

Searching for FCNC decays

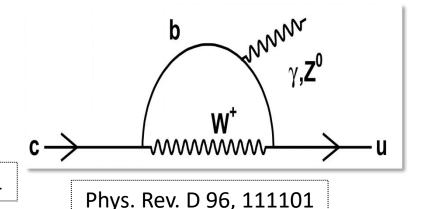
Minghua Liao(廖明华)

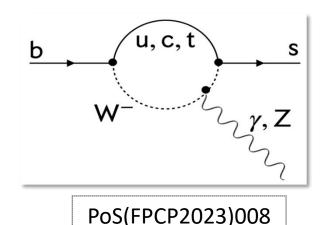
liaomh7@mail2.sysu.edu.cn

Sun Yat-sen University 14 Aug 2025

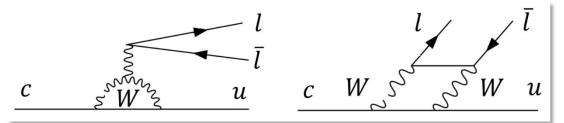
Outline

- ✓ Motivation
- ☐ Current status
- ☐ Charmonium FCNC decay
 - $J/\psi o D^0 \mu^+ \mu^-$, $J/\psi o \gamma D^0$
- ☐ Charm FCNC decay
 - $D_s^+ o h(h') e^+ e^-$, $D o h(h') e^+ e^-$, $D^0 o \pi^0
 u \overline{
 u}$
- **□** Prospect
- **□** Summary

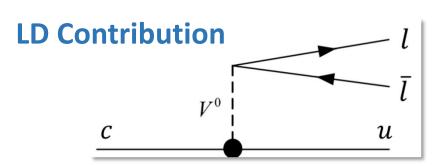



Motivation

- Flavor Changing Neutral Current (FCNC) processes refer to transitions between different flavors within the same type of quark, such as c -> u, b -> s.
- Strongly suppressed by the GIM mechanism.
- The SM-predicted branch fraction (BF) for c -> u are in the range of $10^{-8} \sim 10^{-14}$. Natl.Sci.Rev. 8 (2021) 11
- Contributions from new physics may enhance the BF by $2\sim3$ orders of magnitude.


Motivation

> There are three types that need to be distinguished.


arXiv:2403.11597
SD Contribution

Short-distance (SD), proceed via the SM loop diagrams, BF $^{10^{-8}}$ $^{10^{-14}}$.

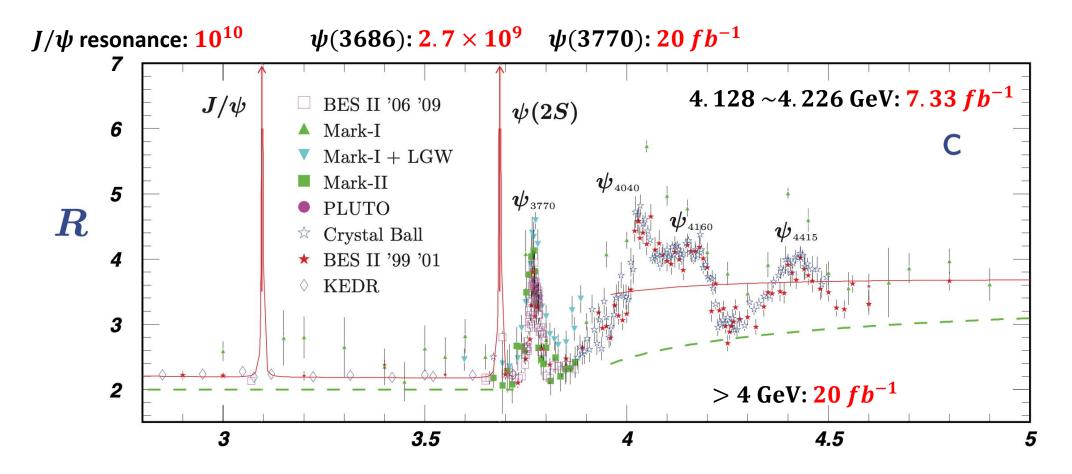
Conf.Proc.C 060726 (2006) 811-814

Long-distance (LD) can be dominant, such as Vector Meson Dominance (VMD), and $BF^{-1}0^{-6} \sim 10^{-11}$.

New physics contribution, such as Top-color model, two-Higgs doublet model, massless dark photon, and QCD axion, enhance the BF 2-3 orders.

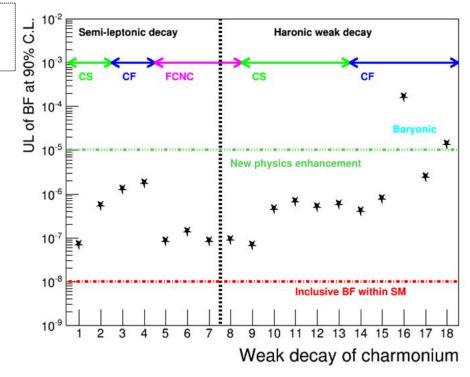
NP Contribution, such as massless dark photon $c \longrightarrow c \longrightarrow u$

Outline


- Motivation
- ✓ Current status
- ☐ Charmonium FCNC decay
 - $J/\psi o D^0 \mu^+ \mu^-$, $J/\psi o \gamma D^0$
- ☐ Charm FCNC decay
 - $D_S^+D_S^+ o h(h')e^+e^-$, $D o h(h')e^+e^-$, $D^0 o \pi^0
 u \overline{
 u}$
- **□** Prospect
- **□** Summary

