Status Update

- 1. Tracking Efficiency
- 2. $ee \rightarrow \gamma_{ISR} Z \rightarrow \gamma_{ISR} \mu \mu$

Trk Efficiency

Trk Efficiency

Trk Efficiency

- Previous status
 - 98 muID working point results 0.77 efficiency of muon pair
 - Difficult handle Z line-shape; Sigma is too small

- Visible Z peaks
 - $ee \rightarrow \mu\mu$ efficiency: 83M/106M ≈ 0.77

Statistics = 140 k muons with 98-muID		cos theta < 0.99
MCParticle links to a track	87.1773%	99.9410%
Track links to a PFO	81.1739%	99.9386%
PID gives a response	81.1739%	99.9386%
PID performance (normalised to tot. stat.)		
PID = e	0.61%	0.69%
PID = mu	83.4%	95.62%
Pion	2.35%	2.68%
Kaon	0.39%	0.45%
Proton	0.42%	0.48%

 $.77 \approx .95 \times .95 \times .87$

A RooPlot of "genmass"

- As already confirmed, other processes may contribute to the Z peak, but this process dominates it. Therefore, only this process is considered.
- The GEN peak can not be described by a Breit-Wigner function.

(Rec_mass - Gen_mass) distribution (un-weighted)

- Fit the Delta mass (Rec-Gen), three functions tested.
 - Single Gaussian, sub-range
 - Double-side-crystal-ball, full-range
 - Double Gaussian, full-range
- Similar scale precision, 1.8 MeV with un-weighted events [50k]
- Relative resolution [Sigma] \approx 0.17%, agree with the observation in tracking performance study.

$ee \rightarrow \gamma_{ISR} Z \rightarrow \gamma_{ISR} \mu \mu (a) 240 GeV$

Generate 7.5M and 30M toys [5 and 20/ab] using the single Gaussian model

FCC-ee, 5/ab, IDEA, B=2T

- \sqrt{s} parameter in the recoil mass definition \rightarrow uncertainty induces \sim linear shift the recoil distribution
- Precision estimated to be 2 MeV at 240 GeV using radiative return events $Z \rightarrow II$ or $Z \rightarrow qq$
- 4) Muon momentum scale: relative scale uncertainty variation of 1e-5
 - Directly affects $m(\mu\mu)$, hence shift in recoil mass

3) Center-of-mass: +/- 2 MeV

Statistical potential to measure muon scale ~ 1e-6, but NMR probes so far limited to yield 1e-5 unc

- The expected precision ~ 60 and 30 KeV for 5/ab and 20/ab respectively.
- It agrees with a naive expectation, Δ mean = $\frac{\sigma}{-}$, and is also consistent with preliminary study from IDEA.
- It seems that the limitation of this standard candle comes from systematic errors