

BESIII上粲重子半轻衰变研究进展与展望

秦佳佳 (南华大学)

"粲强子衰变和标准模型的精确检验"

2025夏季年会

2025/08/14 贵阳

Outline

- **Introduction**
- >BESIII experiment
- > Selected results
- **≻Project II**
- **≻Outlook**
- **≻**Summary

Introduction

- $\geq \Lambda_c^+$ is the ground state charmed baryon, >40 years, characteristics still not very clear.
- > Provides important information to understand strong and weak interactions.
- \triangleright Most of the charmed baryons will eventually decay to Λ_c^+ .
- ➤ Complementary to charmed mesons (W-exchange).
- ➤ Calculation is difficult, many phenomenology methods are developed, most need experimental results input.

Λ_c^+ semi-leptonic decays

- ➤ Weak and strong interaction could be separated, test various QCD-derived phenomenology models
- > Important role in understanding of the dynamics of charm baryon decays
- ➤ Similar with but complemented to charmed meson decays, precise test SM and search for new physics
 - ✓ BFs
 - ✓ Decay asymmetry and FFs
 - $\checkmark |V_{cs}|$ and $|V_{cd}|$
 - ✓ LFU test
 - **√** ...
- > Important input for implementing and calibrating the LQCD calculations

Experiment side

- \triangleright Only $\Lambda_c^+ \rightarrow \Lambda e^+ \nu$ was measured before 2014
 - Mark II 1982 and PEP 1989 with limited significance
 - Observed by ARGUS 1991

均被BESIII结果取代

- Decay asymmetry & FFs by CLEO till 2005
- ➤ BESIII measured several BFs using 0.567 fb⁻¹ threshold data 2014
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu) = (3.63 \pm 0.38_{stat.} \pm 0.20_{syst.})\%$
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu) = (3.49 \pm 0.46_{stat.} \pm 0.27_{syst.})\%$
 - $\mathcal{B}(\Lambda_c^+ \to Xe^+\nu) = (3.95 \pm 0.34_{stat.} \pm 0.09_{syst.})\%$
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu)/\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu) = 0.96 \pm 0.16 \pm 0.04$
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu) / \mathcal{B}(\Lambda_c^+ \to X e^+ \nu) = 0.919 \pm 0.125 \pm 0.054$

Experiment side

- ightharpoonup Only $\Lambda_c^+ \to \Lambda e^+ \nu$ was measured
 - Mark II 1982 and PEP 1989 with limited significance
 - Observed by ARGUS 1991

均被BESIII结果取代

- Decay asymmetry & FFs by CLEO till 2005
- ➤ BESIII measured several BFs using 0.567 fb⁻¹ threshold data 2014

•
$$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu) = (3.63 \pm 0.38_{stat.} \pm 0.20_{syst.})\%$$

•
$$\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu) = (3.49 \pm 0.46_{stat.} \pm 0.27_{syst.})\%$$

•
$$\mathcal{B}(\Lambda_c^+ \to Xe^+\nu) = (3.95 \pm 0.34_{stat.} \pm 0.09_{syst.})\%$$

- $\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu)/\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu) = 0.96 \pm 0.16 \pm 0.04$
- $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu) / \mathcal{B}(\Lambda_c^+ \to X e^+ \nu) = 0.919 \pm 0.125 \pm 0.054$

统计误差主导

Experiment side

\triangleright BESIII took 3.9 fb⁻¹ thereshold data 2020-2021

Precise studies of golden channel $\Lambda_c^+ \to \Lambda l^+ \nu(BFs, LFU, FFs...)$

与理论预言有所分歧

- Observation of second SL, $\mathcal{B}(\Lambda_c^+ \to p \text{K}^- e^+ \nu) = (0.88 \pm 0.17 \pm 0.07) \times 10^{-3}$
- Updated $\mathcal{B}(\Lambda_c^+ \to Xe^+\nu) = (4.06 \pm 0.10 \pm 0.09)\%$
- $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu) < 3.9 \times 10^{-4} @90\% CL$.
- $\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu) < 3.9 \times 10^{-4} @90\% CL.$

2022-2023发表 几乎全为电子道

\triangleright BESIII took 1.93 fb⁻¹ data 2021 and what's next?

