Search for Rare decay at BESIII

Qiang Lan (兰强) University of South China 12-15 Aug 2025

Outline

- ➤ BEPCII and BESIII experiment
- ➤ New Physics and benefit of BESIII
- > Rare decays results at BESIII
- Ongoing Analyses
- > Summary

BEPCII and **BESIII** experiment

➤ Bird View of BEPCII/BESIII

BESIII detector

- > CMS energy: 2 4.95 GeV
- \triangleright Luminosity: $1 \times 10^{33} cm^{-2}s^{-1}$
- ➤ 2008:Test run
- \geq 2009-now: τ *charm* physics runs

- ► MDC: $\sigma_p/p=0.5\%@1$ GeV, $\sigma_{dE/dx}=6\%$;
- TOF: $\sigma_T = 68(110)$ ps for barrel(endcap); endcap TOF upgraded in 2015 \rightarrow 60 ps;
- \triangleright EMC: $\sigma_E/E = 2.5\%$ (5%) ps for barrel(endcap)

Data samples at BESIII

- \triangleright Collected the world largest J/ψ , $\psi(2S)$ and $\psi(3770)$ data samples;
- ightharpoonup BESIII has collected 20 fb⁻¹ ψ (3770), large D meson sample from $\psi \to D\overline{D}$.

New Physics and benefit of BESIII

- > Standard Model (SM) is incredibly successful, it is well tested by many experiments.
- > But it cannot explain:
 - Existence & mechanism of dark matter and dark energy;
 - Baryon asymmetry of the universe
 - Neutrino masses and oscillations, hierarchy

.

Benefit

- Huge data samples;
- ➤ **Kinematic constraints:** deliver high purity for final states with invisible energy and photons;
- Double-tag method: allows almost
 background free studies, quantum coherence,
 high trigger efficiency, and easy detection of
 neutral particles
- Semi-blind /full-blind strategy: to avoid voluntary bias from analyst
 5

Search for lepton number violating decays of $D_s^+ \rightarrow h^- h^0 e^+ e^+$

- ➤ Being forbidden in the SM, Lepton Number Violating (LNV) processes provide an approach to New Physics.
- The nature of neutrinos, whether neutrinos are Dirac or Majorana particles, is still an open question. LNV decays can be used to search for the Majorana neutrino.
- Experimentally, there are already many search results for $\Delta L = 2$ processes of D mesons. However, there are still no LNV results for four-body D_s decays.

> Upper limits at 90% C.L. for D_s^+ decays

□ Analysis method

- This work perform the search of six LNV processes: $D_s^+ \rightarrow (\pi^- \pi^0)/(K_s^0 \pi^-)/(K_s^0 K^-)/(\phi \pi^-)/(\phi K^-)e^+e^+$
- Single-Tag (ST) method is used, in which an ST candidate has one of D_s and no additional requirement on the other
- The BF of $D_s^+ \to h^- h^0 e^+ e^+$ decays can be calculated by

$$\mathcal{B}(D_s^+ \to h^- h^0 e^+ e^+) = \frac{N_{\text{sig}}}{2 \cdot N_{D_s^{*\pm} D_s^{\mp}} \cdot \epsilon \cdot \mathcal{B}_{\text{inter}}},$$

□ Data sets

- > Data samples: ECM = $4.128 \sim 4.226$ GeV; ~ 7.33 fb^{-1}
- ➤ MC samples:
 - x40 in-MC samples;
 - Events of signal MC samples are generated with PHSP generator
- $> D_s^- \rightarrow \text{anything}$
- $D_S^+ \to (\pi^- \pi^0) / (K^- \pi^0) / (K_S^0 \pi^-) / (K_S^0 K^-) / (\phi \pi^-) / (\phi K^-) e^+ e^+$
- ➤ Charge-conjugate channels are implied automatically

Signal determination

- ➤ The signal shape is modeled by the sum of adouble-sided Crystal Ball function and a bifurcated Gaussian function with asymmetric tails
- ➤ The background shape ismodeledby inclusiveMC samples using the RooKeysPdf

Result

BF (×10⁻⁵)

BF (×10⁻⁵)

BF (×10⁻⁵)

➤ @90% C.L.