BESIII Data Samples

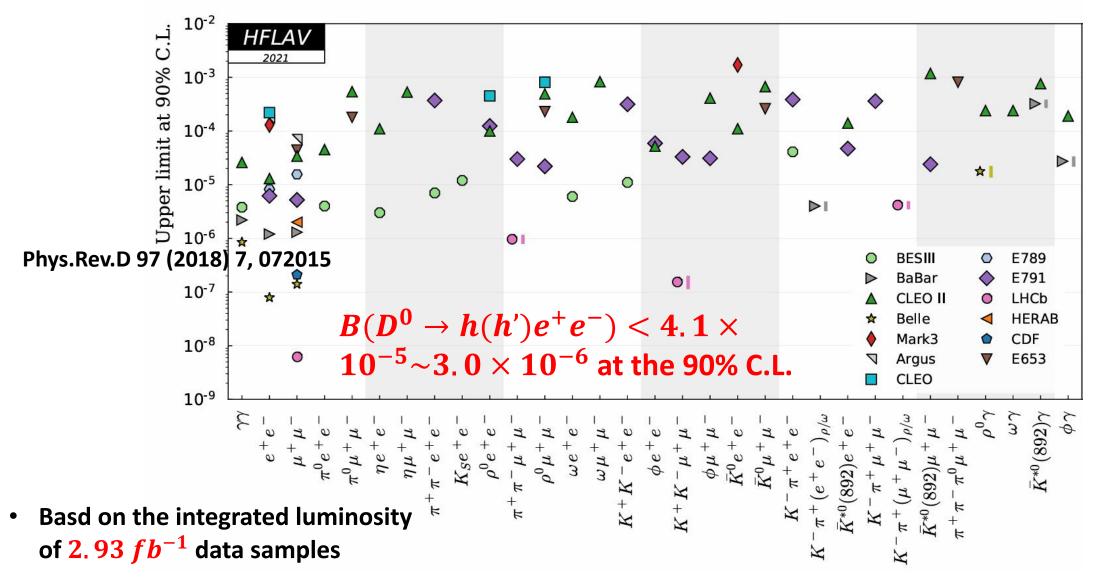
• BESIII has collected the largest data samples of J/ψ and $\psi(3686)$ on the threshold in the world. New data has been collected at higher energy points, such as for $\psi(3770)$, where the integrated luminosity has increased from 2.93 fb⁻¹ to 20 fb⁻¹.



Charmonium FCNC decay

- For the J/ψ ($\psi(3686)$) \to $D^0e^+e^-$, it is based on the $\sim\!1.3~\mathrm{B}$ J/ψ ($0.45~\mathrm{B}$ $\psi(3686)$) events. Phys. Rev. D 96 (2017) 111101
- New results at the 90% C.L.: JHEP04(2025)061
 - $B(J/\psi \to D^0 \mu^+ \mu^-) < 1.1 \times 10^{-7}$, it is based on the ~ 10 B J/ψ events.
 - $B(J/\psi \rightarrow \gamma D^0) < 9.1 \times 10^{-8}$, it is based on the ~ 10 B J/ψ events.

Phys. Rev. D 110 (2024) 112012



1:
$$J/\psi \to D^{\circ}e^{+}\nu_{e} + c.c.$$
 9: $J/\psi \to D^{\circ}\pi^{+} + c.c.$ 2: $J/\psi \to D^{\circ}\mu^{+}\nu_{\mu} + c.c.$ 10: $J/\psi \to D^{\circ}\pi^{0} + c.c.$ 11: $J/\psi \to D^{\circ}\eta + c.c.$ 12: $J/\psi \to D^{\circ}\eta + c.c.$ 12: $J/\psi \to D^{\circ}\rho^{0} + c.c.$ 13: $J/\psi \to D^{\circ}\rho^{0} + c.c.$ 13: $J/\psi \to D^{\circ}\rho^{0} + c.c.$ 14: $J/\psi \to D^{\circ}\rho^{+} + c.c.$ 15: $J/\psi \to D^{\circ}\rho^{+} + c.c.$ 15: $J/\psi \to D^{\circ}\rho^{+} + c.c.$ 16: $J/\psi \to D^{\circ}\rho^{+} + c.c.$ 17: $J/\psi \to D^{\circ}\kappa^{0} + c.c.$ 17: $J/\psi \to D^{\circ}\kappa^{0} + c.c.$ 18: $\psi(2S) \to \Lambda_{c}^{+}\Sigma^{-} + c.c.$

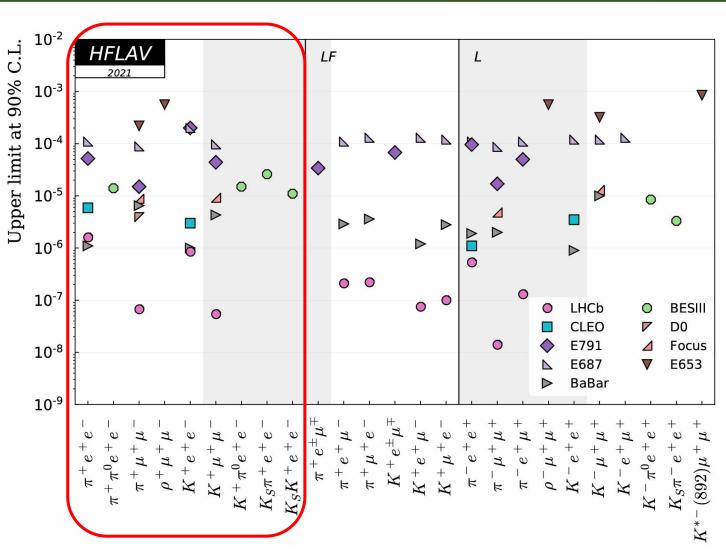
arXiv:2403.11597

Charm meson FCNC decay

https://hflav-eos.web.cern.ch/hflav-eos/charm/rare/Spring2021/rare_D0_2021.pdf

Charm meson FCNC decay

Phys.Rev.D 97 (2018) 7, 072015


- Basd on the integrated luminosity of $2.93 \, fb^{-1}$ data samples
- At the 90% C.L., upper limit of BF:

$$B(D^+ \to \pi^+ K_S e^+ e^-) < 2.6 \times 10^{-5}$$

$$B(D^+ \to \pi^+ \pi^0 e^+ e^-) < 1.4 \times 10^{-5}$$

$$B(D^+ \to K^+ K_S e^+ e^-) < 1.1 \times 10^{-5}$$

$$B(D^+ \to K^+ \pi^0 e^+ e^-) < 1.5 \times 10^{-5}$$

D_s FCNC decay

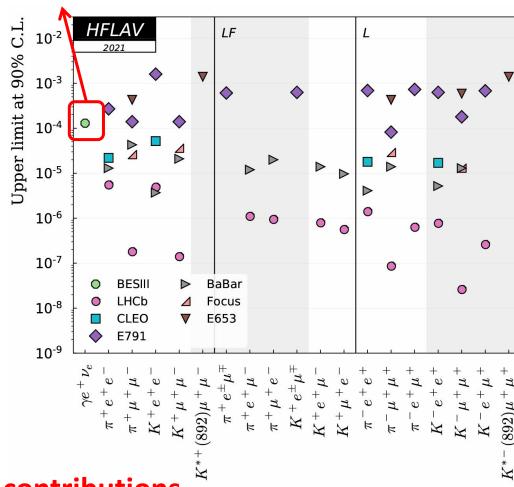
Phys.Rev.Lett. 133 (2024) 12, 121801

> New results (7.33 fb^{-1}), at the 90% C.L.:

•
$$B(D_s^+ \to \pi^+ \pi^0 e^+ e^-) < 7.0 \times 10^{-5}$$

•
$$B(D_s^+ \to K^+ \pi^0 e^+ e^-) < 7.1 \times 10^{-5}$$

•
$$B(D_s^+ \to K_S \pi^+ e^+ e^-) < 8.1 \times 10^{-5}$$


•
$$B(D_s^+ \to \pi^+ \phi) \times B(\phi \to e^+ e^-) =$$

$$(1.17^{+0.23}_{-0.21} \pm 0.03) \times 10^{-5}$$

•
$$B(D_s^+ \rightarrow \rho^+ \phi) \times B(\phi \rightarrow e^+ e^-) =$$

$$(2.44^{+0.67}_{-0.62} \pm 0.16) \times 10^{-5}$$

Only one before 2021

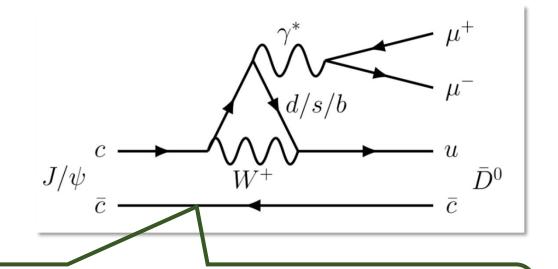
Discovery of LD contributions

Outline

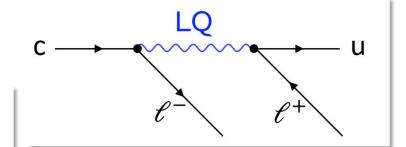
- Motivation
- □ Current status
- ✓ Charmonium FCNC decay
 - $J/\psi \rightarrow D^0 \mu^+ \mu^-$, $J/\psi \rightarrow \gamma D^0$
- ☐ Charm FCNC decay
 - $D_s^+ o h(h')e^+e^-$, $D o h(h')e^+e^-$, $D^0 o \pi^0
 u \overline{
 u}$
- **□** Prospect
- **□** Summary

Search for $J/\psi \to D^0 \mu^+ \mu^-$ decay

- > Using $(1.0087 \pm 0.0044) \times 10^{10}$ events.
- > Decay chain:


•
$$J/\psi \rightarrow D^0\mu^+\mu^- + c.c$$

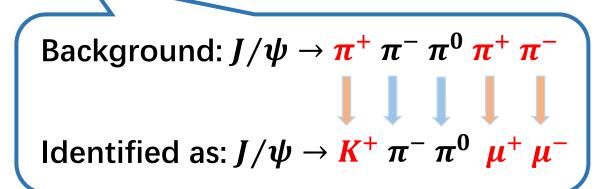
- Mode1: $D^0 o K^-\pi^+$
- Mode2: $D^0 o K^-\pi^+\pi^0$, $\pi^0 o \gamma\gamma$
- Mode3: $D^0 o K^-\pi^+\pi^+\pi^-$



theoretical calculation: J.Phys.G 36 (2009) 105002

$$\begin{split} & \text{BR}(J/\psi \to \bar{D}^0 e^+ e^-) = 1.14^{+0.71}_{-0.35} \times 10^{-13}, \quad \text{BR}(J/\psi \to \bar{D}^0 \mu^+ \mu^-) = 1.08^{+0.67}_{-0.33} \times 10^{-13}, \\ & \text{BR}(J/\psi \to \bar{D}^{*0} e^+ e^-) = 6.30^{+3.61}_{-2.30} \times 10^{-13}, \quad \text{BR}(J/\psi \to \bar{D}^{*0} \mu^+ \mu^-) = 5.94^{+3.36}_{-2.15} \times 10^{-13}, \end{split}$$