- \square μ^+ channels
- \square n/K_L channels
- "Rare" channels
- More variables
- \square Λ^* channels

包括但不限于课题二

Λ_c^+ results and data

- ➤ Published 17 (7 PRLs)+28 (1 NC+4 PRLs)
 - ✓ SL: 3 (2 PRLs)+6 (1 NC+1 PRL)

- ✓ 6.4 fb⁻¹ ~1 M $\Lambda_c^+ \overline{\Lambda}_c^-$ available
- ■Request another 9 fb⁻¹ 4.68 GeV 2025/26, more will come

BESIII Λ_c^+ results

- ➤ Published 17 (7 PRLs)+28 (1 NC+4 PRLs)
 - ✓ SL: 3 (2 PRLs)+6 (1 NC+1 PRL)

•
$$\Lambda_c^+ \to \Lambda e^+ \nu$$

•
$$\Lambda_c^+ \to \Lambda \mu^+ \nu$$

•
$$\Lambda_c^+ \to Xe^+\nu$$

•
$$\Lambda_c^+ \to \Lambda e^+/\mu^+ \nu$$

•
$$\Lambda_c^+ \to p K^- e^+ \nu$$

•
$$\Lambda_c^+ \to Xe^+\nu$$

•
$$\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu$$
, $p K_S^0 \pi^- e^+ \nu$

•
$$\Lambda_c^+ \to ne^+\nu$$

PRL 129.231803 (2022). PRD 108.L031105 (2023).

PRD 106.112010 (2022).

PRD 107.052005 (2023).

PLB 843.137993 (2023).

Nat. Comm. 16, 681 (2025).

Λ_c^+ SL status

Semileptonic modes

✓ Based on Xe^+v and the known channels:

$$\mathcal{B}(\Lambda_c^+ \to non[\Lambda, n, pK]e^+\nu) = (0.55 \pm 1.53 \pm 1.15) \times 10^{-3}$$

✓ Chance to $\Lambda_c^+ \to \Lambda^*/N^{(*)}$...

Λ_c^+ SL status

Λ_c^+ Mode	$BF(\times 10^{-3})$	Experiment	Λ_c^+ Mode	$BF(\times 10^{-3})$	Experiment
$\Lambda_c^+ \to \Lambda e^+ \nu_e$	$23.7{\pm}5.1(37\%)^{\dagger}$	ARGUS(1991)[24]	$\Lambda_c^+ \to pK^-e^+\nu_e$	$0.88 \pm 0.18 (20\%)$	BESIII(2022)[29]
	$26.8{\pm}5.1(19\%)^{\dagger}$	CELO(1994)[25]	$\Lambda_c^+ \to \Lambda(1405)e^+\nu_e$	$0.42 \pm 0.19 (45\%)$	BESIII(2022)[29]
$n_c \rightarrow ne \cdot \nu_e$	$36.3{\pm}4.3(12\%)$	$\mathrm{BESIII}(2015)[30]$	$\Lambda(1405) \rightarrow pK^-$	$0.42\pm0.19(4570)$	$\mathbf{DESIII}(2022)[29]$
	$35.6 \pm 1.3 (3.6\%)$	$\mathrm{BESIII}(2022)[31]$	$\Lambda_c^+ \to \Lambda(1520)e^+\nu_e$	$1.0 \pm 0.5 (50\%)$	BESIII(2022)[29]
$\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$	$34.9 {\pm} 5.3 (15\%)$	BESIII(2017)[32]	$\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$	< 0.33	BESIII(2023)[33]
$\Lambda_c \to \Lambda \mu \cdot u_\mu$	$34.8 {\pm} 1.7 (4.9\%)$	$\mathrm{BESIII}(2023)[34]$	$\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$	< 0.39	BESIII(2023)[33]
$\Lambda_c^+ \to e^+ X$	$39.5 \pm 3.5 (8.9\%)$	BESIII(2018)[35]	$\Lambda_c^+ \! o \! ne^+ u_e$	$3.57 \pm 0.37 \; (10\%)$	$\mathrm{BESIII}(2025)[36]$
	$40.6\pm1.3(3.2\%)$	BESIII(2023)[37]			

BEPCII

BESIII detector

NIM A614, 345 (2010)

The BESIII Detector

Drift Chamber (MDC) $\sigma P/P (^{0}/_{0}) = 0.5\% (1 \text{GeV})$ $\sigma_{dE/dx} (^{0}/_{0}) = 6\%$

Time Of Flight (TOF) σ_{T} : 90 ps Barrel 110 ps endcap

(CsI)

