

BESIII上半轻衰变 $D \rightarrow P\ell^+\nu_\ell$ 课题汇报

报告人: 何凯凯

杭州师范大学

国家重点研发项目"粲强子衰变和标准模型的精确检验"2025年夏季年会

2025.08.14

主要内容

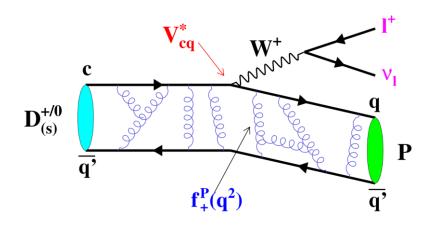
■物理动机

- ■研究方法
- ■重要成果或进展
- ■总结

物理动机

CKM矩阵是标准模型中描述夸克味混合的基本参数矩阵。其中,矩阵元描述味变过程的强度,且只能通过实验测得。

$$V_{\text{CKM}}^{\text{PDG2024}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 0.97367 \pm 0.00032 & 0.22431 \pm 0.00085 & 0.00382 \pm 0.00020 \\ 0.221 \pm 0.004 & 0.975 \pm 0.006 & 0.0411 \pm 0.0012 \\ 0.0086 \pm 0.0002 & 0.0415 \pm 0.0009 & 1.010 \pm 0.027 \end{pmatrix}$$


■ 验证CKM矩阵幺正性是检验标准模型是否完备的重要手段。

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9984 \pm 0.0007$$

 $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.001 \pm 0.012$ ~1% 精度低,对新物理不敏感

- 第二行的计算精度主要受 $|V_{cd}|$ 和 $|V_{cs}|$ 的误差影响。
- 提高|V_{cd}|和|V_{cs}|的实验测量精度是高精度检验CKM矩阵幺正性的关键。

物理动机

粲介子半轻衰变:实验上测量CKM矩阵元 $|V_{cs}|$ 和 $|V_{cd}|$ 的重要途径之一。

$$\frac{d\Gamma}{dq^2} = X \frac{G_F^2}{24\pi^3} |f_+^P(0)|^2 |V_{cq}|^2 |\vec{p}_P|^3$$

P: 赝标量介子, 如K、 π 、 η 、 η'

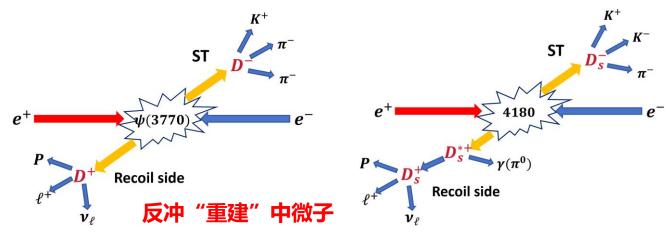
- 形状因子 $f_+^P(0)$ 精确测量,有助于检验格点QCD等计算;
- Arr CKM矩阵元 $|V_{cs}|$ 和 $|V_{cd}|$ 精确测量,有助于检验CKM矩阵幺正性;

格点QCD (2011→2023)

 $f_+^{D\to K}(0)$: 2.4 \to **0.4**%

 $f_{+}^{D\to\pi}(0): 4.4 \to 0.8\%$

Process	Collaboration	$f_{0}(0)$	$f_0(q_{\mathrm{max}}^2)$	$f_+(q_{ m max}^2)$
$D \to \pi$ $D \to \pi$	FNAL/MILC	0.6300(51)	1.2783(61)	3.119(57)
	ETMC 17	0.612(35)	1.134(49)	2.130(96)
$\begin{array}{c} D \to K \\ D \to K \\ D \to K \\ D \to K \end{array}$	FNAL/MILC	0.7452(31)	1.0240(21)	1.451(17)
	HPQCD 22	0.7441(40)	1.0136(36)	1.462(16)
	HPQCD 21	0.7380(40)	1.0158(41)	1.465(20)
	ETMC 17	0.765(31)	0.979(19)	1.336(54)
$D_s \to K$	FNAL/MILC	0.6307(20)	0.9843(18)	1.576(13)