For new physics, some new particles that modulate FCNC processes



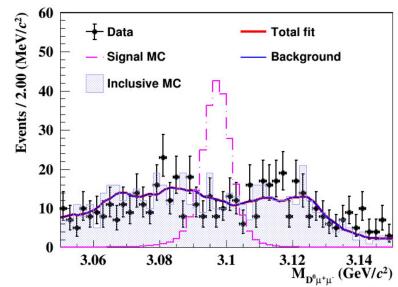
Search for $J/\psi \to D^0 \mu^+ \mu^-$ decay

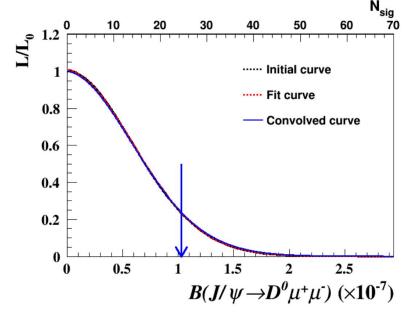
JHEP 04 (2025) 061

- In the three-body decay $J/\psi \to D^0 \mu^+ \mu^-$, due to the low energy of muons (<0.4 GeV), there is insufficient information to identify muon, resulting in the main background being the μ/π misidentification.
- Correction Method:
- such as μ^- are corrected to π^-

$$\overrightarrow{p}_{\pi} = \overrightarrow{p}_{\mu}$$
, $E_{\pi} = \sqrt{\overrightarrow{p}_{\mu}^2 c^2 + m_{\pi}^2 c^4}$

- Using a similar method, the analysis also constructs $M(4\pi)$, $M(\pi^+\pi^-)$, $M(\pi^\pm\pi^0)$, and $M(\pi^\pm\pi^+\pi^-)$.
- Due to the mass differences between particles, these variables has distinct kinematic features, which can effectively distinguish signals from backgrounds.

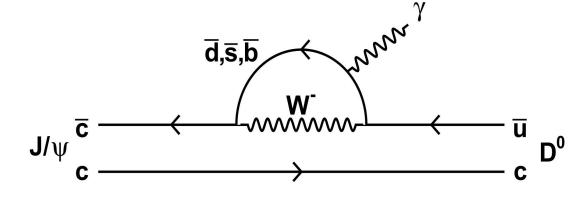

• The invariant mass of J/ψ is used for signal extraction.


$$M(D^{0}\mu^{+}\mu^{-}) = \sqrt{(E_{D^{0}} + E_{\mu^{+}} + E_{\mu^{-}})^{2} - |\vec{p}_{D^{0}} + \vec{p}_{\mu^{+}} + \vec{p}_{\mu^{-}}|^{2}}$$

$$B(J/\psi \to D^0 \mu^+ \mu^-) = \frac{N_{sig, fit}}{N_{J/\psi} \times \sum_i (\epsilon_{sig, i} \times B_{inter, i})}$$

where $N_{sig,\,fit}$ is the signal yield, $N_{J/\psi}=(10087\pm44)\times10^6$, $\epsilon_{sig,\,i}$ and $B_{inter,\,i}$ are the signal efficiency and intermediate BF for the *i*-th reconstruction modes.

- This is the first measurement for $J/\psi \to D^0 \mu^+ \mu^-$, and no significant signal has been observed.
- $B(J/\psi \to D^0 \mu^+ \mu^-) < 1.1 \times 10^{-7}$ at the 90% C.L.

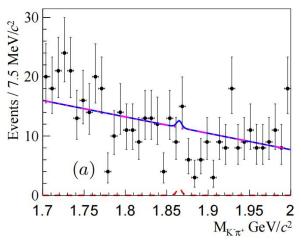

Search for $J/\psi \to \gamma D^0$ decay

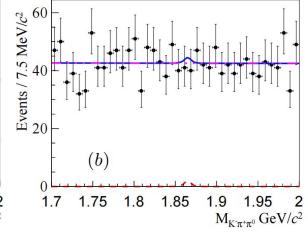
- ightharpoonup Using (1.0087 \pm 0.0044) imes 10¹⁰ events.
- Decay chain:

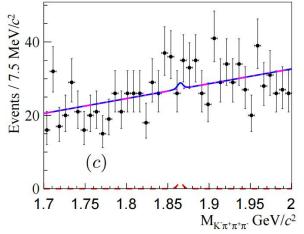
•
$$J/\psi \rightarrow \gamma D^0 + c.c$$

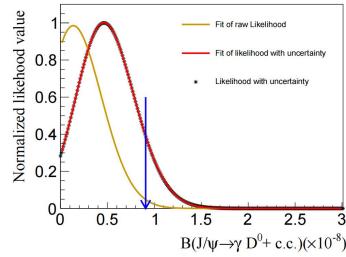
- Mode1: $D^0 o K^-\pi^+$
- Mode2: $D^0 o K^-\pi^+\pi^0$, $\pi^0 o \gamma\gamma$
- Mode3: $D^0 o K^- \pi^+ \pi^+ \pi^-$

 \succ Theoretically, the expected BF is 1-2 orders of magnitude higher than that of $J/\psi
ightharpoonup D^0 l^+ l^-$, due to the presence of one fewer decay vertex.


