

2025 MicroTCA/ATCA International Workshop for Large Scientific Facility Control

Chongqing University 15-17.09.2025

(recycled from last 2025 SHINE Forum)

Holger Schlarb, MSK/DESY DESY, 17.09.2025

SLAC & DESY Reliability Workshop 2005

Challenges to operate huge facilities (e.g. ILC or Eu-XFEL) with thousands of devices

Example:

- Server PC has an MTBF ~50,000 h (~99.99%)
 - —> downtime per year: 53 minutes
- With 1000 systems required to run it, it drops to 90%
 - —> downtime per year: 37 days

Mean Time Between Failures

MTBF Estimates for R1304RPMSHOR

Copyright ©2013 Intel Corporation

	Server Model R1304RPMSHOR	
Subassembly		
(Server in 40C ambient air)	MTBF	FIT
	(hours)	(flrs/10^9 hrs)
S1200V3RPM board	371,523	2,692
Power Supply - 450W MiniERPS	967,300	1,034
Cooling Fan (1-fixed fans)	490,000	2,041
Cooling Fan (2-fixed fans)	77,680	12,873
Front Panel board	8,272,282	421
HS Backplane(4x3.5")	935,180	1,069
Totals without motherboard =	58.300	17,138
Totals with motherboard =	50,400	19,830

MTBF is limited by the fans

ATCA: a Standard developed by the Telecom Industry

ATCA = Advanced Telecom Computing Architecture

- Introduced in 2003
- Requirements
 - > 99.999% reliability -> downtime per year = 5.3 minutes
 - Very high system throughput (full mesh architecture)
 - > Remote management (monitoring and control)

MicroTCA: a Standard Developed by Telecom Industry

MicroTCA: 2006 ATCA: 2003 A scalable family with the same system architecture

MicroTCA: a Standard Developed by Telecom Industry

2007 decision to use xTCA for EuXFEL

- Since 1993 VMEbus... at FLASH
- > 40 years old

- Redundancy of fans
- Redundancy of power supplies is possible
- Modern, high-speed Data transfer
- Excellent signal quality for analogue IO
- Remote management
- Cables from the rear
- Internal Clock & Trigger distribution

Performance
+
Functions
+
Availability

MicroTCA: a Standard Developed by Telecom Industry

2007 decision to use xTCA for EuXFEL

& MOSA = Modular Open System Approach

- Since → No vendor lock-in!
 at FL (Any company can step in)
 - → Reduce development expense (design cycle time, and manufacturing costs)
 - → Access to hardware/firmware/software (to provide functionalities we need)
 - Capies Holli life real
 - Internal Clock & Trigger distribution

Performance + - Functions + Availability

First Test System Running @ DESY 2009

Used I/O modules:

- IP carrier to adapt the FLASH timing system
- Two channel ADC to read a Beam Position Monitor
- Two channel ADC to read the beam current

Timing connection

In parallel at KEK: LLRF/BPM (2010)

μTCA board

@Shin Michizono

First one applying MicroTCA to an accelerator

Lessons Learned

It all worked well

But:

- Not enough space on panels for cables
- Not enough space for analogue signal conditioning
- Single-size AMC is too small
- Clock and trigger distribution should be inside the crate
- ...
- Conclusion: Start of MicroTCA.4 specification development 2009

Specification of "xTCA family"

PICMG = PCI Industrial Computer Manufacturers Group

Figure 1. The MicroTCA family of specifications maximizes reuse from its ATCA and AMC parent specifications.

https://www.picmg.org/

 Non-profit organisation for standardization

MTCA.4 =

Micro
Telecommunications
Computing
Architecture

Adopting Telcom standard to Research Needs

Ref: MicroTCA App. Guide

xTCA for Physics" interest group (38 partners): 03/2009

Research institutions: SLAC, FNAL, IHEP, IPFN, ITER, DESY

Industry: Connector-, Board-, Crate-, System vendors

PICMG® Specification MTCA.0 R1.0

Micro Telecommunications
Computing Architecture
Base Specification

July 6, 2006

MicroTCA.0 2006 Within 2 years!!!

MTCA.4 hardware platform : Crates

- > "xTCA for Physics" interest group (38 partners): 03/2009
 - Research institutions: SLAC, FNAL, IHEP, IPFN, ITER, DESY
 - Industry: Connector-, Board-, Crate-, System vendors
- Modular & Modern architecture
 - Reusability + PCIe + Ethernet
- > High reliability
 - Redundant Power Supply / Fans
 - Remote Maintenance through management
- > High Performance
 - 4x PCle gen3 lane, 10GbE... 40 GBit/s
 - Low analog noise ...
- Highly configurable / scalable
 - Small to large system
 - Different communication protocols / speed

Cabling from

AMC – RTM concept

MTCA.4 hardware platform – precision timing/interlock

MicroTCA.4 hardware platform – Rear IO –

➤ IO or Analogue Signal Conditioning
 (Rear-Transition Module)
 ➤ Digital Signal Procession
 (Advanced-Mezzanine Card)

- → AMC-RTM split is an enormous benefit for obsolescence management
- → And to tailor the hardware project to a smaller developer group

Micro TCA TM

PICMG® Specification MTCA.0 R1.0

Micro Telecommunications
Computing Architecture
Base Specification

July 6, 2006

MicroTCA.0 2006

But it was a brand-new standard!!!

