

国家重点研发计划"大科学装置前沿研究"专项

《粲强子衰变和标准模型的精确检验》项目之课题一:

粲强子多体强子末态衰变研究

2025年度进展汇报

汇报人: 李惠静 (河南师范大学)

承担单位: 河南师范大学

合作单位: 中国科学院高能物理研究所、

中山大学

2025 年 8 月 13 日, 贵州民族大学

- □ 研究背景
- 口 研究内容
- 口 研究进展
- □总结

Beijing Electron Positron Collider II

 $E_{\rm cm} = 2 - 4.95 \, {\rm GeV}$

2004, started construction

2009-2024, BESIII Physics run

Design Luminosity:

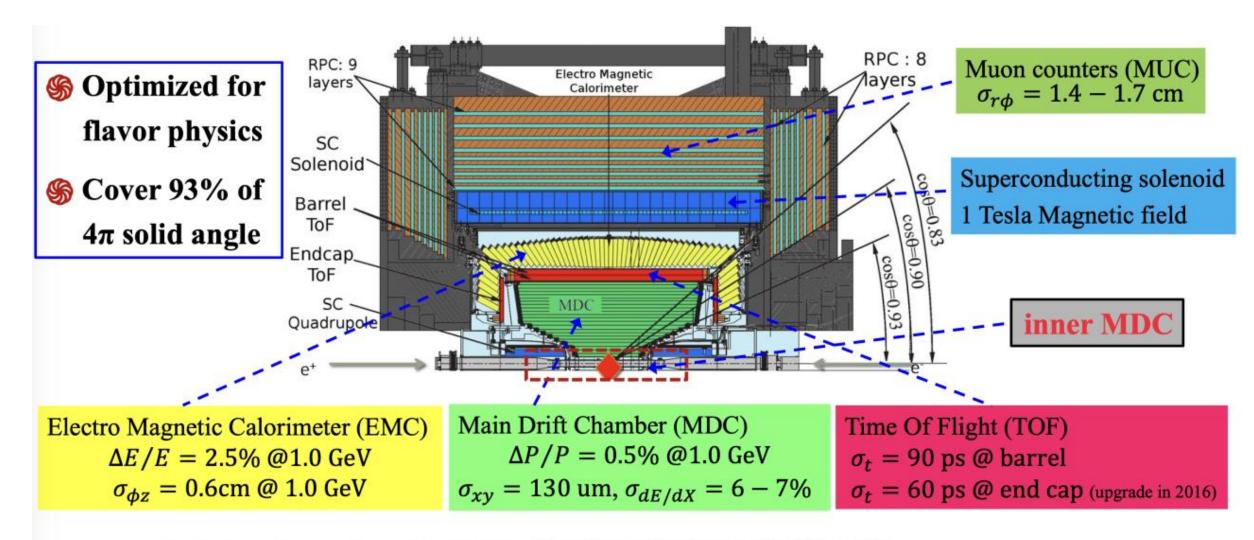
 $\mathcal{L}_D = 1 \times 10^{33} \text{cm}^{-2} s^{-1} @ E_{\text{cm}} = 3.773 \text{ GeV}$

Peak luminosity:

2016 achieved $1.0 \times \mathcal{L}_D$

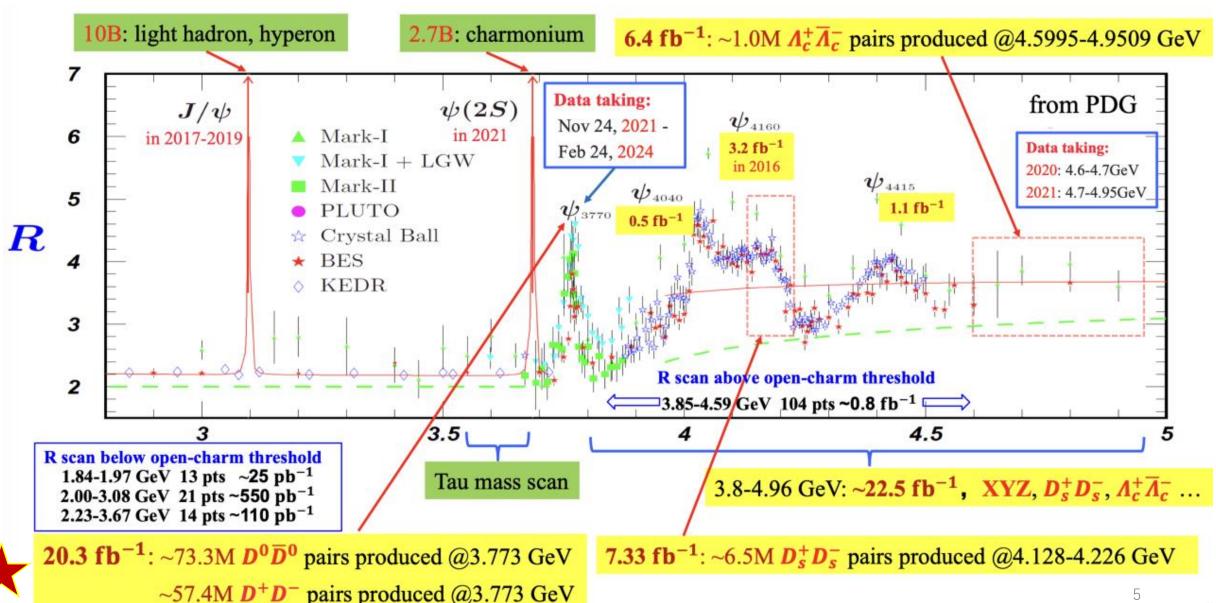
2023 achieved $1.1 \times L_D$

Jul. 1, 2024 – Aug. 31, 2028:


BEPCII upgrade → **BEPCII-U**

January 2025, restart

- & Luminosity \times 3 $@E_{cm}$ = 4.7 GeV
- Seam energy up to 2.8 GeV (2028)



July 1 - December 31, 2024: Replace the inner MDC with 3 layers of cylindrical triple-GEM detectors

BESIII Data Sets

项目名称: 粲强子衰变和标准模型的精确检验

所属类别: 国家重点研发计划"大科学装置前沿研究"专项

负责人: 李海波 研究员

承担单位: 中国科学院高能物理研究所

合作单位: 南华大学、湖南大学、中山大学、华南师范大学、河南师范大学

执行期限: 5年, 2023.12 - 2028.11

课题一: 粲强子多体强子末态衰变研究

课题二: 利用粲强子含轻子衰变精确检验标准模型

课题三: 陶轻子物理和强子产生机制的实验研究

课题四: 标准模型稀有过程和新物理的寻找

标准模型(SM)是当前描述微观世界最成功的模型, 量子色动力学(QCD)描述强相互作用,是SM的两个组分之一

QCD的两个重要性质:

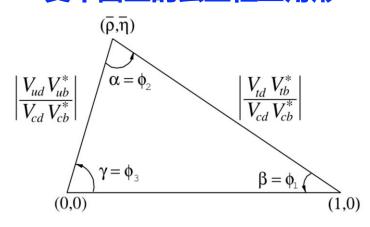
● 高能下QCD的渐近自由得到实验精确检验(2004年获诺贝尔奖)

- ◎ QCD**色禁闭本质有待发展和检验**
- **☞ 低能下非微扰QCD理论不完善**,理论工具结合实验观测
 - ⇒ 提高低能QCD理论的预言能力!

研究背景



CKM矩阵元中的复相位是标准模型(SM)中CP破坏的重要来源,


CKM矩阵的幺正性是检验SM和寻找新物理的重要途径。

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

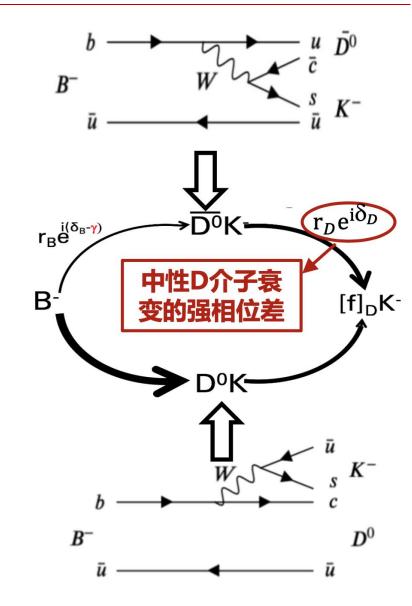
 $CKM矩阵幺正性: V_{CKM}^{\dagger}V_{CKM} = I$

复平面上的幺正性三角形

实验上独立测量三个CP破坏相角 (α, β, γ) ,检验三角形的闭合性,是对SM中电弱统一 理论的强有力检验。

γ相角的SM计算的理论误差几乎可忽略不计,是精确检验CP破坏和SM的重要物理参 数。

研究背景


口 γ 相角: 通过 $B^{\pm} \rightarrow Dh^{\pm}$ 过程测量,是唯一可在 头阶树图测量的相角.

$$\Gamma(B^{\pm} \to Dh^{\pm}) \propto \left| \gamma_B e^{i (\delta_B \pm \gamma)} + r_D e^{-i \delta_D} \right|^2$$

 $D^0 \bar{D}^0$ 量子关联样本是精确测量强相位差 δ_D 的最佳途径.

$$e^+e^- \to \psi(3770) \to D^0\overline{D}^0, \ C(D^0\overline{D}^0) = -1$$

口强相位差 δ_D 在理解 D^0 衰变中的非微扰QCD效应,精确测量混合参数以及非直接CP等研究中具有独特地位.