 $\sigma_{z,\phi}(cm) = 0.5 - 0.7 \text{ cm/VE}$

μCounter

8-9 layers RPC

 $δRΦ=1.4 cm^{2}1.7 cm$

BFs of $\Lambda_c^+ \to \Lambda e^+ \nu$

- ➤ Updated BFs
- > First comparisons on differential decay rates and FFs with LQCD.
- \triangleright N($\Lambda_c^+ \rightarrow \Lambda e^+ \nu$) = 1253 \pm 39

Fair agreement

BFs of $\Lambda_c^+ \to \Lambda e^+ \nu$

- ➤ Updated BFs
- ➤ Disfavor some predictions @95% CL.
- $|V_{cs}| = 0.936 \pm 0.017 \pm 0.024 \pm 0.007$, consistent with 0.939 \pm 0.038 from D $\rightarrow Kl\nu$.

	$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) \ (\%)$	
Constituent quark model (HONR) [9]	4.25	
Light-front approach [10]	1.63	
Covariant quark model [11]	2.78	
Relativistic quark model [12]	3.25	
Non-relativistic quark model [13]	3.84	
Light-cone sum rule [14]	3.0 ± 0.3	
Lattice QCD [15]	3.80 ± 0.22	
SU(3) [16]	3.6 ± 0.4	
Light-front constituent quark model [17]	3.36 ± 0.87	
MIT bag model [17]	3.48	
Light-front quark model [18]	4.04 ± 0.75	
This Letter	$3.56 \pm 0.11 \pm 0.07$	

FFs of $\Lambda_c^+ \to \Lambda e^+ \nu$

> First comparisons on FFs with LQCD.

BFs of $\Lambda_c^+ \to \Lambda \mu^+ \nu$

- > BFs is measured.
- > 3 times more precise than prior world average.

$$N(\Lambda_c^+ \to \Lambda \mu^+ \nu) = 752 \pm 31$$

$$\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu)$$
= $(3.48 \pm 0.14_{stat.} \pm 0.10)\%$

BFs, A_{FB}^{l} and LFU of $\Lambda_{c}^{+} \rightarrow \Lambda l^{+} \nu$

- ✓ Differential decay rates, consistent with LQCD.
- ✓ Forward-backward asymmetries, no LFUV.
- ✓ First LFU test reported, $R(\frac{e^+}{\mu^+}) = 0.98 \pm 0.05_{stat.} \pm 0.03$, compatible with LQCD 0.97.

A_{FB}^{p} and $\alpha_{\Lambda_{c}^{+}}$ of $\Lambda_{c}^{+} \rightarrow \Lambda l^{+} \nu^{-}$

$$A_{\text{FB}}^{\ell,p}(q^2) = \frac{\int_0^1 \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p} - \int_{-1}^0 \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p}}{\int_0^1 \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p} + \int_{-1}^0 \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p}} d\cos\theta_{\ell,p}} \quad \alpha_{\Lambda_c}(q^2) = \frac{2}{\alpha_{\Lambda}} [A_{\text{FB}}^p(q^2)]$$

Comparisons of $\Lambda_c^+ \to \Lambda \mu^+ \nu$

TABLE I.	Comparisons of $\mathcal{B}(\Lambda_c^+$	$\rightarrow \Lambda \mu^+ \nu_{\mu}$) (in %), $\langle \alpha_{\Lambda_c} \rangle$,	$\langle A_{\rm FB}^e \rangle$, and $\langle A_{\rm FB}^\mu \rangle$	from theories and measurement.
----------	--	--	---	--------------------------------

	$\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu)$	$\langle lpha_{\Lambda_c} angle$	$\langle A_{ m FB}^{e} angle$	$\langle A_{\rm FB}^{\mu} \rangle$
CQM [20]	2.69	-0.87	-0.2	-0.21
ROM [21]	3.14	-0.86	-0.209	-0.242
CQM(HONR) [49]	4.25			
NRQM [50]	3.72			
HBM [24]	3.67 ± 0.23	-0.826	-0.176(5)	-0.143(6)
LQCD [28]	3.69 ± 0.22	-0.874(10)	-0.201(6)	-0.169(7)
LCSR [51]	3.0 ± 0.3			
SU(3) [25]	3.6 ± 0.4	-0.86(4)		
LFCQM [27]	3.21 ± 0.85	-0.97(3)		
MBM [27]	3.38	-0.83		
LFQM [22]	3.90 ± 0.73	-0.87(9)	0.20(5)	0.16(4)
LFCQM [26]	3.40 ± 1.02	-0.97(3)		
SU(3) [52]	3.45 ± 0.30			
This work	3.48 ± 0.17	-0.94(8)	-0.24(3)	-0.22(4)

- BFs disfavor [20] and [49] >95%CL.
- Decay asymmetry consistent with all the predictions.
- Lepton FB asymmetry differ from LFQM in [22].