在实验上测得更高精度的 形状因子极为迫切

研究方法

基于BESIII探测器采集的大数据样本

粲介子成对产生→双标记方法:

e ⁺ e ⁻ 质心	亚生生 小	积分亮度	单标记粲介子产额		
能量 (GeV)	采集年份 	(fb ⁻¹)	D^0	D^+	D_s^+
3.773	2010-2011	2.93	2.5M	1.7M	
4.13-4.23	2014-2019	7.33			0.8M

3.773 GeV数据: ✓ 2022年: 2.9→7.9fb⁻¹

✓ 2023年: 7.9→16fb⁻¹

✓ 2024年: 16 → 20.3fb⁻¹

 $N_{ST}^{\rm D^0} \sim 20.2{\rm M}$ $N_{ST}^{\rm D^+} \sim 10.6{\rm M}$

研究方法

分支比测量

计算公式:
$$B = \frac{N_{DT}}{N_{ST}\epsilon_{DT}/\epsilon_{ST}}$$

 N_{ST} 和 N_{DT} : 单标记产额和信号侧产额。

 ϵ_{ST} 和 ϵ_{DT} : 单标记效率和信号侧效率。

构造运动学变量 U_{miss} 和 M_{miss}^2 来得到丢失中微子的基本信息:

$$\square U_{\text{miss}} = E_{\text{miss}} - |\vec{p}_{\text{miss}}|$$

$$\square M_{\text{miss}}^2 = E_{\text{miss}}^2 - A|\vec{p}_{\text{miss}}|^2$$

 E_{miss} 和 \vec{p}_{miss} 分别表示反冲粒子的能量与动量。

最大似然拟合 U_{miss} 和 M_{miss}^2 , 得 N_{DT} 。

形状因子测量

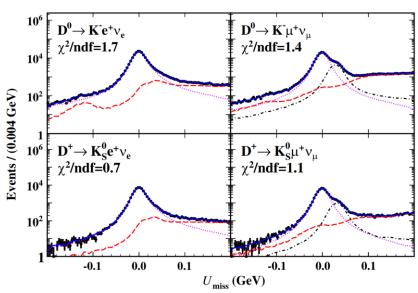
q^2 表示四动量转移的平方,定义为:

$$q^2 = (E_{\ell^+} + E_{\nu_\ell})^2 - |\vec{p}_{\ell^+} + \vec{p}_{\nu_\ell}|^2$$

构造 χ^2 以描述实验测量值和预期值之间的差异

$$\chi^{2} = \sum_{i,j=1}^{N_{\text{bins}}} (\Delta \Gamma_{i}^{\text{measured}} - \Delta \Gamma_{i}^{\text{expected}}) \times C_{ij}^{-1} (\Delta \Gamma_{j}^{\text{measured}} - \Delta \Gamma_{j}^{\text{expected}})$$

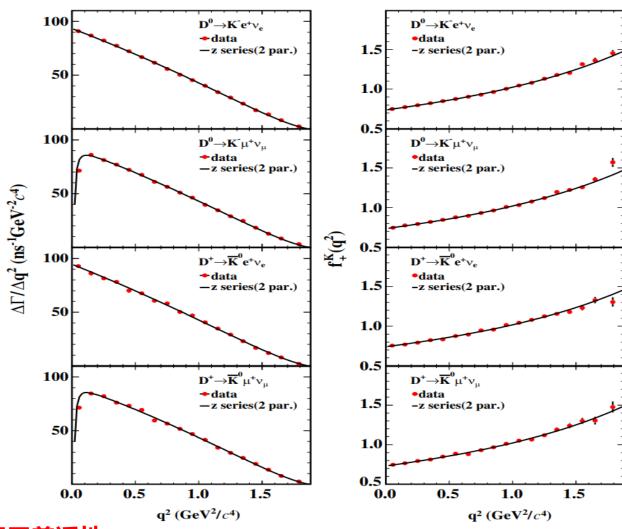
最小 χ^2 拟合数据 q^2 分布,得 $f_+^P(0)|V_{cs(d)}|$