- > No significant signal observed in data
- The upper limit on the branching fraction is set using Bayesian method

Decay channel	$\epsilon~(\%)$	$\mathcal{B}_{ ext{UL}} \; (\mathcal{B}_{ ext{UL}}^{ ext{expected}})$
$D_s^+ \to \phi \pi^- e^+ e^+$	3.0 ± 0.1	$6.9 (3.5) \times 10^{-5}$
$D_s^+ \to \phi K^- e^+ e^+$	1.8 ± 0.1	$9.9 (10.8) \times 10^{-5}$
$D_s^+ \to K_S^0 \pi^- e^+ e^+$	6.4 ± 0.1	$1.3 (2.4) \times 10^{-5}$
$D_s^+ \to K_S^0 K^- e^+ e^+$	4.0 ± 0.1	$2.9~(2.3)\times 10^{-5}$
$D_s^+ \to \pi^- \pi^0 e^+ e^+$	6.4 ± 0.1	$2.9~(2.7)\times 10^{-5}$
$D_s^+ \to K^- \pi^0 e^+ e^+$	5.1 ± 0.1	$3.4 (3.9) \times 10^{-5}$

Search for Rare Decays of D_s^+ to Final States $\pi^+e^+e^-, \rho^+e^+e^-, \pi^+\pi^0e^+e^-, K^+\pi^0e^+e^-$ and $K_s^0\pi^+e^+e^-$

- FCNC process $(c \to ull)$ in $D_{(s)}$ decays highly suppressed with BF<O(10⁻¹²); NP may greatly enhance the rates: the rates with a lepton-pair mass in the non-resonant regions could provide access to NP
- ► Long-distance contributions : $D_{(s)} \to hV(V \to ll)$ decays, however, are more accessible experimentally with BF up to O(10⁻⁵); BABAR / LHCbobserved decays in the M(ll) ranges of $\phi/\omega/\rho$: $D^0 \to h(h')ll$, $D_s \to hll$

□ Data sets

- ➤ Data samples: E = 4.128 4.226 GeV; L=6.32 fb^{-1} (BOSS 7.0.3);
- > MC samples:
 - ➤ 40 in-MC sample
 - ➤ signal MC samples -ConExc
 - $D_s^- \rightarrow \text{anything}$
 - $D_s^+ \to \pi^+/(\pi^+\pi^0)/(K^+\pi^0)/(K_s^0\pi^+)e^+e^-$ LD/PHSP model.

The charge conjugated channels are implied automatically

□ Analysis method

- ➤ Single-Tag (ST) method is used. The signal processes of $D_S \rightarrow h(h')e^+e^-$
- ► Using $D_s^+ \to \pi^+(\pi^0)K^+K^-/K_s^0K^-\pi^+\pi^-$ as normalization and calibration channels(NC)

$$\mathcal{B}(D_s^+ \to h(h')e^+e^-) = \frac{N_{D_s^+ \to h(h')e^+e^-}/\epsilon_{D_s^+ \to h(h')e^+e^-}}{N_{NC}/\epsilon_{NC}} * \mathcal{B}_{NC}$$

Signal determination

 \triangleright Fit in $M(D_s^+)$ to extract the signal yields

- The signalMC shape convolved with a Gaussian function
- The backgroundmodel are estimated by repeating the fit with the background MC simulated shape

Decay	$N_{ m sig}$	e (%)	$\mathcal{B}(\times 10^{-5})$	
$D_s^+ o \pi^+ \phi, \ \phi o e^+ e^-$	$38.2^{+7.8}_{-6.8}$	25.1	$1.17^{+0.23}_{-0.21} \pm 0.03$	
$D_s^+ o ho^+ \phi, \phi o e^+ e^-$	$37.8^{+10.3}_{-9.6}$	12.1	$2.44^{+0.67}_{-0.62} \pm 0.16$	
$D_{\scriptscriptstyle S}^+ o \pi^+\pi^0 e^+e^-$	• • •	7.4	<7.0	
$D_{\scriptscriptstyle S}^+ o K^+ \pi^0 e^+ e^-$	• • •	5.3	<7.1	➤ @90% C.L.
$D_s^+ \to K_S^0 \pi^+ e^+ e^-$	• • •	6.7	<8.1	