T asymmetry of $\Lambda_c^+ \to \Lambda l^+ \nu$

$$\mathcal{T}_p = \frac{[(\int_{-\pi}^0 - \int_0^\pi) d\chi][(\int_0^1 - \int_{-1}^0) d\cos\theta_p]\Gamma_{\chi,\cos\theta_p}^\ell}{\alpha_\Lambda \Gamma^\ell}$$

$$\mathcal{T}_p(\Lambda_c^+ \to \Lambda e^+ \nu) = -0.021 \pm 0.041 \pm 0.001$$

$$\mathcal{T}_p(\Lambda_c^+ \to \Lambda \mu^+ \nu) = 0.068 \pm 0.055 \pm 0.002$$

- ✓ Consistent with 0 of SM.
- ✓ No indication of new physics.

FFs of $\Lambda_c^+ \to \Lambda l^+ \nu$

➤ Simultaneous fit with helicity amplitudes

More precise

$\Lambda_c^+ \to p K^- e^+ \nu$

- > Second observed SL decay
- $\gg \mathcal{B}(\Lambda_c^+ \to pK^-e^+\nu) = (0.88 \pm 0.17 \pm 0.07) \times 10^{-3} \text{ with } 8.2 \ \sigma.$
- \triangleright Evidence for $\Lambda(1405)$ and $\Lambda(1520)$ in pK^- spectrum:
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu) = (1.02 \pm 0.52 \pm 0.11) \times 10^{-3}$ with 3.3 σ .
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda(1405)) \to pK e^+ \nu = (0.42 \pm 0.19 \pm 0.04) \times 10^{-3}$ with 3.2 σ .

$\Lambda_c^+ \to p K^- e^+ \nu$

TABLE I. Comparison of $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)/\Lambda(1405)e^+\nu_e)$ [in ×10⁻³] between theoretical calculations and this measurement. The BF of $\Lambda(1405) \to pK^-$ is unknown [2].

	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1520) e^+ \nu_e)$	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1405) e^+ \nu_e)$
Constituent quark model [8]	1.01	3.04
Molecular state [9]	• • •	0.02
Nonrelativistic quark model [10]	0.60	2.43
Lattice QCD [12,13]	0.512 ± 0.082	• • •
Measurement	$1.02 \pm 0.52 \pm 0.11$	$\frac{0.42 \pm 0.19 \pm 0.04}{\mathcal{B}(\Lambda(1405) \to pK^{-})}$

Need more data and more detailed study!

$\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu$

PLB 843, 137933 (2023)

\triangleright Search for Λ^* :

- $\mathcal{B}(\Lambda(1520) \to \Lambda \pi^+ \pi^-) = (10 \pm 1)\%$
- Excited Λ^* could decay to $pK^*(892)^-$
- ➤ Upper limits @90%CL.:
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu) < 3.9 \times 10^{-4}$
 - $\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu) < 3.3 \times 10^{-4}$
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu) < 4.3 \times 10^{-3}$
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda(1600)e^+\nu) < 9.0 \times 10^{-3}$

The BFs for $\Lambda_c^+ \to \Lambda^* e^+ \nu_e$ predicted by different theoretical models, in units of 10^{-4} .