研究意义:粲强子多体强子末态衰变

口 研究粲夸克与末态轻夸克之间的强、弱作用的场所

- 揭示粲介子衰变动力学机制、检验SU(2)同位旋对称性和SU(3)味对称性
- 检验并刻度理论计算非微扰效应的参数化方法和唯象模型
- 为理论计算D衰变CP破坏和中性D介子混合提供实验输入

□重味物理研究的基础

- 标定其他粲强子衰变的分支比测量
- 为*B*物理研究提供关键输入

口 研究轻强子谱,发展和完善基于夸克模型的理论

- 理解 $a_0(980)$ 、 $f_0(980)$ 等轻强子的内部结构
- 理解高激发态*K*₁介子的结构与混合机制

研究内容: 粲强子多体强子末态衰变

口 任务1:中性粲介子强相位差研究

- 使用分bin或不分bin方法测量强相位差参数;
- 测量平均强相位差和关联因子参数;

指标:完成4项强相位差测量,使中性粲介子衰变过程对CKM相角y测量的误差贡献小于0.5度。

口 任务2:卡比玻允许/压低的绝对分支比

• 测量相应过程的绝对分支比和CP不对称;

指标: 完成14-17项卡比玻允许/压低过程的绝对分支比测量, 发表文章3篇以上。

口 任务3: 强子衰变振幅分析

- 测量中间准两体 $D \to SP$ 、VP、VV、AP、TP、VA的强度、相位和分支比;
- 利用振幅模型确定CP-even比分的比例,为相应强相位测量提供分区间依据;
- 测量D → VV的极化状态;

指标: 系统开展粲介子多体强子末态振幅分析, 发表文章8篇以上。

研究现状: 绝对分支比测量

- PDG收录的 D^0 和 D^+ 的衰变分支比总和分别不足80%和85%
- 一些分支比较大的衰变道至今未被测量、或测量精度不足
- 实验上还未能完整理解粲强子的强子衰变
- 参考道测量精度不足: 重味物理研究的主要系统误差来源

参考道分支比测量现状 PDG 2023

$$D^0 \to K^- \pi^+$$
 (3.937 ± 0.030)%
 $D^+ \to K^- \pi^+ \pi^+$ (9.38 ± 0.16)%
 $D_s^+ \to K^+ K^- \pi^+$ (5.37 ± 0.10)%
 $\Lambda_c^+ \to p K^- \pi^+$ (6.26 ± 0.29)%

分支比总和测量现状

$$D^0 \to \text{anything} < 80\%$$
 $D^+ \to \text{anything} < 85\%$
 $D_s^+ \to \text{anything} < 60\%$
 $\Lambda_c^+ \to \text{anything} < 70\%$

研究现状:强子衰变振幅分析

- - ® D → VV研究不足,导致矢量介子的极化研究缺乏
 - $D \rightarrow AP$ 现有结果冲突,无法理解轴矢量介子的衰变机制
 - 导致理论无法精确预期D衰变的CP破坏和D⁰介子的混合
- - D → AV的实验结果极其缺乏
- 振幅分析可以系统理解强子谱

研究现状:双Cabibbo压低衰变

理论预期: $\frac{$ 双Cabibbo压低衰变分支比 $}{$ 相应Cabibbo允许衰变分支比 $}= \tan^4 \theta_{\rm c} \; (\sim 0.29\%)$

 θ_C 为 CKM Cabibbo 混合角

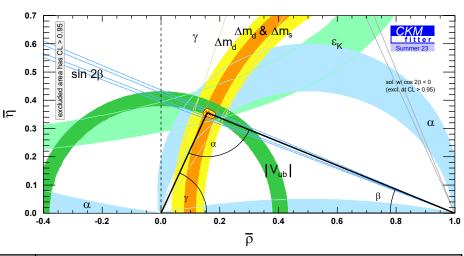
● BESIII发现 $D^+ \to K^+\pi^+\pi^-\pi^0$ 的比值**比理论预期高三倍**

衰变机制的差异,干涉效应?

PRL125, 141802 (2020)

- ☞ 探索更多双Cabibbo压低衰变
- 需要对相关衰变开展振幅分析,研究末态相互作用和内部共振结构,

理解双Cabibbo压低分支比异常的本质


研究现状: γ相角

实验直接测量: $\gamma = (65.9^{+3.3}_{-3.5})^{0}$

CKMFitter全局拟合间接测量: $\gamma = (66.29^{+0.72}_{-1.86})^{\circ}$

直接测量误差远大于全局拟合,精度急需改善。

实验组	(预期) 获取 的积分亮度	年份	γ ≡ φ ₃ 精度	BESIII强相位差 δ_D 对 γ 相角测量约束
LHCb Run-1 [7, 8 TeV]	$3 ext{ fb}^{-1}$	2012	80	
LHCb Run-2 [7, 8 TeV]	6 fb ⁻¹	2018	4 º	$0.9 - 1.3^{\circ} (2.93 \text{ fb}^{-1})$
Belle II Run	50 ab ⁻¹	2025	1.5°	
LHCb upgrade I [14 TeV]	$50 ext{ fb}^{-1}$	2030	< 1º	$<0.5^{\circ} (20 \text{ fb}^{-1})$
LHCb upgrade II [14 TeV]	$300 \mathrm{fb^{-1}}$	(>)2035	< 0.40	15