Search for $J/\psi \rightarrow \gamma D^0$ decay




• The invariant mass of D^0 is used for signal extraction.


$$B(J/\psi \to \gamma D^{0}) = \frac{N_{sig, fit}}{N_{J/\psi} \times \sum_{i} (\epsilon_{sig, i} \times B_{inter, i})}$$

- · This is the first measurement. No significant signal has been observed.
- $B(J/\psi o \gamma D^0) < 9.1 imes 10^{-8}$ at the 90% C.L.

Outline

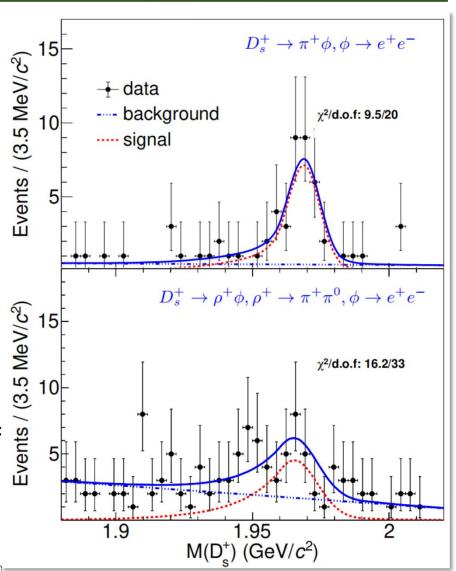
- Motivation
- Current status
- ☐ Charmonium FCNC decay
 - $J/\psi o D^0 \mu^+ \mu^-$, $J/\psi o \gamma D^0$
- ✓ Charm FCNC decay
 - $D_s^+ o h(h')e^+e^-$, $D o h(h')e^+e^-$, $D^0 o \pi^0
 u \overline{
 u}$
- **□** Prospect
- **□** Summary

Search for $D_s^+ o h(h')e^+e^-$ decay

 \rightarrow Using 7.33 fb^{-1} data @4.128 – 4.226 GeV.

- Phys.Rev.Lett. 133 (2024) 12, 121801
- \succ The D_s^\pm mesons are dominantly produced in the process $e^+e^- o D_s^{*\pm}D_s^\mp$, $D_s^{*\pm} o \gamma D_s^\pm$.
- \succ The Single Tag (ST) method is used to search for D_s^\pm candidates. The signal processes include:
 - $D_s^+ o \pi^+\pi^0 e^+e^-$
 - $D_s^+ \to K^+ \pi^0 e^+ e^-$
 - $D_s^+ \rightarrow K_S \pi^+ e^+ e^-$
 - $D_S^+
 ightarrow \pi^+ \phi$, $\phi
 ightarrow e^+ e^-$
 - $D_s^+ o
 ho^+ \phi$, $\phi o e^+ e^-$

- Due to GIM suppression, the BF of SD contribution is $\sim 10^{-9}$. For LD contribution, the BF of $D_s^+ \rightarrow Ve^+e^-$ can reach $\sim 10^{-5}$.
 - The yield of $D_s^{*\pm}D_s^{\mp}$ is $(64.72\pm0.28)\times10^5$, which provides strong support for the discovery of LD contribution.

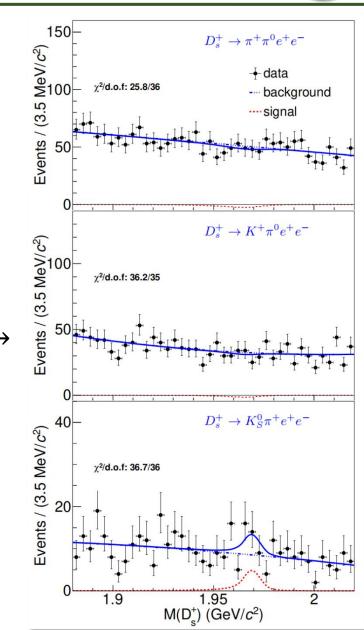

Search for $D_s^+ o h(h')e^+e^-$ decay

• Single tag method requires one $D_s^+ o h(h')e^+e^-$

$$B(D_s^+ \to h(h')e^+e^-) = \frac{N_{sig,fit}}{2 \times N_{D_s^{*\pm}D_s^{\mp}} \times \epsilon \times B_{inter}}$$

- $N_{D_s^{*\pm}D_s^{\mp}}=(64.72\pm0.28)\times10^5$, $\epsilon=\sum_i(\epsilon_{sig}^i\times N_{D_s^{*\pm}D_s^{\mp}}^i/N_{D_s^{*\pm}D_s^{\mp}})$, where i represents different energy points.
- First evidence: $B(D_s^+ \to \rho^+ \phi) \times B(\phi \to e^+ e^-) =$ (2. $44^{+0.67}_{-0.62} \pm 0.16) \times 10^{-5}$, significance is 4.4 σ .
- Agreement with CLEO: $B(D_s^+ \to \pi^+ \phi) \times B(\phi \to e^+ e^-) =$ $(1.17^{+0.23}_{-0.21} \pm 0.03) \times 10^{-5}$, significance is 7.8 σ .