多级展开模型

$$f_{+}(t) = \frac{1}{P(t)\Phi(t, t_0)} a_0(t_0) (1 + \sum_{k=1}^{\infty} r_k(t_0) [z(t, t_0)]^k)$$

$D^{0(+)} ightarrow \overline{K} \ell^+ u_\ell (\ell = e, \mu)$ 的研究

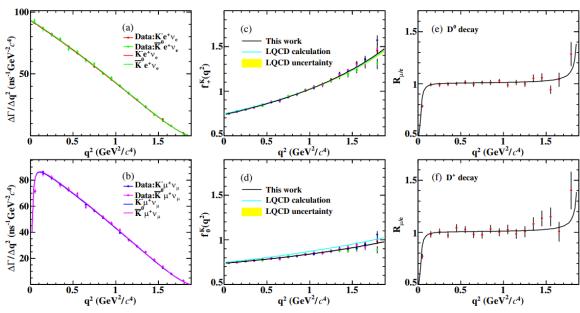
2×


7.9 fb⁻¹@ 3.773 GeV PRD 110, 112006 (2024)

信号过程	信号产额	分支比(%)
$D^0 \to K^- e^+ \nu_e$	19065(471)	3.521(09)(16)
$D^0 \to K^- \mu^+ \nu_\mu$	147596(488)	3.419(11)(16)
$D^+\to \overline{K}{}^0e^+\nu_e$	57846(256)	8.864(39)(82)
$D^+\to \overline{K}{}^0\mu^+\nu_\mu$	47229(248)	8.665(46)(84)

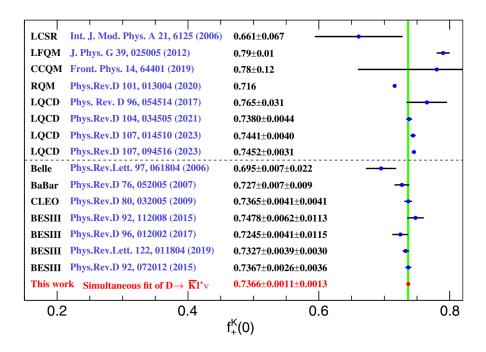
$$R_{\mu/e}^{D^0 \to K} = 0.971(04)(06)$$
 $R_{\mu/e}^{D^+ \to K} = 0.978(07)(13)$

四个半轻衰变过程独立的形状因子测量



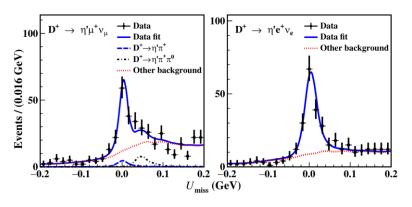
◆ 在0.8%精度下,检验粲介子半轻衰变中的 μ – e轻子普适性

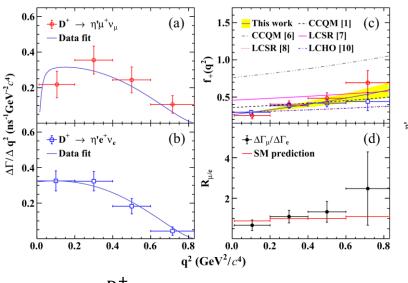
$D^{0(+)} ightarrow \overline{K} \ell^+ u_\ell(\ell=e,\mu)$ 的研究

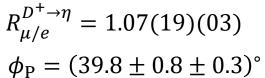

Case	Signal decay	$f_+^K(0) V_{cs} $	$r_1(t_0)$	$ ho_{ m 2par}$	χ^2/ndf
Individual fit	$D^0 \rightarrow K^- e^+ \nu_e$	$0.7179 \pm 0.0016 \pm 0.0017$	$-2.30 \pm 0.05 \pm 0.03$	0.48	16.3/16
	$D^0 ightarrow K^- \mu^+ u_\mu \ D^+ ightarrow ar{K}^0 e^+ u_e$	$0.7162 \pm 0.0022 \pm 0.0019$ $0.7207 \pm 0.0027 \pm 0.0035$	$-2.28 \pm 0.08 \pm 0.02$ $-2.13 \pm 0.10 \pm 0.07$	0.62 0.29	17.1/16 13.0/16
	$D^+ o ar{K}^0 \mu^+ u_\mu$	$0.7124 \pm 0.0035 \pm 0.0032$	$-2.41 \pm 0.12 \pm 0.08$	0.45	10.6/16
Simultaneous fit	$D\to \bar K \ell^+\nu_\ell$	$0.7171 \pm 0.0011 \pm 0.0013$	$-2.28 \pm 0.04 \pm 0.02$	0.44	60.9/70