Λ^* state	CQM [8]	NRQM [9]	LFQM [10]	LQCD [11]
Λ(1520)	10.00	5.94		$\boldsymbol{5.12 \pm 0.82}$
$\Lambda(1600)$	4.00	1.26	(0.7 ± 0.2)	
$\Lambda(1890)$		3.16×10^{-2}		
Λ(1820)		1.32×10^{-2}		

$|\Lambda_c^+ o ne^+ u|$

- $\triangleright \Lambda_c^+$ CS transition $c \to dl^+\nu$ beta decay never been observed
- \triangleright Big challenge due to two missing particles n and ν , extensive bkg. from $\Lambda_c^+ \to \Lambda(n\pi^0)e^+\nu$
- DT with Graph Neural Network(GNN) is used for 3-D classification
- ightharpoonup Validated with control samples of $J/\psi \to \bar{p}\pi^+ n$, $J/\psi \to \bar{p}K^+ \Lambda$ and c.c.
- \triangleright Further cross check on $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu)$

$\Lambda_c^+ \rightarrow ne^+ \nu$

$\Lambda_c^+ \rightarrow ne^+ \nu$

- \checkmark $\mathcal{B}(\Lambda_c^+ \to ne^+ \nu) = (3.57 \pm 0.34_{stat.} \pm 0.14_{syst.}) \times 10^{-3}$, consistent and precision comparable to LQCD.
- ✓ $|V_{cd}| = 0.208 \pm 0.011 \pm 0.007 \pm 0.001$, first from charmed baryon decay and consistent with the world average value (0.221 ± 0.004) .
- ✓ Test various theoretical models.
- ✓ Power of modern machine learning techniques.

ML example

BESIII Λ_c^+ SL opportunities

Lots of channels to be and being studied:

 $\checkmark \Lambda_c^+ \rightarrow \Sigma^{+/-} \pi^{-/+} e^+ \nu (BAM-589, CWR)$ $\checkmark \Lambda_c^+ \rightarrow p \pi^- e^+ \nu$ (BAM-736) $\square \Lambda_c^+ \rightarrow p K^- e^+ \nu (ML)$ $\square \Lambda_c^+ \rightarrow p K^- \mu^+ \nu$ $\square \Lambda_c^+ \rightarrow p \pi^- \mu^+ \nu$ $\square \Lambda_c^+ \rightarrow n \mu^+ \nu \text{ (ML)}$ $\square \Lambda_c^+ \rightarrow n K_s^0 e^+ \nu (ML)$ $\square \Lambda_c^+ \rightarrow \Sigma^0 \pi^0 l^+ \nu$, $\Sigma^0 e^+ \nu$, $\Lambda \pi^0 e^+ \nu$, $\Lambda \pi^+ \pi^- e^+ \nu$, $p K_S^0 \pi^- e^+ \nu$ $\square \Lambda_c^+ \rightarrow p K^- \pi^+ e^+ \nu$ $\square \Lambda_c^+ \rightarrow p \pi^+ \pi^- e^+ \nu$

Outlook

 \gt 9 fb⁻¹ more data at 4.68 GeV has been approved and will be collected during 2025-2026 (~180 days)

Outlook

 \gt 9 fb⁻¹ more data at 4.68 GeV has been approved and will be collected during 2025-2026 (~180 days)

Decay channel	Branching fraction		
$\Lambda_{\rm c}^+ \to \Lambda {\rm e}^+ \nu_e$	$(3.56 \pm 0.11_{stat} \pm 0.07_{syst})\%$		
$\Lambda_{\rm c}^+ \to \Lambda \mu^+ \nu_\mu$	$(3.48 \pm 0.14_{stat} \pm 0.10_{syst})\%$		
$\Lambda_{\rm c}^+ \to n {\rm e}^+ \nu_e$	$(3.57 \pm 0.34_{stat} \pm 0.14_{syst}) \times 10^{-3}$		
$\Lambda_{\rm c}^+ \to p K^- {\rm e}^+ \nu_e$	$(0.88 \pm 0.17_{stat} \pm 0.07_{syst}) \times 10^{-3}$		

Outlook

- \gt 9 fb⁻¹ more data at 4.68 GeV has been approved and will be collected during 2025-2026 (~180 days)
 - ✓ Several hadronic and SL channels could be observed

Summary

- \triangleright BESIII has dominant Λ_c^+ SL decays since 2015, many channels were first observed and several physical observables were measured(e.g. BFs, FFs).
- ightharpoonup Milestone channel $\Lambda_c^+ \to ne^+ \nu$ was firstly observed and studied with new method, which provide opportunity to many analysis of BESIII.
- ➤ More channels in Project II are ongoing, good opportunities to study charmed baryon dynamics and test SM.
- \geq 2025/26 BEPCII-U will be more efficient and 9 fb⁻¹ more data will be obtained at 4.68 GeV.
- > Very welcome predictions from theory and suggestions from theorists.

Thanks for your attention!