- No significant signals for the three four-body decays of $D_S^+ \to \pi^+ \pi^0 e^+ e^-$, $D_S^+ \to K^+ \pi^0 e^+ e^-$, $D_S^+ \to K_S^0 \pi^+ e^+ e^-$ are observed
- For $D_s^+ \to \pi^+ \pi^0 e^+ e^-$ the ϕ mass region is vetoed to minimize the long-distance effects

Search for Rare Decays of $D \rightarrow h(h')e^+e^-$

- ☐ In the SM model, the flavor changing neutral current (FCNC) is suppressed by GIM mechanism
 - ➤ It can not occur at tree level, it can occur at loop level
 - ➤ Possible NP can significantly increase the BFs (SD)
 - ➤ Long distance contributions from photon pole or vector meson

- ☐ The result published in 2018:
 - Integrated luminosity of 2.93 fb⁻¹ [1] at $\sqrt{S} = 3.773$ GeV. The sensitive of the results are at the level of $10^{-5} \sim 10^{-6}$
 - ➤ No obvious LD contribution

[1]https://arxiv.org/pdf/1802.09752

- ➤ Semi-blind Data: 2.03 fb⁻¹
- \triangleright Fake Data: 20.3 fb⁻¹
- ➤ Inclusive MC: 40 times of data
- ➤ BOSS version: 7.1.2

Signal MC mode: mixed ω model with bined PHSP model

- ω model: $D \to hh'\omega$, $\omega \to e^+e^-$
- Bined PHSP model: we divided the invariant mass interval of e^+e^- into several bins with each bin having a width of 0.1 GeV/ c^2 , the central masses locate at the middle of each e^+e^- bin

Process

$$D^+ \to \pi^+ \pi^0 e^+ e^-$$

$$D^+ \rightarrow K^+ \pi^0 e^+ e^-$$

$$D^+ \to \pi^+ K_{\rm S}^0 e^+ e^-$$

$$D^+ \to K^+ K_S^0 e^+ e^-$$

$$D^+ \rightarrow \rho^+ e^+ e^-$$

$$D^+ \to K^{*+} e^+ e^-$$

$$D^0 \rightarrow K^+K^-e^+e^-$$

$$D^0 \to \pi^+ \pi^- e^+ e^-$$

$$D^0 \to \pi^0 e^+ e^-$$

$$D^0 \rightarrow \eta e^+ e^-$$

$$D^0 \rightarrow \omega e^+ e^-$$

$$D^0 \to K^0_S e^+ e^-$$

$$D^0 \rightarrow K_S^0 K_S^0 e^+ e^-$$

$$D^0 \to \pi^0 \pi^0 e^+ e^-$$

$$D^0 \rightarrow \phi e^+ e^-$$

$$D^0 \rightarrow \rho^0 e^+ e^-$$

$$D^0 \rightarrow \eta' e^+ e^-$$

$$B_{sig} = \frac{N_{sig}\epsilon_{tag}}{N_{tag}\epsilon_{tag,sig}}$$

$$B_{sig} = \frac{N_{sig}}{\sum_{\alpha} N_{tag}^{\alpha} \epsilon_{tag,sig}^{\alpha} / \epsilon_{tag}^{\alpha}}$$

 \geq 3 tags to reconstruct D^0 :

•
$$D^0 \rightarrow K^-\pi^+$$

•
$$D^0 \to K^- \pi^+ \pi^0$$

•
$$D^0 \to K^- \pi^+ \pi^- \pi^+$$

 \triangleright 6 tags to reconstruct D^+ :

•
$$D^+ \to K^- K^+ \pi^+$$

•
$$D^+ \to K^- \pi^+ \pi^-$$

•
$$D^+ \to K^+ \pi^+ \pi^- \pi^0$$

•
$$D^+ \rightarrow K_S^0 \pi^+$$

•
$$D^+ \to K_S^0 \pi^+ \pi^0$$

•
$$D^+ \to K_S^0 \pi^+ \pi^- \pi^+$$

- For background : $D \to h(h')\pi^0$, $\pi^0 \to \gamma e^+e^-$:
 - It can almost completely reject this type of background by $M_e^{+}e^{-} > 0.2 \text{ GeV}/c^2$.
- For background : $D \rightarrow h(h')\eta$, $\eta \rightarrow \gamma e^+e^-$:
 - It reject nearly 60% of this background by $M_{e^+e^-\gamma} > 0.570 \text{GeV}/c^2$, $M_{e^+e^-\gamma} < 0.505$ GeV/c^2