研究进展:任务1-中性粲介子强相位差研究

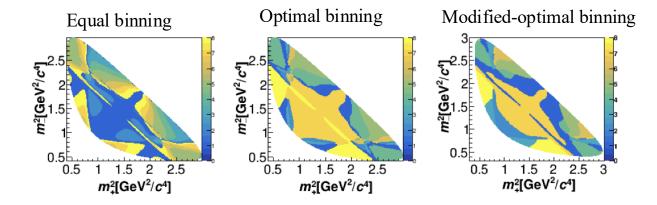
衰变道	进展
$D^0 \to K_{S,L}^0 \pi^+ \pi^-$	 7.93 fb⁻¹, 分bin, JHEP 06, 086 (2025), 对γ相角的误差贡献为0.9°; 7.93 fb⁻¹, 不分bin联合测量, BAM-00827, 首次与LHCb联合测量γ相角, 衰变率作傅立叶展开; 20 fb⁻¹, 进行中
$D^0 \to K_{S,L}^0 K^+ K^-$	 7.93 fb⁻¹, 不分bin联合测量, BAM-00827, 首次与LHCb联合测量γ相角, 衰变率作傅立叶展开; 20 fb⁻¹, 进行中
$D^0 \to K^+K^-\pi^+\pi^-$	• 20. fb ⁻¹ , PRD 112, 012015 (2025), 对γ相角的误差贡献为10°
$D^0 \to K_S^0 K^{\pm} \pi^{\mp}$	• 20 fb ⁻¹ ,进行中

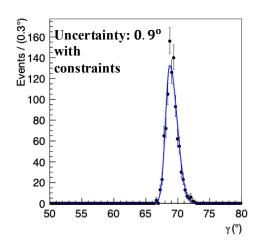
研究进展: 拓展任务1

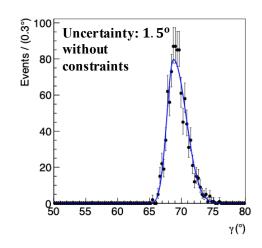
衰变道	进展
$D^0\to\pi^+\pi^-\pi^0$	7.93 fb ⁻¹ , PRD 111, 012007 (2025),
$D^0 \to K^+ K^- \pi^0$	CP-even 本征态比例: $F_{+}^{\pi^{+}\pi^{-}\pi^{0}} = 0.746 \pm 0.010 \pm 0.004$; $F_{+}^{K^{+}K^{-}\pi^{0}} = 0.631 \pm 0.014 \pm 0.011$.
$D^0 \to K^- \pi^+$	7.13 fb ⁻¹ @4.13 - 4.23 GeV, arXiv:2506.07907[hep-ex], $\delta(K^-\pi^+) = (192.8^{+11.0}_{-12.4}^{+1.9})^{o}$
$D^0 \to \pi^+ \pi^- \pi^+ \pi^-$	2.93 fb $^{-1}$, PRD 110, 112008 (2024), CP-even 本征态比例: $F_+^{4\pi}=0.746\pm0.010\pm0.004$; 强相位差测量,对 γ 相角的误差贡献为1.5° or 2°

中性粲介子量子关联研究进展-总结

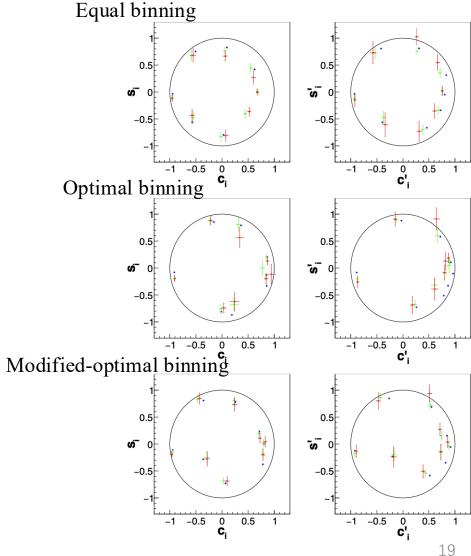
详见-14日沈文涵的报告


衰变道	测量量	现状
$D^0\to\pi^+\pi^-\pi^0$	$F_+/c_i s_i$	7.93 fb ⁻¹ F_+ finished; 20 fb ⁻¹ $c_i s_i$ on going
$D^0 \to K^+ K^- \pi^0$	$F_+/c_i s_i$	7.93 $fb^{-1}F_{+}$ finished
$D^0 \to \pi^+\pi^-\eta$	F_{+}	20 fb ⁻¹ BAM01001
$D^0\to\pi^+\pi^-\pi^+\pi^-$	$F_+/c_i s_i$	2.93 fb ⁻¹ F_+ , $c_i s_i$ finished; 20 fb ⁻¹ $c_i s_i$ on going
$D^0\to K_S^0\pi^+\pi^-\pi^0$	$F_+/c_i s_i$	2.93 fb ⁻¹ F_+ finished; 20 fb ⁻¹ $c_i s_i$ on going
$D^0 \to K_{S/L}^0 \pi^+ \pi^-$	$c_i s_i$	$7.93~{\rm fb^{-1}}$ finished; $20~{\rm fb^{-1}}$ on going
$D^0 \to K_{S/L}^0 K^+ K^-$	$c_i s_i$	2.93 fb^{-1} finished; 20 fb^{-1} on going
$D^0 \to K_{S/L}^0 h^+ h^- (h = \pi, K)$	Fourier coefficients	7.93 fb ⁻¹ BAM00827
$D^0 \to K^+K^-\pi^+\pi^-$	F_+/c_is_i	2.93 fb ⁻¹ F_+ finished; 20 fb ⁻¹ $c_i s_i$ arXiv: 2502. 12873
$D^0 \to K^- \pi^+$	δ_D	2.93 fb ⁻¹ finished; Latest: BAM00900
$D^0 \to K^- \pi^+ \pi^0$	2 0	2.02 sh-1 finished: 7.02 sh-1 PANA00000
$D^0 \to K^-\pi^+\pi^+\pi^-$	δ_D , R_D	2.93 fb ⁻¹ finished; 7.93 fb ⁻¹ BAM00899
$D^0 \to K_S^0 K^{\mp} \pi^{\pm}$	δ_D , R_D	20 fb ⁻¹ on going