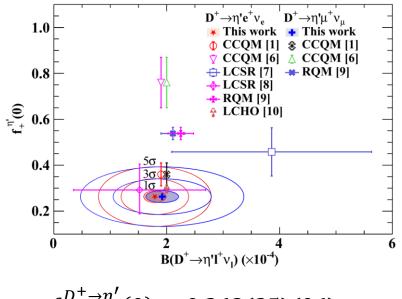
首次 $D^{0(+)} \rightarrow \overline{K}\ell^+\nu_\ell$ 四个半轻衰变动力学的联合研究

 $f_{+}^{D\to K}(0) = 0.7366(11)(13)$ $|V_{cs}| = 0.9623(15)(17)(40)_{LQCD}$

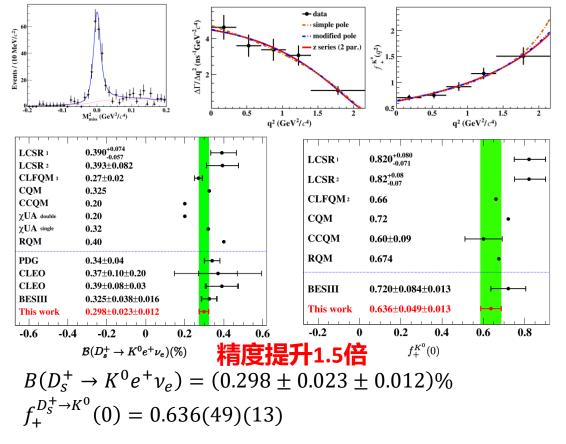

◆ 形状因子 $f_{+}^{D\to K}(0)$ 和 $|V_{cs}|$ 精度分别达到0.23%和0.5%;


▶ 测得的形状因子 $f_+^{D\to K}(0)$ 比此前最好测量 精度改进2倍以上。

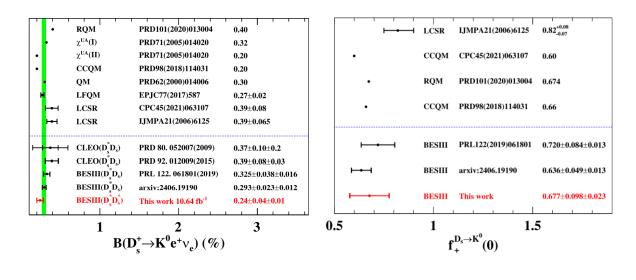

$D^+ o \eta' \ell^+ u_\ell(\ell = e, \mu)$ 的研究


20.3fb⁻¹@ 3.773 GeV PRL 134, 111801 (2025)

信号过程	信号产额	分支比(10 ⁻⁴)
$D^+ \to \eta' e^+ \nu_e$	151(16)	1.79(19)(07)
$D^+\to\eta'\mu^+\nu_\mu$	90(13)	1.92(28)(08)