Market entry barriers

- Awareness
- missing technology know-how
- limited number of available products
- expensive (initial development costs)
- legacy systems in facilities
- liability of "newness"

PICING® Specification MTCA-4
Revision 1.0

MicroTCA Enhancements for Rear I/O
and
Precision Timing
August 12, 3811

MicroTCA.4 2011

Technology Transfer funds to support dissemination of MicroTCA

Helmholtz Validation Fund (2012-2015)

> Boards for RF controls & other appl.

> Developments on standard & solutions

- 50 sub-projects were carried out and completed
- > 25 new products on the market

Extending product portfolio on market & EMI

Support & Distribution & Marketing

MicroTCA workshop

https://mtcaws.desy.de

Start small ...

OLD slide from 2015

Equipping of facilities ...

2012 REGAE ~ 1 crate

+ many more FALCO, KALDERA, Ts4i,...

Baseline configuration

MTCA.4 Platform as Integral Part of DESY Control System Standard

MTCA.4 Platform (PICMG Standard)

Industry Standards (PLC/OPC-UA)

Computer center grade server nodes

Linux as operating system

Common

Hardware

Platform

European XFEL Linac

One RF Station = 4 Modules = 32 Cavities = 5 MicroTCA = 50m

Coupler Interlock Slave LowLevel RF Slave Coupler Interlock Master Diagnostics Vacuum, Magnets LowLevel RF Master

EuXFEL Status 2024

Statistics on MTCA components @ EuXFEL

More than 30 different kinds of MTCA-based software applications are in use

Essential to have a portfolio of standard solutions for modular and efficient system integration!

- About 300 MTCA systems @ EuXFEL as of 2024:
 - About 4800 MTCA modules (AMC, RTM, P/S, MCH,...) installed e.g.
 - Timing System: 328 modules
 - DAMC2 AMC: 577 modules
 - DAMC-TCK + DAMC-FMC: 51 + 57 modules
 - SIS ADC AMC and RTM: 558 modules
 - Teledyne ADQ AMC / TEWS: 48 / 20 modules
 - Many RTM solutions for diagnostics BLM, Toroid, MPS, TIL, wire scanner, ...
- About 300 IPMI management server and watchdogs online more than 2000 processes being monitored
- Core systems are running since end of 2013 and injector since 2015.
- Successful machine operations in production mode since 2017.

MicroTCA Modules for PETRAIV Project

Hardware portfolio PETRAIV (incomplete)

+ beamline control & detector readout

Expanding portfolio towards SR

Digital developments of the last years @ DESY

DAMC-FMC2ZUP (Supercarrier)

Strategy:

- Develop boards generically & cost efficient & for high yield product
- Non-exclusive production license to a company for dissemination

INSTRUMENTATI TECHNOLOGIES

10-year list of license contracts: Struck, CAENels, AIES, Interface Concept, Sintec, MSU, MRF, Embeck, PAL, Piezotechnics, N.A.T, PWI, Durotronic, BEJING DAQ Technology, ESS, Zeiss, KVG, Atom Computing, AWS, D-TACQ, Soleil, ESO, Universal Quantum,...

Licensing Strategy

- We promote an ecosystem this is part of the "DNA" of the group
- MSK has licensed almost all developments: components are available for us and for third parties
- Strategy: Concentrate on the application; purchase all standard infrastructure "off-the-shelf".

Summary: It's a worldwide growing ecosystem

https://mtcaws.desy.de

https://conference-indico.kek.jp/event/326/

Thanks for the attention

Key takeaways

- > Remote management
- ➤ AMC RTM split
- Modern & high-performing
- Modularity & configurable
- Mostly COTS
- License to partners
- Open standard
- Ecosystem grows
- > Price...

- → serviceability, fault detection & prediction, and reduced MTTR
- → easy obsolescence management
- → became enabling technology
- → easy-to-extend facilities
- → reduces production & development resources
- → for the complex board, good strategy (product owner)
- → fundamental, minimise vendor lock-in
- → an increasingly larger community support
- → depends mostly on functions (FPGA/Memory/) & QC in the company
- → longevity: availability of the product for 10+ years + service
- → ease obsolesces management
- → pays off due to reduced cost for maintainability