Search for $D_s^+ o h(h')e^+e^-$ decay


• For the $D_s^+ o K_S \pi^+ e^+ e^- / K^+ \pi^0 e^+ e^-$, the LD contribution of $\phi o e^+ e^-$ is insignificant, BF is excepted about 10^{-8} order. Therefore, the upper limit of BF at 90% C.L. is as follows:

$$B(D_s^+ \to K^+ \pi^0 e^+ e^-) < 7.1 \times 10^{-5}$$

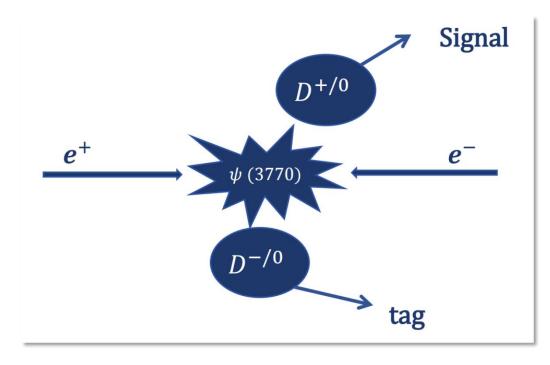
 $B(D_s^+ \to K_S \pi^+ e^+ e^-) < 8.1 \times 10^{-5}$

• For the $D_s^+ \to \pi^+\pi^0 e^+e^-$, it includes the LD contribution $D_s^+ \to \rho^+\phi$. Excluding the region $M(e^+e^-) \in (0.96, 1.05)~{\rm GeV}/c^2$, the upper limit of BF at 90% C.L.:

$$B(D_s^+ \to \pi^+ \pi^0 e^+ e^-) < 7.0 \times 10^{-5}$$

Phys.Rev.Lett. 133 (2024) 12, 121801

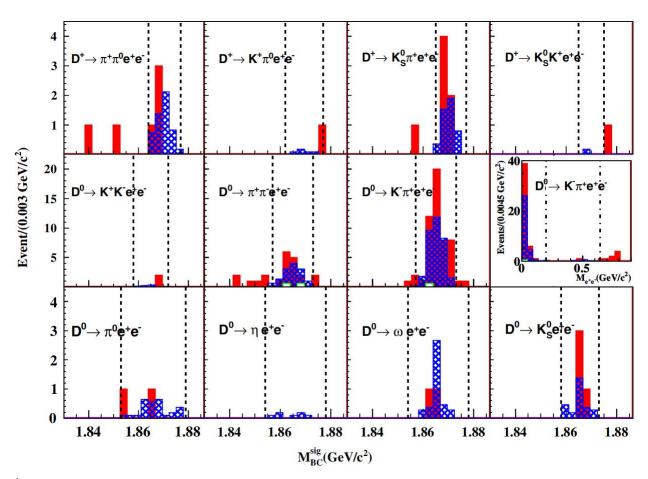
Search for $D \rightarrow h(h')e^+e^-$ decay


- ightharpoonup Using 2. 93 fb^{-1} data @3.773 GeV.
- \succ The pair of $D^0 \overline{D}{}^0$ or $D^+ D^-$ is produced nearly at rest without any additional hadrons.
- > The Double Tag (DT) method is used to search for signal candidates.
 - The single-tag side of D meson

$$N_D^{ST} = 2 \times N_{D\overline{D}} \times B_{Tag} \times \epsilon_{ST}$$

Search for signals from other D meson decays

$$N_D^{DT} = 2 \times N_{D\overline{D}} \times B_{Tag} \times B_{Sig} \times \epsilon_{DT}$$


• $B_{Sig} = N_D^{DT} \times \epsilon_{ST} / N_D^{ST} \times \epsilon_{DT}$

Search for $D \rightarrow h(h')e^+e^-$ decay

Phys.Rev.D 97 (2018) 7, 072015

> The solid histograms are data, the hatched ones are the events in the inclusive MC.

First limits

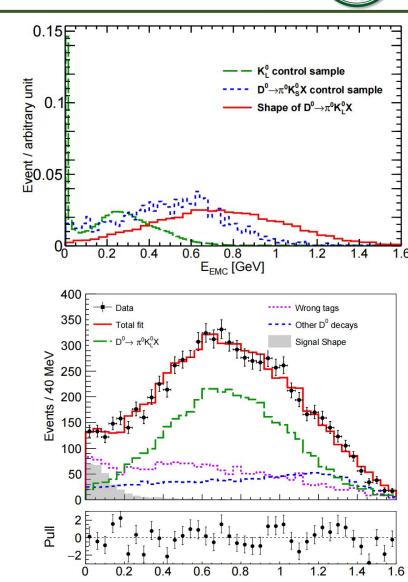
Signal decays	$\mathcal{B}~(\times 10^{-5})$	PDG [9] (×10 ⁻⁵)
$D^+ \to \pi^+ \pi^0 e^+ e^-$	<1.4	• • •
$D^+ \to K^+ \pi^0 e^+ e^-$	< 1.5	***
$D^+ \rightarrow K_S^0 \pi^+ e^+ e^-$	< 2.6	• • •
$D^+ \rightarrow K_S^0 K^+ e^+ e^-$	<1.1	***
$D^0 \rightarrow K^-K^+e^+e^-$	<1.1	<31.5
$D^0 ightarrow \pi^+\pi^-e^+e^-$	< 0.7	< 37.3
$D^0 \to K^- \pi^+ e^+ e^{-\dagger}$	<4.1	<38.5
$D^0 o\pi^0e^+e^-$	< 0.4	< 4.5
$D^0 o \eta e^+ e^-$	< 0.3	<11
$D^0 \rightarrow \omega e^+ e^-$	< 0.6	< 18
$D^0 o K_S^0 e^+ e^-$	<1.2	<11
in $M_{e^+e^-}$ regions.		
$[0.00, 0.20) \text{ GeV/c}^2$	$< 3.0 \ (1.5^{+1.0}_{-0.9})$	
$[0.20, 0.65) \text{ GeV/c}^2$	< 0.7	• • •
$[0.65, 0.90) \text{ GeV/c}^2$	$< 1.9 \ (1.0^{+0.5}_{-0.4})$	