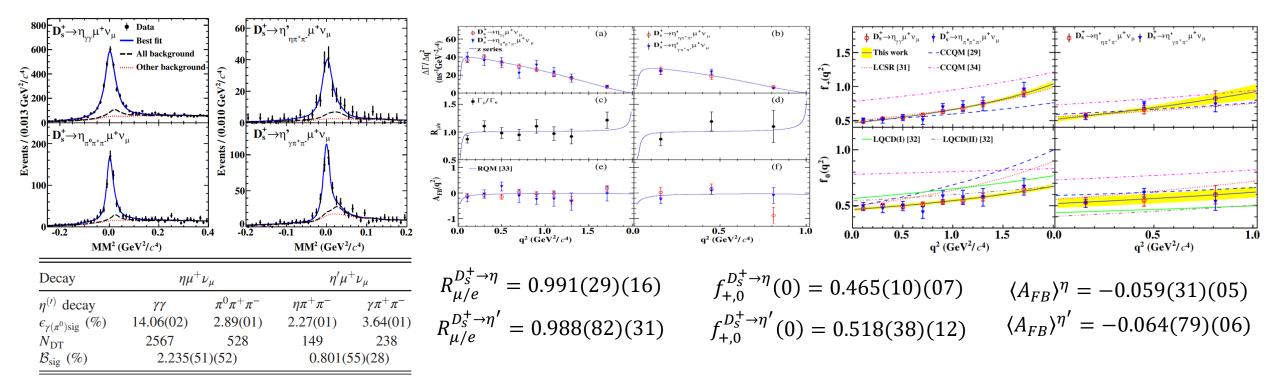
$$f_+^{D^+ \to \eta'}(0) = 0.263(25)(06)$$


- ◆ 首次观测 $D^+ \rightarrow \eta' \mu^+ \nu_\mu$, 以及更高精度测量 $D^+ \rightarrow \eta' e^+ \nu_e$ 的分支比,提升2.4倍;
- ◆ 在18%的精度下检验 μe 轻子普适性;
- ◆ 联合拟合,首次抽取形状因子 $f_{+}^{D^{+} \to \eta'}(0)$,精度9.8%;
- ◆ 测得 $\eta \eta'$ 混合角 ϕ_P ,有助于探讨 η' 介子的夸克组成。

$D_s^+ o K^0 e^+ \nu_e$ 的研究

7.33 fb⁻¹@ 4.13-4.23 GeV ($e^+e^- \rightarrow D_s^{*\pm}D_s^{\mp}$) PRD 110, 052012 (2024)

10.64 fb⁻¹@ 4.24-4.70 GeV ($e^+e^- \rightarrow D_S^{*+}D_S^{*-}$) PRD 110, 072017 (2024)

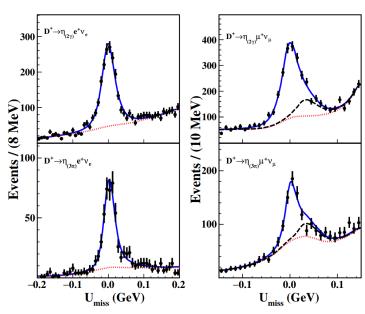


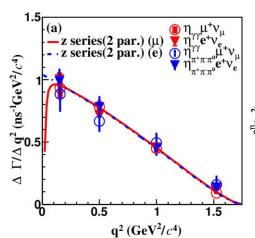
$$B(D_s^+ \to K^0 e^+ \nu_e) = (0.24 \pm 0.04 \pm 0.01)\%$$

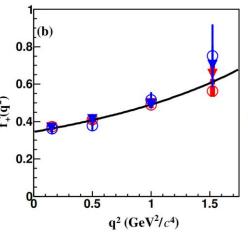
 $f_+^{D_s^+ \to K^0}(0) = 0.677(98)(23)$

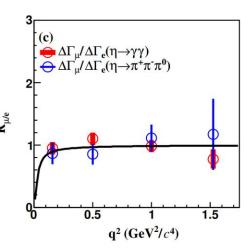
- ◆ 使用多能量点和通过 $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$ 测量 $D_s^+ \rightarrow K^0e^+\nu_e$ 的分支比,充分发掘BESIII数据潜能;
- ◆ 补充测量形状因子 $f_{+}^{D_{s}^{+} \to K^{0}}(0)$, 精度分别为8%和15%。

$D_s^+ o \eta^{(\prime)} \mu^+ u_\mu$ 的研究

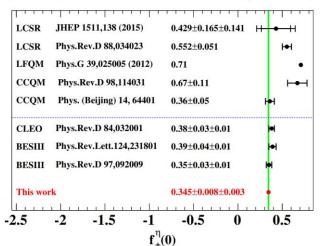

7.33 fb⁻¹@ 4.13-4.23 GeV PRL 132, 091802 (2024)