Branching fraction method

- $\succeq \underline{\mathcal{L}} = P\left(N_{obs}, N_{ST} \cdot B \cdot \epsilon_{eff} + \widehat{N}_{bkg1} + N_{bkg2}\right) \cdot G\left(\hat{\epsilon}_{eff}, \epsilon_{eff}, \sigma_{\epsilon}\right) \cdot P\left(N_{bkg1}, \widehat{N}_{bkg1}, \widehat{N}_{bkg1}\right) \cdot G\left(\widehat{N}_{bkg2}, N_{bkg2}, \sigma_{bkg2}\right)$
- $\mathcal{L}_{B} = \max_{\text{with respect to } \widehat{N}_{bkg1}, \widehat{N}_{bkg2}, \hat{\epsilon}_{eff}} \mathcal{L}_{\widehat{N}_{bkg1}, \widehat{N}_{bkg2}, \hat{\epsilon}_{eff}, B}$
 - N_{obs} : the observed events in data(Fake Data/semi-blind Data)
 - N_{bkg1} : flat backgrounds of misreconstructed tagged events
 - N_{bkg2} : peaking backgrounds of signal from data and MC
 - N_{ST} : the number of ST $D\overline{D}$ events
 - $\epsilon_{\rm eff}$: denotes the effective efficiencies
 - σ_{ϵ} : the standard deviation, including the systematics

Expected results of B^{up} : $10^{-6} \sim 10^{-7}$

Search for FCNC decay
$$D^0 \rightarrow K^-\pi^+e^+e^-\& D^+ \rightarrow K_s^0\pi^+e^+e^-$$

- ☐ In the SM model, the flavor changing neutral current (FCNC) is suppressed by GIM mechanism
 - ➤ It can not occur at tree level, it can occur at loop level
 - > Possible NP can significantly increase the BFs (SD)
 - ➤ Long distance contributions from photon pole or vector meson

- ☐ The result published in 2018:
 - ➤ Integrated luminosity of 2.93 fb⁻¹ [1] at $\sqrt{S} = 3.773$ GeV. The sensitive of the results are at the level of $10^{-5} \sim 10^{-6}$
 - > No obvious LD contribution

- \square First observation of $D^0 \to K^-\pi^+e^+e^-$ in ρ/ω region in 2020 @ BABAR[2]
 - \triangleright based on a data sample of 468 fb⁻¹ and find 68 ± 9 signal events.
 - \triangleright B = (4.0 ± 0.5) × 10⁻⁶ w/ the significance of the signal is > 9 standard deviations.
 - > No significant signal in SD.
- \square Preliminary result for $D^0 \to K^- \pi^+ e^+ e^-$ in ρ/ω region in 2024 @ BELLEII
 - \triangleright based on a data sample of 942 fb⁻¹
 - > The result in omega region is compatible with Babar and with SM expectation
 - ➤ No signal observed in other channels and regions; upper limits is above 10–7 at 90% CL.
- □ The result of $R^+ = Br(D^+ \to K_s^0 \pi^+ e^+ e^-)/Br(D^0 \to K^- \pi^+ e^+ e^-)$ has significant discrepancy between experiment and the SIM theory[3,4,5]
- [2] EPJ Web Conf. 235, 04001 (2020)
- [3] Nucl. Phys. B 122, 144 (1977)
- [4] Phys. Rev. D 79 (2009) 074022
- [5] Phys. Rev. D 105 (2022) 3, 032009

- ➤ BOSS version: 7.1.2
- \triangleright Total integrated luminosity = 20 fb⁻¹
- ➤ Inclusive MC: 40 times of data
- ➤ Signal MC
 - For low mee MC: a DIY Z0 with 10MeV mass and 0MeV width;
 - For vector meson: Kpi omega process & Ks0pi omega;
- > Exclusive MC:
 - gamma K*, K*->Kpi