The current best limits

- ightharpoonup Using 2. 93 fb^{-1} data @3.773 GeV.
- > The Double Tag (DT) method is used to search for signal candidates.
- ightharpoonup Different points: The LD contribution of $D^0 o \pi^0 \nu \bar{\nu}$ is insignificant, while the SD contributions from Z-penguin and box diagrams dominate, $B(D^0 o \pi^0 \nu \bar{\nu}) \sim 10^{-15}$

in SM. (a) \overline{v} (b) \overline{v} (d) \overline{v} contributions \overline{v}

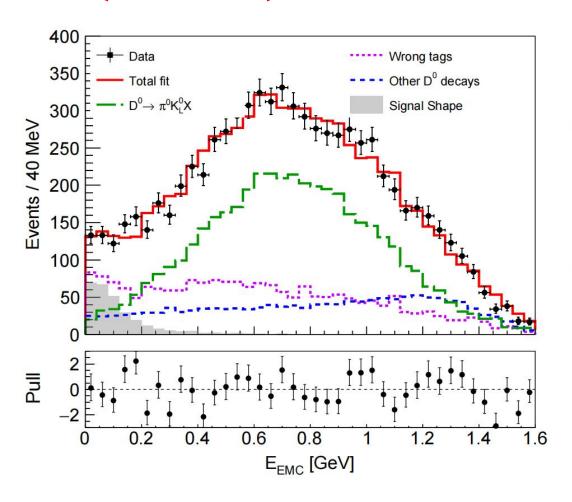
Phys. Rev. D 66, 014009 (2002)

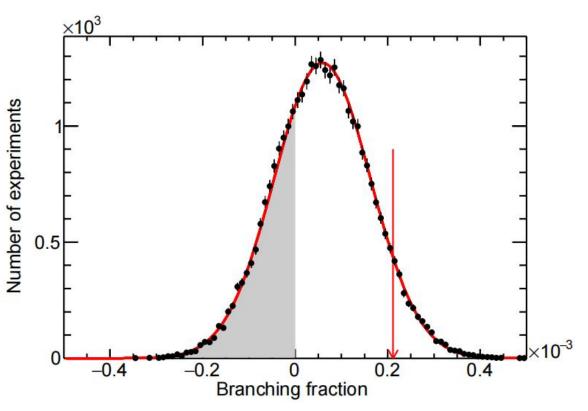

However, in some NP models, such as leptoquark model, Z' model, the BF can be enhanced by several orders of magnitude.

Phys. Rev. D 103, 015033 (2021) Phys. Rev. D 104, 015014 (2021) JHEP 04, 246 (2021)

Search for $D^0 o \pi^0 \nu \overline{\nu}$ decay

- ightharpoonup First measurement for $D^0 o \pi^0 \nu \overline{\nu}$.
- ➤ The summed EMC energy unassociated with signal and tag decays is used to signal extraction.
- \succ The main background is K_L , and the estimation of its deposition energy spectrum is crucial. Data-driven method:
 - Model the K_L energy deposit $E_{EMC}^{K_L}$ using high-purity samples of $J/\psi o \phi K^\pm \pi^\mp K_L$ and $J/\psi o K^\pm \pi^\mp K_L$.
 - Model the energy deposit of E_{EMC}^X and the kinematics of K_L using the data sample of $D^0 o \pi^0 K_S(\pi^+\pi^-)X$.
 - $\bullet \quad E_{EMC} = E_{EMC}^{K_L} + E_{EMC}^{X}$

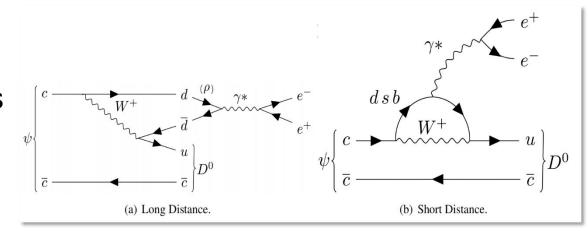



Search for $D^0 o \pi^0 u \overline{ u}$ decay

> Based on the 2.93 fb^{-1} data @3.773 GeV.

$$B(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \times 10^{-4} \text{ at the } 90\% \text{ C.L.}$$

Outline


- Motivation
- □ Current status
- ☐ Charmonium FCNC decay
 - $J/\psi o D^0 \mu^+ \mu^-$, $J/\psi o \gamma D^0$
- ☐ Charm FCNC decay
 - $D_s^+ o h(h') e^+ e^-$, $D o h(h') e^+ e^-$, $D^0 o \pi^0
 u \overline{
 u}$
- **✓** Prospect
- **□** Summary

Ongoing analysis

- ightharpoonup Currently, BESIII has accumulated 10 billion J/ψ events and 2.7 billion $\psi(3686)$ events, 20 fb^{-1} data at @3.773 GeV, and has also collected 7.33 fb^{-1} data at @4.128 4.226 GeV.
- ➤ Therefore, the FCNC decays can be searched for on the new data, and stronger constraints can be imposed.

- > Charmonium:
 - J/ψ (ψ (3686)) \rightarrow $D^0e^+e^-$, BAM-952 Minghua Liao (SYSU)
 - Based on the 10 B J/ψ and 2.7 B $\psi(3686)$ data, expect best constraints on the charmonium FCNC decays.

Ongoing analysis

 Br^{exp}

For the *D* meson FCNC decays:

- Using $20 \, fb^{-1}$ data @3.773 GeV.
- $ightharpoonup D
 ightharpoonup h(h')e^+e^-$ is ongoing, and studied by Qiang Lan(USC), Libo Liao (SYSU).