研究进展: 任务1- $D \to K_{S/L}^0 \pi^+ \pi^-$ 强相位差测量



- $e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}{}^0$ with 7. 93 fb⁻¹@3. 773 GeV
- Input for direct measurements of γ



Impact on y measurement

JHEP 06, 086 (2025)

研究进展: 任务2-卡比玻允许/压低的绝对分支比

类别	衰变过程	进展
	$D^0 \to K^- \pi^+$	
D⁰介子 的卡比 玻允许	$D^0 \to K^- \pi^+ \pi^+ \pi^-$	• 20.3 fb ⁻¹ , DocDB-1717, charm group 审核
	$D^0 \to K^- \pi^+ \pi^0$	
	$D^0 \to K^- \pi^+ \pi^0 \pi^0$	• 进行中
<i>7</i> ,	$D^0 \to K^- \pi^+ \eta$	• 20.3 fb ⁻¹ , DocDB-1669, charm group 审核
	$D^0 \to K^- \pi^+ \pi^+ \pi^- \pi^0$	• 20.3 fb ⁻¹ , 进行中
自共轭	$D^0 \to K_S^0 \pi^+ \pi^- \pi^0$	• 20.3 fb ⁻¹ , BAM-01025
卡比玻	$D^0 \to K_S^0 \pi^+ \pi^- \pi^0 \pi^0$	• 2.93 fb ⁻¹ , BAM-00735
允许	$D^0 \to K_S^0 \pi^0 \pi^0 \pi^0$	• 16 fb ⁻¹ , DocDB-1414, charm group 审核

研究进展: 任务2-卡比玻允许/压低的绝对分支比 **长**SIII

类别	具体衰变过程	进展								
	$D^+ \to K_S^0 \pi^+$									
	$D^+ \to K^- \pi^+ \pi^+ \pi^0$									
D ⁺ 介子	$D^+ \to K_S^0 \pi^+ \pi^0$	000 C = 1								
卡比玻	$D^+ \to K^+ K^- \pi^+$	• 20.3 fb ⁻¹ , DocDB-1717, charm group 审核								
允许/压	$D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$									
低	$D^+ \to K^- \pi^+ \pi^+$									
	$D^+ \to \pi^+ \pi^+ \pi^- \pi^0$	• 7.93 fb ⁻¹ ,进行中								
	$D^+ \to K_S^0 \pi^+ \eta$	• 2.93 fb ⁻¹ , PRL132, 131903 (2024)								

研究进展: 拓展任务2

类别	衰变过程	进展						
	$D^+ \to K^+ \pi^0$	• 20.3 fb ⁻¹ , arXiv:2506.15533[hep-ex]						
	$D^+ \to K^+ \eta$	$B(D^+ \to K^+ \pi^0) = (1.45 \pm 0.06 \pm 0.06) \times 10^{-4}$						
		$B(D^+ \to K^+ \eta) = (1.17 \pm 0.10 \pm 0.03) \times 10^{-4}$						
	$D^+ \to K^+ \eta'$	$B(D^+ \to K^+ \eta') = (1.88 \pm 0.15 \pm 0.06) \times 10^{-4}$						
双卡比玻压低	$D^0 \to K^+ \pi^-$							
	$D^0 \to K^+ \pi^- \pi^- \pi^+$							
	$D^0 \to K^+ \pi^- \pi^0$	20.2 ft =1 HIED 0(220 (2025)						
	$D^0 \to K^+ \pi^- \pi^0 \pi^0$	• 20.3 fb ⁻¹ , JHEP 06, 220 (2025)						
	$D^+ \to K^+ \pi^+ \pi^-$							
	$D^+ \to K^+ K^+ K^-$							

