

• PID

• Cosmic muon
• Classification

• Reconstruction
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Energy reconstruction performance:
• Neutrino interaction → Secondary particles → Deposition energy → Visible energy.

2025/8/23

• Performance benchmark:
• (Reconstructed E - True E)/True E reflect the performance. 
• Distribution in different 𝐸! bins can be well in line with the Gaussian distribution. 𝜎" is used as 

quantized resolution.
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Cross-check with other models
Energy reconstruction performance

2025/8/23

• The blue and red line segments are the reconstruction results of the DeepSphere and PointNet++ 
models used by the high energy institute of the cooperative unit.

• Green line means reconstruction by fitting the relationship between the total charge of the event and 
the neutrino energy with a polynomial function.



Reconstruction methods and Performances 
• Atmospheric neutrino reconstruction
• Directionality

• Energy

• PID

• Cosmic muon
• Classification

• Reconstruction
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PID performance

2025/8/23

Two PID strategies:
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PID method

2025/8/23

The identification of 𝜈/𝜈̅ interactions relies on their differences in event kinematics, 
neutron multiplicity, and the spatial distribution of neutron-capture vertices. 

• Event kinematics: contained in the PMT primary trigger features;

• Neutron information: reflected in the delayed triggers, and two strategies on handling delayed trigger 

(neutron captures) information for 𝜈/𝜈̅ discrimination.
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PID method -- Strategy 1
Reconstructed neutron-capture vertices taken as point clouds
The reconstructed vertices from multiple selected delayed triggers form a new 3D point cloud that is 
input to the ML model together with the one formed by PMT waveform features from the prompt trigger.



322025/8/23

PID method -- Strategy 2
Neutron-capture triggers merged into one as additional features
• This strategy merges multiple delayed triggers into one by summing up the charges from multiple 

selected delayed triggers for each PMT, and taking the FHT value as the earliest among them. 

• nPEn and FHTn used as extra features to the ML model together with features from the prompt 

trigger. 

(a) (b) (c)

Primary trigger features
(FHT, nPE, Slope etc.)

Delayed trigger features
(FHTn, nPEn)

(a) (b) (c)

Merging Neutron
candidate trigger
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Cross-check with other models
PID performance

2025/8/23

• AUC for performance evaluation of 5 label and 3+2 label

5 label 3+2 label



Reconstruction methods and Performances 
• Atmospheric neutrino reconstruction
• Directionality

• Energy

• PID

• Cosmic muon
• Classification

• Reconstruction
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Cosmic ray muon reconstruction method
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Muons

Single

Bundle

Stopping

Through
going

CD water buffer

LS through going

Classification

Reconstruction

Reconstruction

Reconstruction

• To maximize the efficiency of background rejection, a classification for observed 
muon events and suitable reconstruction strategies for each muon types should 
be done.

• This work aims to develop a comprehensive process from muon classification to 
track reconstructions for all muon types.



Cosmic ray muon classification performance
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• Sample: through-going, stopping and bundle muons, each 6400 events. 

• Features: FHT, nPE

Performance:
• Through-going muons

• Efficiency: 98.4%, Purity: 97.6%;
• Stopping muons

• Efficiency: 98.9%, Purity: 99.3%;
• Muon bundles

• Efficiency: 98.7%, Purity: 99.0%;
• Total accuracy: 98.6%.
Separation between muon bundles and single 
muons is great, because comprehensive 
information, like Edep, is reflected by features.



Cosmic ray muon reconstruction performance
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Evaluation method
The usual method: α, d are used to quantify the results.

α: the included angle between true and reconstructed tracks. [0, π]

d: the distance between midpoints of true and reconstructed tracks.

Resolutions as functions of r2 (r: distance from center to the true track).

Definition
A muon track is defined as the connection between init point and exit point 

in the simulation volume based on the MC truth.



Cosmic ray muon reconstruction performance
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through-going muons through-going muons

double muons double muons

through-going muons:
The entering point to the LS and 
the direction of the track are the 
model output.
double muons:
The entering point of each track and 
the mean direction from two tracks 
are the model output.



Cosmic ray muon reconstruction performance
stopping muons
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Entering point and direction cannot describe a stopping muon track. To minimize the 
number of parameters, the entering point and the stopping point of a track are the model 
output for a stopping muon



Cosmic ray muon reconstruction performance
muon shower
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Center Position

Reconstruction of start, end and center of showers

Start Position End position

• Well resolution (σG): 
64cm on Start, 72cm 
on End, 55cm on 
Center.

• But some events are 
reconstructed much 
badly makes the RMS 
not very well. And 
there is bias when the 
true values are large.
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Summary
1. In this talk, we present a multi-purpose machine learning approach for 

the reconstruction and identification of high energy events in large 
homogeneous LS detectors.

2. We aim to perform the first atmospheric neutrino oscillation 
measurement in an LS detector in the world, and increase JUNO’s total 
sensitivity to NMO.

3. Develop a comprehensive process from muon classification to track 
reconstructions for all muon types.
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Back up
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Introduction to models: EfficientNetV2
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• State-of-the-art performance among CNNs;
• Smaller model size and fast training;

Model input: 2D grids
• The PMT map is projected onto a 2D θ−ϕ

grid (according to PMT spherical 
coordinates);

• The grid size of 128 × 224 for Large PMTs 
is chosen to ensure each grid cell 
corresponds to at most one PMT.

Total charge First hit time

2025/8/23
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Methodology: physics process

• The hit time of the earliest photon reaching a PMT (“first hit time”) 
therefore naturally offers information on the event directionality.

• If particles travel at a speed faster than the speed of light in LS, 
scintillation light forms a cone-like front structure.

2025/8/23
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PID performance

2025/8/23

3+2 label5 label
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Directionality reconstrction performance: 𝛎𝛍-CC
EfficientNetV2 DeepSphere PointNet++

2025/8/23
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Directionality reconstrction performance: 𝛎𝒆-CC
EfficientNetV2 DeepSphere PointNet++

2025/8/23
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Directionality reconstrction performance: Validation

The result of GENIE and NuWro are consistent.

To check models’ robustness and estimate systematic uncertainties, a 
different generator, NuWro, is used for validation:
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Introduction to JUNO: cosmic ray muon
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• Cosmic muons can be classified into many types, 
such as muon bundles, through-going muons, 
stopping muons and so on. 

• To maximize the efficiency of background 
rejection, a classification for observed muon 
events and suitable reconstruction strategies 
for each muon types should be done.

muon bundles
through-going muons

stopping muons 



Cosmic ray muon reconstruction performance
1. through-going muons

2025/8/23 52

Entering points Exiting points 

The entering point to the LS and 
the direction of the track are the 
model output.

(r: distance from cd center to the true track).



Cosmic ray muon reconstruction performance
3. double muons
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• Track No.1 is defined as the track 
which is most closest to the center. 
The reco muon tracks are marked by 
the distance to the center too. 

• The entering point of each track and 
the mean direction from two tracks 
are the model output.

Output =

(xenter1, yenter1, zenter1, xenter2, yenter2, zenter2, 
xmean_direc, ymean_direc, zmean_direc)

mean direction =
𝑥! + 𝑥"

2
,
𝑦! + 𝑦"

2
,
𝑧! + 𝑧"
2