Processes	$N_{\rm gen}$ for each round	Branching fraction	Generator
$D^0 o K\pi Z' o K\pi e^+ e^-$	400, 000	$1.0 \times 10^{-5} (\sim 10\%)$	PHSP + PHSP
$D^0 o K\pi\omega o K\pi e^+ e^-$	400,000	4×10^{-6}	D0toKpiomegaPlot + PHSP
$D^+ \to K^0_S \pi^+ \omega \to K^0_S \pi^+ e^+ e^-$	400, 000	3.6×10^{-6}	DtoKSpiomegaPlot + PHSP
$D^0 o K^* \gamma o K \pi e^+ e^-$	400, 000	2.73×10^{-4}	PHSP + VSS

DL based selection $(D^0 \rightarrow K^-\pi^+e^+e^-)$

新物理组会报告

score>0.85

To veto background score of signal larger than 0.85

26

DL based selection $(D^+ \to K_s^0 \pi^+ e^+ e^-)$

新物理组会报告

$$D^0 \rightarrow K^-\pi^+e^+e^-$$

- ➤ Signal shape: KeysPdf from signal MC shape ⊗ Gaussian function (num floated)
- > D → Kππ⁰ bkg: KeysPdf from MC shape (num fixed)
- ➤ Non-peaking bkg: Argus function (num floated)

Expected results of B^{up} : $10^{-6} \sim 10^{-7}$

$$D^+ o K_s^0 \pi^+ e^+ e^-$$

- ➤ Signal shape: KeysPdf from signal MC shape ⊗ Gaussian function (num floated)
- ➤ Non-peaking bkg: Argus function (num floated)

Semi-blind Analysis on Searching for $\eta \to \pi^0 e^+ e^-$ and $\eta' \to \pi^0 (\eta) e^+ e^-$

Single γ process violate C parity: $P \to Pl^+l^-$ could happen both through single γ and double γ process but single γ process violate C parity.

 \triangleright Lower upper limit: Based on the J/ψ events taken on BESIII, there are three $P \rightarrow Pl^+l^-$ decay modes whose UL could be lower than the present results.

Decay	\mathcal{B}	Reference	CL
$\eta' ightarrow \pi^0 e^+ e^-$	$< 1.4 imes 10^{-3}$	PDG2025	
$\eta' ightarrow \eta e^+ e^-$	$< 1.0 imes 10^{-6} ({\sf Sensitivity})$	Penglong Zhang	90%
$\eta \rightarrow \eta e^- e^-$	$< 2.4 \times 10^{-3}$	PDG2025	9070
$\eta ightarrow \pi^0 e^+ e^-$	$< 7.5 imes 10^{-6}$	PDG2025	a = .

• Signal MC sample sets:

$$\eta
ightarrow \pi^0 e^+ e^- (0.8 \mathrm{~M})$$

Decay	Model	
$J/\psi o \gamma \eta$	HELAMP 1,0,1,0	
$\eta ightarrow \pi^0 e^+ e^-$	DIY_eta2pi0ll	
$\pi^0 o \gamma \gamma$	PHSP	

$$\eta \to \pi^0 \pi^+ \pi^- (0.5 \text{ M})$$

Decay	Model	
$J/\psi o \gamma \eta$	HELAMP 1,0,1,0	
$\eta \to \pi^0 \pi^+ \pi^-$	DIY_Eta23pi	
$\pi^0 \to \gamma \gamma$	PHSP	

Data

	Year	Data	BOSS version	
	2009	30%		
J/ψ	2012	10%	BOSS 7.0.8	
J/ψ	2018		10% 10033 /	DO33 1.0.6
	2019			

- > Estimation of misarrangement rate for photons had been accomplished.
- \triangleright Bhabha analysis accomplished using $\psi(3770)$, CMS(3650), CMS(3682) data under BOSS 7.0.8.
- We have checked the distribution of $\gamma\gamma e^+e^-$ mass spectrum using $30\%\times09+10\%\times12+10\%\times18+10\%\times19$ data. No obvious signals were found.
- ➤ Reference channel branch fraction check using 09+12+18+19 data:

Summary

- ☐ The rare decays are important to probe New Physics beyond the Standard Model
- Ongoing analysis based on the data at @3.773 GeV, @4.128~4.226 GeV. BESIII has performed studies on rare decay and the upper limit of branching fractions (@90% C.L) are obtained
- BESIII has great potential, with high-statistics datasets and low backgrounds.

Thank you for your attention!