DESY MicroTCA Solutions: FPGA- and SoC-Based Platforms for Science Community and Next-Generation Research Facilities

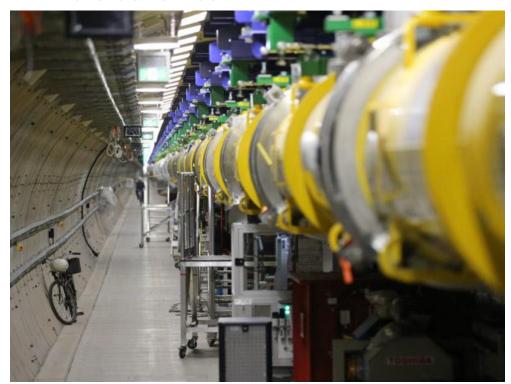
2025 MicroTCA/ATCA International Workshop for Large Scientific Facility Control

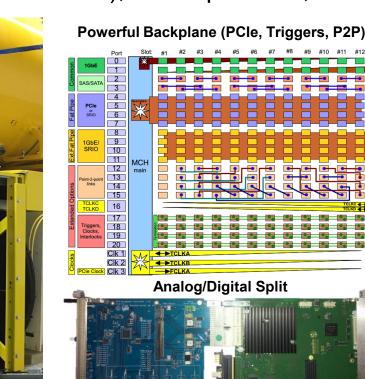
Michael Fenner, <u>Behzad Boghrati</u>, Stanislav Chystiakov, Holger Schlarb, Robert Wedel, Johannes Zink MSK Accelerator Beam Controls - Digital Hardware Team

Chongqing, China on Sep.15-Sep.17, 2025

Agenda

- 1. MicroTCA Eco System and Licensing Strategy
- 2. History and Highlight: New Developments
- 3. What we can offer: Community Tools




Background

- DESY MSK = Accelerator Beam Controls
- Responsible for LLRF electronics of large FLASH and XFEL (and other) accelerators:
 - As part of large DESY team: concept, design, installation, operation and maintenance

• 100% end-to-end development in-house: hardware (schematics, board, test), firmware and software10 years+ of electronics life time (hostile environment), 24/7 operation, limited access

to electronics

Main responsibility We develop and maintain digital electronic boards

AMC

DAMC-FMC20 DAMC-FMC25 DAMC-FMC2ZUP DAMC-FMC1Z7IO DAMC-TCK7 DAMC-MOTCTRL

DAMC-DS812ZUP

DAMC-MMCBREAKOUT

DAMC-Template

DAMC-AMCTest

DAMC MACNEED ETEST

DAMC-MMCNEEDLETEST

DAMC-UNIZUP

DAMC-X3TIMER DAMC-DS5014

FMC

DFMC-AD16
DFMC-DS800
DFMC-MD22
DFMC-SFP4
DFMC-SIO
DFMC-TC4
DFMC-TestAdp
DFMC-UNI-IO

LISA

~ 5 Boards

RTM

DRTM-PZT4
DRTM-MXC
DRTM-AD84
DRTM-PZT4
DRTM-DS812FT
DRTM-CLKFT
DRTM-Template
DRTM-VM2

eRTM

DRTM-HVPM

19-inch boxes

X2 Converter Box LDD (Mezzanine, Carriers)

19-inch components

FRED, FredFan, FredFanPWM (MO) H-Bridge Driver Redundancy Controller 4P Redundancy Controller 3P+1N ZMX Connection Module

TMCB2 GPIOTest PowerSeqPatch REFMOPT patch Patchpanel (Uni-IO) **Eval Boards**

DS8XX DC/DC Eval. Loop Eval.

Motion Controller DCDC Eval.

