Status update on $ee \rightarrow \gamma Z \rightarrow \gamma \mu \mu$ study for recoil mass systematic

C.Zhang/21Apr2025

Generate 7.5M and 30M toys [5 and 20/ab] using the single Gaussian model

- The expected precision ~ 60 and 30 KeV for 5/ab and 20/ab respectively.
- It seems that the limitation of this standard candle comes from systematic errors

$ee \rightarrow \gamma Z \rightarrow \gamma \mu \mu (a) 240 \text{ GeV}$

FCC-ee, 5/ab, IDEA,B=2T

3) Center-of-mass: +/- 2 MeV

- \sqrt{s} parameter in the recoil mass definition \rightarrow uncertainty induces ~ linear shift the recoil distribution
- Precision estimated to be 2 MeV at 240 GeV using radiative return events $Z \rightarrow II$ or $Z \rightarrow qq$

4) Muon momentum scale: relative scale uncertainty variation of 1e-5

- Directly affects $m(\mu\mu)$, hence shift in recoil mass
- Statistical potential to measure muon scale ~ 1e-6, but NMR probes so far limited to yield 1e-5 unc

• It agrees with a naive expectation, $\Delta mean = \frac{\sigma}{2}$, and is also consistent with preliminary study from IDEA.

- Assume undetected photon
- muon pair recoils against photon
- MeV level reachable

$ee \rightarrow \gamma Z \rightarrow \gamma \mu \mu @ 240 \text{ GeV}$

FCC-ee, 5/ab, IDEA,B=2T

3) Center-of-mass: +/- 2 MeV

- \sqrt{s} parameter in the recoil mass definition \rightarrow uncertainty induces ~ linear shift the recoil distribution
- Precision estimated to be 2 MeV at 240 GeV using radiative return events $Z \rightarrow II$ or $Z \rightarrow qq$

4) Muon momentum scale: relative scale uncertainty variation of 1e-5

- Directly affects m(µµ), hence shift in recoil mass
- Statistical potential to measure muon scale ~ 1e-6, but NMR probes so far limited to yield 1e-5 unc

Backup

- Previous status

- Visible Z peaks
 - $ee \rightarrow \mu\mu$ efficiency : 83M/106M ≈ 0.77

$ee \rightarrow \gamma Z \rightarrow \gamma \mu \mu (a) 240 \text{ GeV}$

• 98 muID working point results 0.77 efficiency of muon pair • Difficult handle Z line-shape; Sigma is too small

$ee \rightarrow \gamma Z \rightarrow \gamma \mu \mu @ 240 \text{ GeV}$

= 140 k muons with 98-muID		cos theta <
Particle links to a track	87.1773%	99.9410%
Frack links to a PFO	87.1739%	99.93869
ID gives a response	87.1739%	99.93869
PID performance (norm	nalised to tot. sta	t.)
PID = e	0.61%	0.69%
PID = mu	83.4%	95.62%
Pion	2.35%	2.68%
Kaon	0.39%	0.45%
Proton	0.42%	0.48%

 $.77 \approx .95 \times .95 \times .87$

0.99	
6	
6	
6	

- The GEN peak can not be described by a Breit-Wigner function.

$ee \rightarrow \gamma Z \rightarrow \gamma \mu \mu @ 240 \text{ GeV}$

A RooPlot of "genmass"

• As already confirmed, other processes may contribute to the Z peak, but this process dominates it. Therefore, only this process is considered.

(Rec_mass - Gen_mass) distribution (un-weighted)

- Fit the Delta mass (Rec-Gen), three functions tested.
 - Single Gaussian, sub-range
 - Double-side-crystal-ball, full-range
 - Double Gaussian, full-range
- Similar scale precision, 1.8 MeV with un-weighted events [50k]
- Relative resolution [Sigma] \approx 0.17%, agree with the observation in tracking performance study.

$ee \rightarrow \gamma Z \rightarrow \gamma \mu \mu (a) 240 \text{ GeV}$