•
$$D^+ o \pi^+ \pi^0 e^+ e^- / K^+ \pi^0 e^+ e^- / K_S \pi^+ e^+ e^- / K_S K^+ e^+ e^-$$

•
$$D^0 o \pi^+\pi^-e^+e^-/K^+K^-e^+e^-$$

•
$$D^0 \to \pi^0 e^+ e^- / \omega e^+ e^- / \eta e^+ e^- / K_S e^+ e^-$$

$$\triangleright D^+ \rightarrow h^+ e^+ e^-$$
.

•
$$D^+ \rightarrow K^+ e^+ e^-$$

•
$$D^+ \to \pi^+ e^+ e^-$$

	D / 1 0 0	SM	$D \cap SM = D \cap SM$	<i>D</i> ,	D,
		$l = \mu, e$	$l = \mu, e$	l = e	$l = \mu$
30	$D^0 o ar K^0 l^+ l^-$	0	4.3×10^{-7}	$< 1.1 \times 10^{-4}$	$< 2.6 \times 10^{-4}$
	$D_s^+ \to \pi^+ l^+ l^-$	0	6.1×10^{-6}	$< 2.7 \times 10^{-4}$	$< 1.4 \times 10^{-4}$
32	$D^0 o \pi^0 l^+ l^-$	1.9×10^{-9}	2.1×10^{-7}	$< 4.5 \times 10^{-5}$	$< 1.8 \times 10^{-4}$
	$D^0 o \eta l^+ l^-$	2.5×10^{-10}	4.9×10^{-8}	$< 1.1 \times 10^{-4}$	$< 5.3 \times 10^{-4}$
	$D^0 o \eta' l^+ l^-$	9.7×10^{-12}	2.4×10^{-10}	$< 1.1 \times 10^{-4}$	$< 5.3 \times 10^{-4}$
	$D^+ \to \pi^+ l^+ l^-$	9.4×10^{-9}	1.0×10^{-6}	$< 5.2 \times 10^{-5}$	$< 7.8 \times 10^{-6}$
	$D_s^+ \to K^+ l^+ l^-$	9.0×10^{-10}	4.3×10^{-8}	$< 1.6 \times 10^{-3}$	$< 1.4 \times 10^{-4}$
	$D^+ o K^+ l^+ l^-$	0	7.1×10^{-9}	$< 2.0 \times 10^{-4}$	$< 8.1 \times 10^{-6}$
	$D^0 o K^0 l^+ l^-$	0	1.1×10^{-9}		

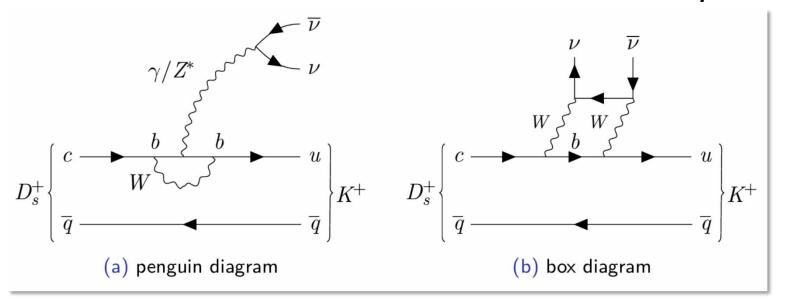
 $Br_{SM} \simeq Br^{LD}$

 Br_{cM}^{SD}

Ran Ding (PKU/SYSU)

Kaixin Fan (SYSU)

Phys.Rev.D 64 (2001) 114009


Ongoing analysis

- \triangleright For the D_s^+ meson FCNC decays:
 - Using 7.33 fb^{-1} data @4.128 4.226 GeV.
 - $D_s^+ \to K^+ \nu \bar{\nu}$, is ongoing and studied by Jiazhen Yan (PKU, WHU).
 - In some NP models, such as the Z' model and leptoquark model, under some

parameter space, $B^{UL}(D_s^+ \to K^+ \nu \overline{\nu}) \sim 10^{-5}$.

JHEP 11 (2023) 205 Phys.Rev.D 103 (2021) 1, 015033

Outline

- Motivation
- □ Current status
- ☐ Charmonium FCNC decay
 - $J/\psi o D^0 \mu^+ \mu^-$, $J/\psi o \gamma D^0$
- ☐ Charm FCNC decay
 - $D_s^+ o h(h')e^+e^-$, $D o h(h')e^+e^-$, $D^0 o \pi^0
 u \overline{
 u}$
- **□** Prospect
- ✓ Summary

Summary

- For the FCNC decays, the contributions in the SM are extremely small $10^{-8} \sim 10^{-14}$. The exploration of FCNC can serve as an channel for searching for new physics.
- > At present, searches for $J/\psi \to D^0 \mu^+ \mu^- (2025)$, $J/\psi \to \gamma D^0 (2024)$, $D_s^+ \to h(h') e^+ e^- (2024)$, $D \to h(h') e^+ e^- (2018)$, $D^0 \to \pi^0 \nu \bar{\nu} (2022)$ have been completed.
 - For charm FCNC decay, $B^{UL} \sim 10^{-5}$. The charmonium FCNC decay, $B^{UL} \sim 10^{-7}$ @90% C.L.
- ightharpoonup Ongoing analysis, based on the 10 B J/ψ , 2.7 B $\psi(3686)$, 20 fb^{-1} data at @3.773 GeV, and 7. 33 fb^{-1} data at @4.128 4.226 GeV:
 - $J/\psi o D^0 e^+ e^-$, $D o h(h') e^+ e^-$, $D_s^+ o K^+
 u ar{
 u}$
- > BESIII has great potential, with high-statistics datasets and low backgrounds.

Thank you for listening!