Coaxipack2 Eval

Development Support

RTM Standalone Driver
AMC Bringup Adapter
DFMC-Extender
FMC Test Carrier
SE2DIFF Adapter
Breakout MD22
Breakout AD16

Stand-Alone

DMMC-STAMP RadCon ZMX Test Board NoiseEater

Company Support

Struck (MMC)
CAENels
Piezotechnics, E

Piezotechnics, Eicsys (PZT4)

Techlab

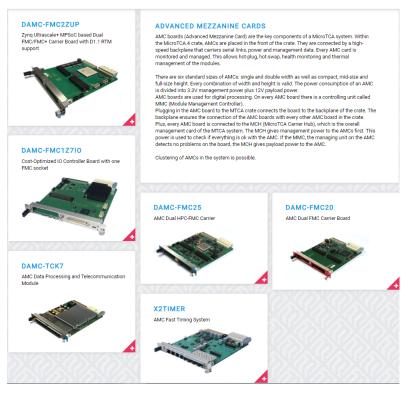
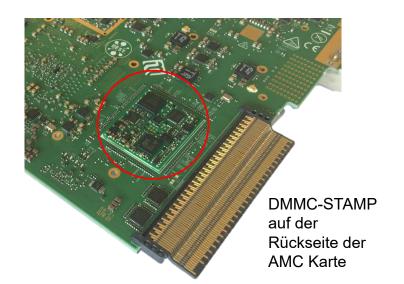
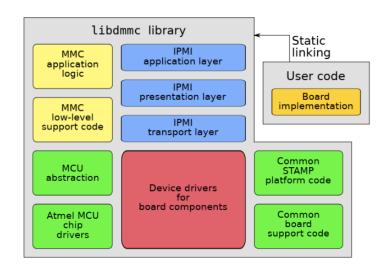

Embeck, Hitachi, 7Solutions, D-TACQ, CEA

Photo is 6 years old: Underlined Boards are not shown on picture *Italic* Boards are not developed by us, but maintained by us


Licensing Strategy

- We promote an ecosystem
- DESY has licensed almost all developments: components are available for us and for third parties
- Strategy: Concentrate on the application; purchase all "unexciting" infrastructure





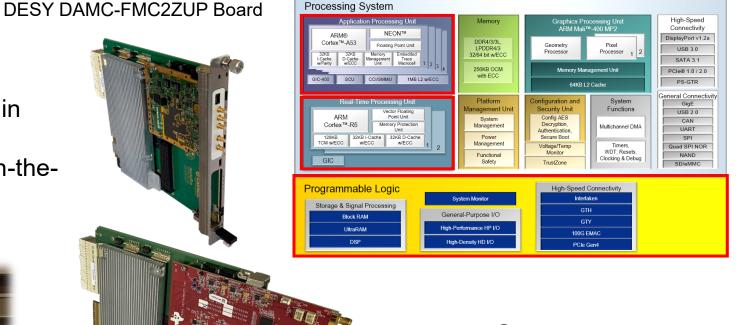
All SoC developments of the last few years

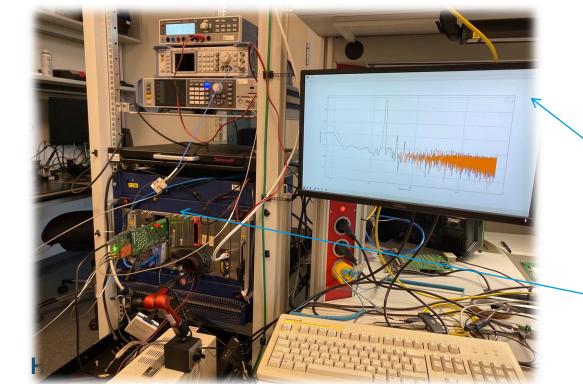
Similarity 1: Boards are all based on DMMC-STAMP

DAMC-FMC2ZUP (Supercarrier) **MPSoC** DAMC-DS5014DR DAMC-X3Timer DAMC-UNIZUP DAMC-FMC1Z7IO DAMC-MOTCTRL (DMMC-STAMP) DAMC-DS812ZUP (RFSoC-based) INSTRUMENTATIO JItrascale+ Zynq-7000 **Ultrascale** MPSoC **RFSoC** 2024 2023 2025 2022 2021 2020 2019

- DMMC-Stamp handles MicroTCA Management
- Complete software framework
- 95% re-use
- Compatibility with all MCHs we know of
- In-system update (from MMC and FPGA)
- Serial-over-IPMI (remote access to the FPGA and MMC UART)
- 2024: over 1000 pieces produced
- used by 30 partners
- 100% test in the needle test adapter

Why MPSoC?