研究进展: 任务2-工作介绍

• 20.3 fb^{-1} , JHEP 06, 220 (2025), DCS

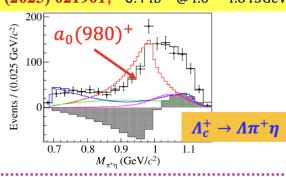
		DDG	DDG . a.	mi i i i i i i i i i i i i i i i i i i	
Signal decay	$\mathcal{B}_{\mathrm{DCS}}^{\mathrm{This} \ \mathrm{work}} \ (\times 10^{-4})$	$\mathcal{B}_{\mathrm{DCS}}^{\mathrm{PDG}}$ (×10 ⁻⁴)	$\mathcal{B}_{\mathrm{CF}}^{\mathrm{PDG}} \ (\times 10^{-2})$	$\mathcal{B}_{ ext{DCS}}^{ ext{This work}}/\mathcal{B}_{ ext{CF}}$ (%)	$\times \tan^4 \theta_C$
$D^0 o K^+\pi^-$	$1.30 \pm 0.09 \pm 0.04$	1.50 ± 0.07	3.947 ± 0.030	0.328 ± 0.027	1.14 ± 0.09
$D^0 \rightarrow K^+\pi^-\pi^-\pi^+$	$2.38 \pm 0.19 \pm 0.12$	2.65 ± 0.06	8.22 ± 0.14	0.289 ± 0.028	1.00 ± 0.10
$D^0 \to K^+\pi^-\pi^0$	$3.06 \pm 0.21 \pm 0.10$	3.06 ± 0.16	14.4 ± 0.6	0.212 ± 0.021	0.74 ± 0.07
$D^0 \rightarrow K^+\pi^-\pi^0\pi^0$	$1.40 \pm 0.27 \pm 0.09$	< 3.6	8.86 ± 0.23	0.158 ± 0.036	0.55 ± 0.12
$D^0 \to K^+\pi^-\eta$	$1.04 \pm 0.16 \pm 0.08$	_	1.88 ± 0.05	0.555 ± 0.092	1.93 ± 0.32
$D^0 \to K^+\pi^-\pi^0\eta$	< 0.7	_	0.449 ± 0.027	< 1.78	< 6.19
$D^+ \to K^+ \pi^+ \pi^-$	$4.50 \pm 0.12 \pm 0.35$	4.91 ± 0.09	9.38 ± 0.16	0.480 ± 0.019	1.67 ± 0.07
$D^+ \to K^+ \pi^+ \pi^- \eta$	$1.56 \pm 0.22 \pm 0.04$	_	_	_	_
$D^+ \to K^+ (\pi^+ \pi^- \eta)_{\mathrm{non}-\eta'}$	$0.67 \pm 0.18 \pm 0.02$	_	0.135 ± 0.012	5.0 ± 1.4	17.3 ± 4.8
$D^+ \to K^+ K^+ K^-$	$0.51 \pm 0.05 \pm 0.01$	0.614 ± 0.011	_	_	_
$D^+ o K^+ \eta \eta$	$0.59 \pm 0.23 \pm 0.02$	_	_	_	_

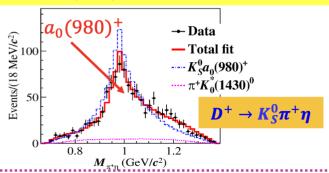
Significantly larger

Expectation: $R = \mathcal{B}(DCS)/\mathcal{B}(CF) \sim (0.5 - 2.0) \tan^4 \theta_C$

类别	衰变过程	进展
	$D^0 \to K^0_{S,L} K^+ K^-$	• 20.3 fb ⁻¹ , DocDB-1716, charm group 审核
	$D^0\to\pi^+\pi^-\eta, D^+\to\pi^+\pi^0\eta$	• 7.93 fb ⁻¹ , PRD 110 (2024) L111102
	$D^0 \to K_S^0 \pi^0 \pi^0$	• 20.3 fb ⁻¹ , BAM-00756, SP阶段
	$D^0 \to K^- \pi^+ \pi^0$	• 16 fb ⁻¹ , 进行中
三体	$D^0 \to \pi^+ \pi^- \pi^0$	• 20.3 fb ⁻¹ , DocDB-1718, charm group 审核
末态	$D^+ \to \pi^+ \pi^0 \eta'$	• 7.9 fb ⁻¹ , 进行中
	$D^+ \to \pi^+ \eta \eta$	• 20.3 fb ⁻¹ , arXiv:2505.12086[hep-ex]
	$D^+ \to K_S^0 K_S^0 \pi^+$	• 7.93 fb ⁻¹ , PRD 110, 092006 (2024)
	$D^+ \to K_S^0 K_S^0 K^+$	• 7.93 fb^{-1} , BAM-00838
	$D^+ \to K^+ K^- \pi^+$	• 20.3 fb ⁻¹ , 进行中
	$D^+ \to K^+ \pi^+ \pi^-$	• 20.3 fb^{-1} , BAM-00947
	$D^0 \to K^- \pi^+ \eta$	• 20.3 fb ⁻¹ , DocDB-1669, charm group 审核