- lacktriangle 首次观测 $D_s^+ o \eta' \mu^+ \nu_\mu$ (显著性> 10σ),以及高精度测量 $D_s^+ o \eta \mu^+ \nu_\mu$ 分支比,精度分别提高6.0和6.6倍;
- ◆ 分别在3.3%和8.9%的精度下检验 μe 轻子普适性;
- 首次抽取标量形状因子 $f_0^{D_s^+ \to \eta}(0)$ 和 $f_0^{D_s^+ \to \eta'}(0)$,精度分别为2.6%和7.7%;
- ◆ 首次测量 $D_s^+ \rightarrow \eta^{(\prime)} \mu^+ \nu_\mu$ 的前冲后冲不对称参数 $\langle A_{FB} \rangle$ 。


$D^+ o \eta \ell^+ u_\ell \ (\ell = e, \mu)$ 的研究

20.3fb⁻¹@ 3.773 GeV arXiv: 2506.02521, submitted to JHEP

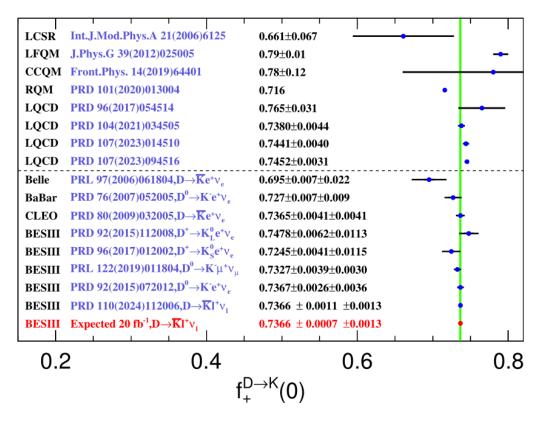


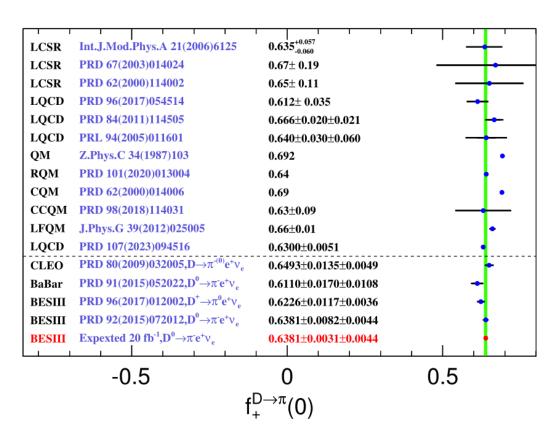
Decay	$N_{ m sig}$	$\bar{\epsilon}_{ m sig}~(\%)$	$\mathcal{B}_{\rm sig} \ (10^{-4})$	
$D^+ \to \eta_{(2\gamma)} e^+ \nu_e$	1567 ± 119	39.51 ± 0.07	$9.75 \pm 0.29 \pm 0.28$	
$D^+ \to \eta_{(3\pi)} e^+ \nu_e$	426 ± 57	18.76 ± 0.06	$9.79 \pm 0.29 \pm 0.28$	
$D^+ \to \eta_{(2\gamma)} \mu^+ \nu_{\mu}$	1375 ± 136	36.52 ± 0.07	$9.08 \pm 0.35 \pm 0.29$	
$D^+ \to \eta_{(3\pi)} \mu^+ \nu_\mu$	400 ± 69	18.60 ± 0.06	$9.00 \pm 0.30 \pm 0.29$	