Similarity 2: Processor inside FPGA


Everything is SoC-based

Processor-centric approach ("Raspberry Pi in FPGA")

• Changed development method towards: "on-the-fly", "re-use", "modular" and "low-code"

Keywords: IP modules, Linux, Python

 DAMC-FMC2ZUP board runs graphical Linux desktop (Displayport)

• Additionally: Web server with Jupyter

 DAMC-FMC2ZUP collects data from FMC-DS500; Output via
 Python Mathplotlib

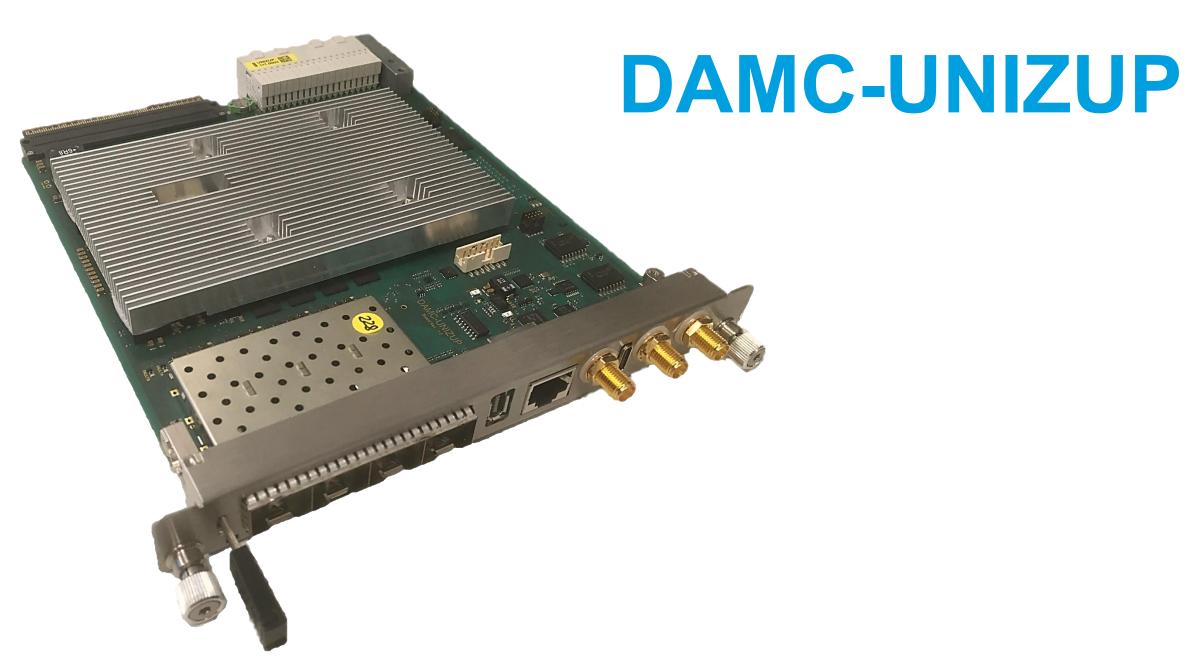
Courtesy of J. Marjanovic and S. Farina

High performance processing MPSoC-based FMC carrier

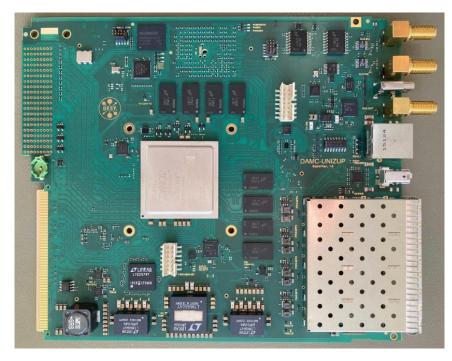
DFMC-DS800

DFMC-MD22FMC 2 channel stepper motor driver

DFMC-AD16
FMC 16-channel A-D Converter



"Working horse", very powerful, very flexible FMC carrier - is part of a family of boards.