类别	衰变过程		进展
		$D^0 \to K_S^0 \pi^+ \pi^- \pi^0$	• 20.3 fb ⁻¹ , BAM-01025
	D V2-	$D^0 \to K_S^0 \pi^0 \pi^0 \pi^0$	• 20.3 fb ⁻¹ , charm group审核
	$D \to K3\pi$	$D^+ \to K^- \pi^+ \pi^+ \pi^0$	• 7.93 fb ⁻¹ , JHEP 05, 195 (2025)
		$D^+ \to K^+ \pi^+ \pi^- \pi^0$	• 7.93 fb ⁻¹ , BAM-00703
四体 末态		$D^0 \to K_S^0 K^+ \pi^- \pi^0$	• 7.93 fb ⁻¹ , BAM-00844
↑ /Ďì	D	$D^0 \to K^+K^-\pi^0\pi^0$	• 20.3 fb ⁻¹ , BAM-00998, draft 阶段
	$D \to KK\pi\pi$	$D^+ \to K_S^0 K^+ \pi^+ \pi^-$	• 7.93 fb ⁻¹ , 进行中
		$D^+ \to K^+ K^- \pi^+ \pi^0$	• 7.93 fb ⁻¹ , 进行中
	$D^+\to\pi^+\pi^+\pi^-\pi^0$		• 7.93 fb ⁻¹ , 进行中

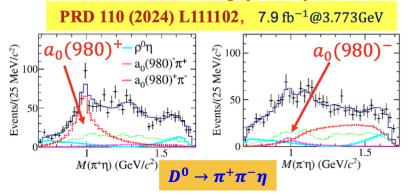

类别	衰变过程		进展					
		$D^0 \to K_S^0 \pi^+ \pi^- \pi^0 \pi^0$	$20.3 fb^{-1}$, BAM-00735					
五体末态	五体 $D \to K4\pi$ $D^0 \to K^-\pi^+\pi^+\pi^-\pi^0$	$D^0 \to K^- \pi^+ \pi^+ \pi^- \pi^0$	20.3 fb ⁻¹ , 进行中					
个心		$D^+ \to K^- \pi^+ \pi^+ \pi^+ \pi^-$	20.3 fb ⁻¹ , 进行中					

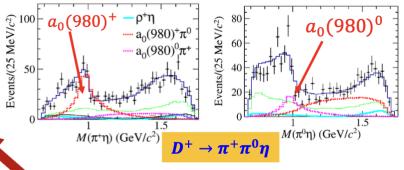


$^{\circ}$ 粲强子强子衰变的振幅分析,发现末态含 $\alpha_0(980)$ 的一系列新衰变

发现 $\Lambda_c^+ \rightarrow \Lambda a_0(980)^+$

发现 $D^+ \to K_S^0 a_0 (980)^+$


$$\mathcal{B}\left(D^{+}\to K_{S}^{0}a_{0}(980)^{+},a_{0}(980)^{+}\to\pi^{+}\eta\right)=\left(1.33\pm0.05_{\rm stat}\pm0.04_{\rm syst}\right)\%$$

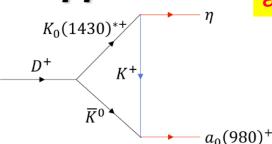

$$\mathcal{B}(\Lambda_c^+ \to \Lambda a_0(980)^+, a_0(980)^+ \to \pi^+ \eta) = (1.05 \pm 0.16_{\rm stat} \pm 0.05_{\rm syst} \pm 0.07_{\rm ext})\%$$

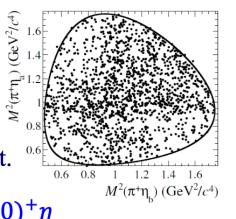
$$\mathcal{B}(D^0 \to a_0(980)^+\pi^-) = (0.55 \pm 0.05 \pm 0.07) \times 10^{-3}$$
 } 比值为: $7.5^{+2.5}_{-0.8} \pm 1.7$ $\mathcal{B}(D^0 \to a_0(980)^-\pi^+) = (0.07 \pm 0.02 \pm 0.01) \times 10^{-3}$

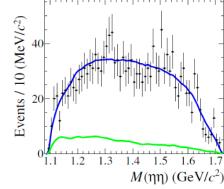
$$\mathcal{B}(D^0 \to a_0(980)^-\pi^+) = (0.07 \pm 0.02 \pm 0.01) \times 10^{-3}$$

发现 $D \rightarrow a_0(980)\pi$

灵变分支比的测量结果比理论预测


为理解粲强子的强子衰变机制和确定奇特态 $a_0(980)$ 内部结构,提供了重要实验信息。


Amplitude analysis of $D^+ \to \pi^+ \eta \eta$


Signature First observation of an altered a_0 (980) line-shape due to triangle loop rescattering

Fit1: $P_{a_0(980)}$ three-channel coupled Flatte formulae, the fitted pole position is inconsistent with previous measurement.

arXiv:2505.12086, 20.3fb⁻¹ @3.773GeV

To consider the rescattering process $D^+ \to \overline{K}_0^* (1430)^0 K^+ \to a_0 (980)^+ \eta$ we perform Fit2 and Fit3

Fit2: $(1 + |C|e^{i\phi_C}A_{loop})P_{a_0(980)}$

Fit3: $(1 + |C|A_{loop})P_{a_0(980)}$ with ϕ_C fixed to zero.