$$R_{\mu/e}^{D^+ \to \eta} = 0.93(05)(02)$$

- ◆ 分支比测量精度提高2倍以上;
- ◆ 在5.8%的精度下检验 μe 轻子普适性。

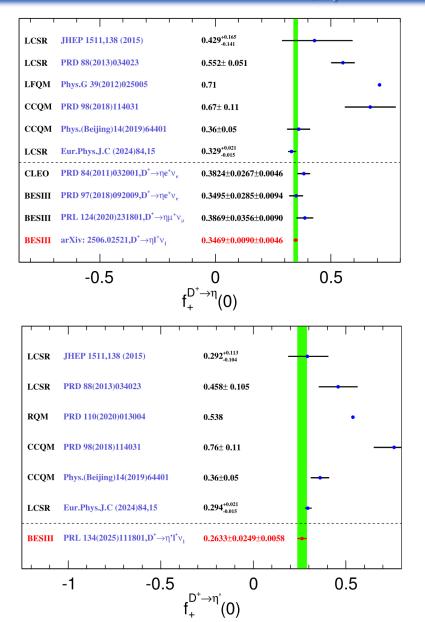
$$f_{+}^{D^{+} \to \eta}(0) = 0.345(08)(03)$$

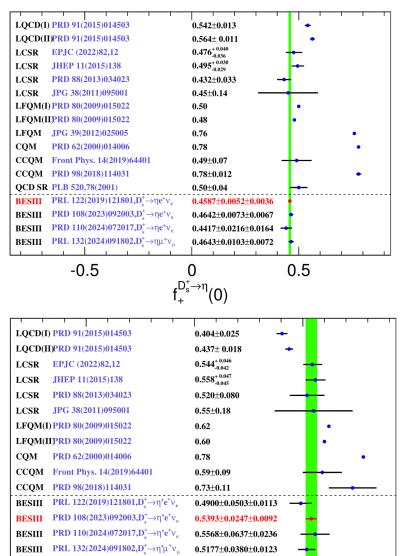

- ◆ 首次完成 $D^+ \rightarrow \eta \ell^+ \nu_\ell$ 半轻衰变动力学的联合研究;
- ♦ 测得形状因子 $f_{+}^{D\to\eta}(0)$,精度由9%提高到2.5%;


正在进行的 $D \rightarrow P\ell^+\nu_\ell$ 研究

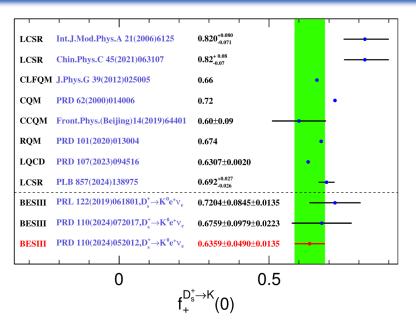
No.	课题	所使用的数据	分析状态
1	Precision measurement of $D^{0(+)} o \overline{K} \ell^+ \nu_\ell$	20.3fb-1@ 3.773 GeV	MEMO review, BAM-00931
2	Combined analysis of $D^{0(+)} ightarrow \pi^{-(0)} \ell^+ \nu_\ell$	20.3fb-1@ 3.773 GeV	MEMO review, BAM-00804
3	Study of the semileptonic decays $D_{\mathcal{S}}^+ \to K^0 \ell^+ \nu_\ell$	7.33 fb-1@ 4.13-4.23 GeV	SP's approval, BAM-00887

$f_+^{D\to K}(0)$ 和 $f_+^{D\to \pi}(0)$ 的实验理论比较


基于PDG2024中global fit下的 $|V_{cs}|$, $|V_{cd}|$ 以及过去实验测量的 $f_+^P(\mathbf{0})|V_{cs(d)}|$, 重新抽取形状因子