Main Features:

- High-performance FPGA: Zynq Ultrascale+
 ZU11EG or ZU19EG
- Full Backplane and RTM D1.1 connectivity
- FMC/FMC+ mezzanine support (28 Gbps)
- Quad-Core ARM Cortex-A53 @1.5 GHz, Dual-Core ARM-R5 RT @600 MHz and Mali-400 MP2 graphics
- PCIe x4 (x8 option on supported systems); Gen.3 supported
- USB type-C Alternate Mode Display Port for standalone operation (no need for additional AMC CPU Module)
- Flexible clocking scheme and front panel connector for external clock input and White Rabbit support
- Supported by all Xilinx development tools (e.g. Vivado HLx)

DESY.

DAMC-UNIZUP

INSTRUMENTATION TECHNOLOGIES

Inherited features:

- Quad-Core ARM Cortex-A53 @1.5 GHz, Dual-Core ARM-R5 RT @600 MHz and Mali-400 MP2 graphics
- PCIe x4 (x8 option on supported systems); Gen.3 supported
- USB type-C Alternate Mode Display Port for standalone operation (no need for additional AMC CPU Module)
- Flexible clocking scheme and front panel connector for external clock input and White Rabbit support
- Supported by all Xilinx development tools (e.g. Vivado HLx)

"Little Sister" of DAMC-FMC2ZUP

- Lower-cost-board with smaller FPGA: hundreds of units will be needed at Petra IV
- 14 instead of 16 layers, 0402 components, (only 0201 capacitors)

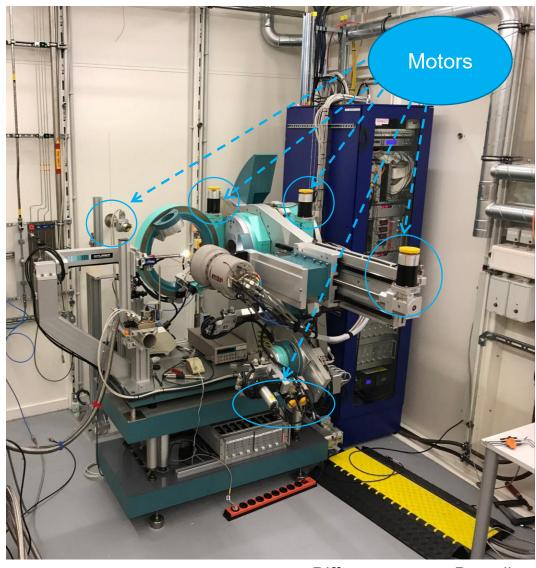
Facts

- Board inherits the technology of DAMC-FMC2ZUP
- Universal MPSoC board with high-performance RTM connectivity
- Large FPGA (in smaller package):
 Zynq Ultrascale+ ZU7CG...ZU11EG

New:

- 2 x 64bit wide DDR4 interfaces (in total 8GiB RAM)
- 4 integrated SFP+ slots with 16.375 Gbps (not 28 Gbps GTY)
- Connectors for "slow trigger" (RS485 for machine protection) and "fast trigger" on Front Panel
- 2 Front panel clock inputs via SMA, 1 Output

Motion Controller


DESY needs to move motors in experiments

- Popular motion control at DESY:
 - Beckhoff EtherCAT (DIN rail)
 - OMS MAXv (VME)

Already discussed by Michael Randall

- MicroTCA infrastructure is planned for upcoming Petra IV
- A replacement for VME systems is required
 - to overcome limitation of 8 motors per card,
 - to provide (long-desired) card-to-card communication
- DAMC-MOTCTRL:
 - Controls (min.) 48 motors/axis per card (FW depended)
 - Scalable interconnection of several cards in the crate and campus-wide
 - Position-triggered data acquisition with other MicroTCA cards
 - Focus on competitive cost factor (licensing planned)

Diffractometer at Beamline (Martin Tolkiehn)

Hardware Plattform

Hardware Plattform

- Board is fully running in Rev. A
- No single patch wire.