 $|C| = 0.113 \pm 0.015_{\text{stat.}} \pm 0.048_{\text{syst.}}$

Fix parameters Fit1

Fit2/Fit3

Background

0.7 0.8 0.9 1 1.1 1.2 1.3 $M(\pi^+\eta)$ (GeV/ c^2)

Fit2 and Fit3 give good descriptions of the altered $a_0(980)$ line-shape.

SP Measurement
$$\mathcal{B}(D^+ \to \pi^+ \eta \eta)$$
 $\} = (3.67 \pm 0.12_{\mathrm{stat.}} \pm 0.06_{\mathrm{syst.}}) \times 10^{-3}$ $\mathcal{B}(D^+ \to a_0(980)^+ \eta) \; \mathcal{B}(a_0(980)^+ \to \pi^+ \eta)$

总结

- 口综合系统性开展中性粲介子强相位差测量、卡比玻允许/压低衰变过程的绝对分支 比测量、以及多体强子末态振幅分析,对于探索非微扰QCD性质、检验电弱统一 理论具有重要意义。
- 口 研究成果将保障未来十年以上国际粒子物理领域 γ 相角、 $D^0 \overline{D}^0$ 混合参数和CP破坏等关键参数的精确测量。
- 口 各项工作基本上都已顺利开展,稳步推进。
- 口 敬请期待20 fb⁻¹ ψ (3770)数据的更多成果。

谢谢!

内容提要

	时间节点		2023 2024		2025		2026		2027		20	28	
课题任务			12	1-6	7-12	1-6	7-12	1-6	7-12	1-6	7-12	1-6	7-11
	3.773 GeV	新数据获取与质量检查											
	粲介子强子衰变绝	D ⁰ 介子卡比玻允许过程											
\max	对分支比的测量	D+介子卡比玻允许/压低过程											
课题一 :	粲介子多体强子衰 变的振幅分析研究	振幅分析工具											
		一体景ツ											
**************************************		四体、五体衰变											
	粲介子双卡比玻压低衰变的振幅分析研究												
	中性粲介子	·强子衰变强相位差研究											

Unbinned: 与LHCb的联合测量

BESIII input

 $\triangleright B$ → DK的衰变率

$$x_{\pm} + i y_{\pm} = r_B e^{i(\delta_B \pm \gamma)}$$
 LHCb input

$$B^{-}: p_{B}(z) \propto p_{D}(z) + (x_{-}^{2} + y_{-}^{2})\bar{p}_{D}(z) + 2[x_{-}C(z) + y_{-}S(z)]$$

$$B^{+}: \bar{p}_{B}(z) \propto \bar{p}_{D}(z) + (x_{+}^{2} + y_{+}^{2})p_{D}(z) + 2[x_{+}C(z) - y_{+}S(z)]$$

BESIII input $D^0/\overline{D}^0 \to K_S^0 h^+ h^-$ 衰变率

$$(C,S) = \sqrt{p_D \bar{p}_D(\cos,\sin)(\phi)}$$

- ▶基于B、D介子衰变的数据,通过 $B \to Dh$, $D \to K_S^0 h'^+ h'^- (h^{(\prime)} = \pi, K)$ 直接测量γ
- ▶LHCb和BESⅢ基于新方法的首次联合测量
- ▶所用数据
 - BESIII: $7.93 \text{fb}^{-1} \psi(3770)$ data
 - LHCb: 9fb⁻¹ Run1+Run2 data

20

Unbinned: 分析方法

- ightharpoonup对衰变率 p_B , p_D 和强相差 \mathcal{C} , \mathcal{S} 加权求和得到傅里叶系数 $a_n^{B,D,C,S}$
 - □B衰变

•
$$a_n^{B+} = h_B[a_n^{D+} + (x_-^2 + y_-^2)a_n^{D-} + 2(x_-a_n^C + y_-a_n^S)]$$

□D衰变

• 味标记道

$$a_n^{flav} = h_{flav}[a_n^{D+} + (x_D^2 + y_D^2)a_n^{D-} - 2R_D(x_D a_n^C - y_D a_n^S)] \approx a_n^{D+}$$

• CP标记道

$$a_n^{CP\pm} = h_{CP+}[a_n^{D+} + a_n^{D-} \mp a_n^{C}]$$

• 自共轭道

$$a_{mn}^{DD} = h_{DD}[a_m^{D+}a_n^{D-} + a_m^{D-}a_n^{D+} - 2(a_m^{C}a_n^{C} + a_m^{S}a_n^{S})]$$

- ► 展开的最高阶数由toy研究决定,联合拟合中 $K_S^0\pi^+\pi^-$ 和 $K_S^0K^+K^-$ 分别取2<mark>和1</mark>,但提供更高阶(3, 2)的系数结果(见附录)
- \triangleright 基于系数公式拟合得到CP破坏参数 $x_+ = r_B \cos(\delta_B \pm \gamma)$ 和 $y_+ = r_B \sin(\delta_B \pm \gamma)$