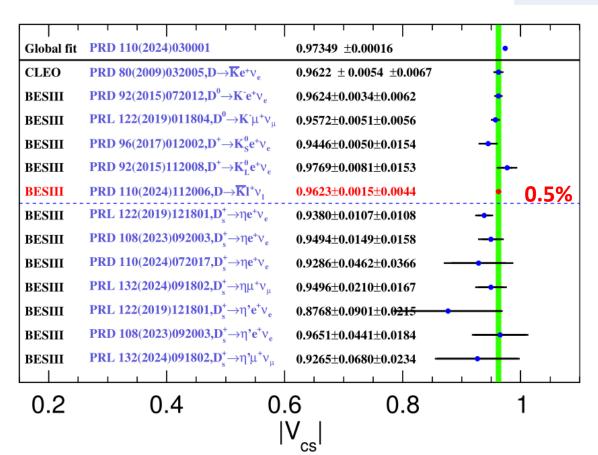


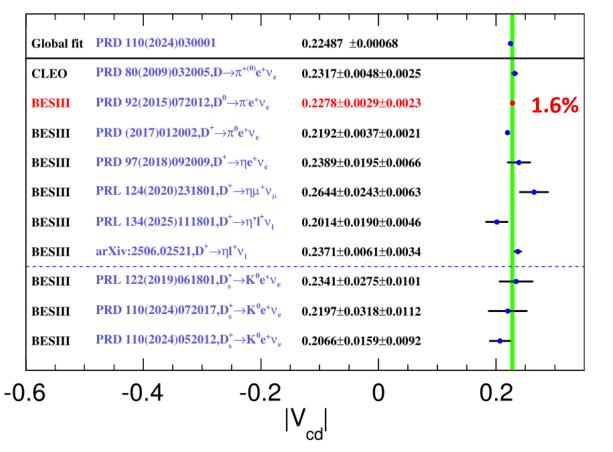
- $> f_+^{D \to K}(0)$ 精度: $0.60\%(2.93 \text{ fb}^{-1}) \to 0.23\%(7.9 \text{fb}^{-1}) \to 0.20\%(20.3 \text{fb}^{-1})$
- $ightharpoonup f_{+}^{D\to\pi}(\mathbf{0})$ 单个衰变道最高精度: $1.4\%(2.93 \text{ fb}^{-1})\to 0.8\%$ (20.3fb⁻¹)


$f_{+}^{D_{S}^{+}\to K}(0)$ 和 $f_{+}^{D_{(S)}^{+}\to \eta'}(0)$ 的实验理论比较

0.5

-0.5


当前实验最高精度:


$$f_{+}^{D \to \eta}(0) \sim 2.9\%$$
 $f_{+}^{D \to \eta'}(0) \sim 9.7\%$ $f_{+}^{D_{s} \to \eta}(0) \sim 1.4\%$ $f_{+}^{D_{s} \to \eta'}(0) \sim 4.9\%$ $f_{+}^{D_{s} \to K}(0) \sim 8.0\%$

实验测量CKM矩阵元 $|V_{cs}|$ 和 $|V_{cd}|$ 的比较

PRD 107(2023)094516	Eur.Phys.J.C(2024)84,15	Eur.Phys.J.C(2022)82,12	PLB 857(2024)138975
$f_+^{D \to K}(0) = 0.7452(31)$	$f_+^{D^+ o \eta}(0) = 0.329_{(15)}^{(21)}$	$f_+^{D_s^+ \to \eta}(0) = 0.476_{(36)}^{(40)}$	$f_{+}^{D_s^+ \to K}(0) = 0.692_{(26)}^{(27)}$
$f_+^{D \to \pi}(0) = 0.6300(51)$	$f_+^{D^+ o \eta\prime}(0) = 294_{(15)}^{(21)}$	$f_{+}^{D_s^+ o \eta\prime}(0) = 0.544_{(42)}^{(46)}$	

第一项误差为统计误差,第二项误差为系统误差与理论值误差的合并。

总结

基于BESIII采集的大数据样本:

- ightharpoonup 首次观测到粲介子半轻衰变 $D^+ o \eta' \mu^+ \nu_\mu$ 和 $D_s^+ o \eta' \mu^+ \nu_\mu$,填补了长期以来的实验空白;
- ightharpoonup 首次抽取了 $D^+ o \eta'$ 的形状因子,且在多个抽取粲介子o 赝标介子形状因子的测量上处于世界最高精度;
- \rightarrow $D \rightarrow K$ 形状因子和 $|V_{cs}|$ 测量精度已分别达到0.23%和0.5%;
- ightharpoonup 以世界最高精度(0.8%)检验粲介子中的 μe 轻子普适性。

展望:

- \Box 开展更多半轻衰变过程的前冲后冲不对称参数 $\langle A_{FR} \rangle$ 测量工作;
- 口 继续推进更多高精度的形状因子测量工作。