BACK UP

Decay dynamics of $\Lambda_c^+ \to \Lambda e^+ \nu_e$

Definition of the polar and the azimuthal angles

Differential decay width

Helicity amplitudes:

$$H_{\lambda_{\Lambda}\lambda_{W}} = H_{\lambda_{\Lambda}\lambda_{W}}^{V} - H_{\lambda_{\Lambda}\lambda_{W}}^{A}$$
 and $H_{-\lambda_{\Lambda}-\lambda_{W}}^{V(A)} = +(-)H_{\lambda_{\Lambda}\lambda_{W}}^{V(A)}$

$$\begin{split} \frac{d^4\Gamma}{dq^2d\cos\theta_e d\cos\theta_p d\chi} &= \frac{G_F^2|V_{cs}|^2}{2(2\pi)^4} \cdot \frac{Pq^2}{24M_{\Lambda_c}^2} \left\{ \frac{3}{8} (1-\cos\theta_e)^2 |H_{\frac{1}{2}1}|^2 (1+\alpha_{\Lambda}\cos\theta_p) + \frac{3}{8} (1+\cos\theta_e)^2 |H_{-\frac{1}{2}-1}|^2 (1-\alpha_{\Lambda}\cos\theta_p) + \frac{3}{4} \sin^2\!\theta_e [|H_{\frac{1}{2}0}|^2 (1+\alpha_{\Lambda}\cos\theta_p) + |H_{-\frac{1}{2}0}|^2 (1-\alpha_{\Lambda}\cos\theta_p)] + \frac{3}{2\sqrt{2}} \alpha_{\Lambda}\cos\chi\sin\theta_e\sin\theta_p \right. \\ & \times \left[(1-\cos\theta_e)H_{-\frac{1}{2}0}H_{\frac{1}{2}1} + (1+\cos\theta_e)H_{\frac{1}{2}0}H_{-\frac{1}{2}-1} \right] \right\}, & \text{Neglect lepton mass term} \end{split}$$

Parameterized by "Weinberg form factor"

4D fit to extract FFs

- $e^+\nu_e$ mass squared: q^2
- $\Lambda \to p\pi^-$ helicity angle: θ_p
- $W^+ \to e^+ \nu_e$ helicity angle: θ_e
- Acoplanarity angle between Λ and W^+ : χ

$$\begin{split} H^{V}_{\frac{1}{2}1} &= \sqrt{2Q_{-}}[F^{V}_{1}(q^{2}) + \frac{(M_{\Lambda^{+}_{c}} + M_{\Lambda})}{M_{\Lambda^{+}_{c}}}F^{V}_{2}(q^{2})], \\ H^{A}_{\frac{1}{2}1} &= \sqrt{2Q_{+}}[F^{A}_{1}(q^{2}) - \frac{(M_{\Lambda^{+}_{c}} - M_{\Lambda})}{M_{\Lambda^{+}_{c}}}F^{A}_{2}(q^{2})], \\ H^{V}_{\frac{1}{2}0} &= \sqrt{\frac{Q_{-}}{q^{2}}}[(M_{\Lambda^{+}_{c}} + M_{\Lambda})F^{V}_{1}(q^{2}) + \frac{q^{2}}{M_{\Lambda^{+}_{c}}}F^{V}_{2}(q^{2})], \\ H^{A}_{\frac{1}{2}0} &= \sqrt{\frac{Q_{+}}{q^{2}}}[(M_{\Lambda^{+}_{c}} - M_{\Lambda})F^{A}_{1}(q^{2}) - \frac{q^{2}}{M_{\Lambda^{+}_{c}}}F^{A}_{2}(q^{2})]. \end{split}$$

"Weinberg form factor"

&

"Helicity form factor"

Parameterized by "Helicity form factor"

$$H_{\frac{1}{2}1}^{V} = \sqrt{2Q_{-}}f_{\perp}(q^{2}),$$

$$H_{\frac{1}{2}1}^{A} = \sqrt{2Q_{+}}g_{\perp}(q^{2}),$$

$$H_{\frac{1}{2}0}^{V} = \sqrt{Q_{-}/q^{2}}f_{+}(q^{2})(M_{\Lambda_{c}} + M_{\Lambda}),$$

$$H_{\frac{1}{2}0}^{A} = \sqrt{Q_{+}/q^{2}}g_{+}(q^{2})(M_{\Lambda_{c}} - M_{\Lambda}).$$

Following LQCD