Heterogeneous Approach

- MPSoC (2GB DDR4) and FPGA (4GB DDR3)
- Kintex-7: real-time control

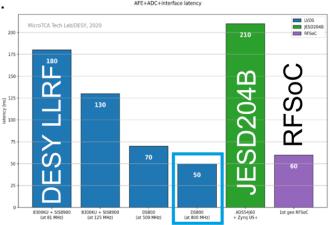
MPSoC:

- "Raspberry Pi" inside the FPGA (runs Yocto Linux)
- responsible for non-realtime tasks
- communication to other cards
- 5 SFP+ ports (1Gbps to 10Gbps)
 - e.g. 3x Motor interfaces, 2x Ring topology
- HW Support: CAN EtherCAT, SERCOS
- Backplane Ethernet
- 26-pin connector: 3.3V /5V IO
- Monitor/Keyboard interface via USB-C

DAMC-DS812ZUP

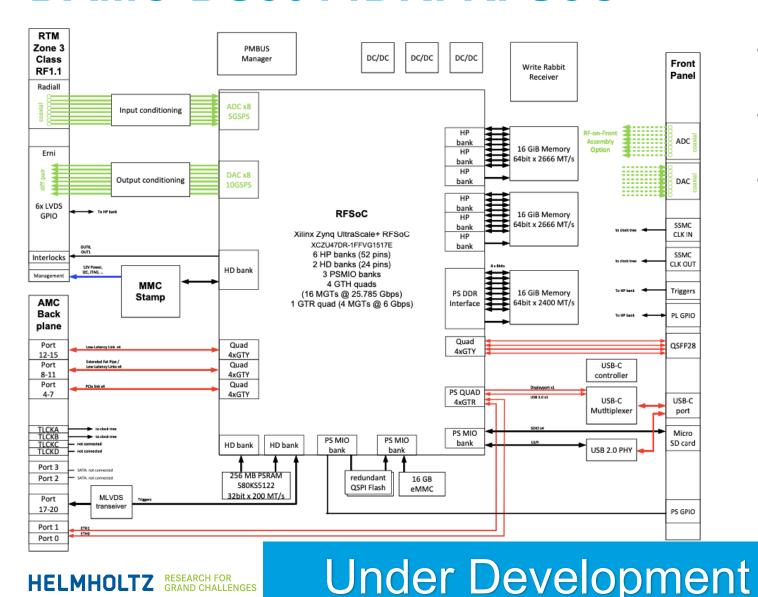
8-Channel Giga-sample Digitizer

Modes of operation:


8-Channel 800 MSPS digitizer or 4-channel 1600 MSPS

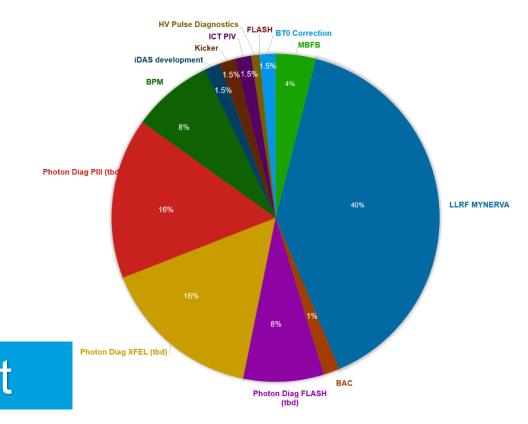
New:


- Coaxial Zone-3 connection "RF1.0"
- Front panel/ RTM swapping concept using semi-rigid coaxial RF cables
- Front Panel: oscilloscope-like application and board bring-up
- RTM: space for signal conditioning, filters, etc.



Main Features:

- 2.7GHz input BW, 12bits, 8-channels (Amplifier Bandwidth: 4.8 GHz)
- 50ns end-to-end latency
- Coaxial analog Zone 3 RF1.0 Class
- RF input from front panel or RTM: 800 MSPS / 1600 MSPS
- On-board PLL: 14fs jitter



DAMC-DS5014DR: RFSoC

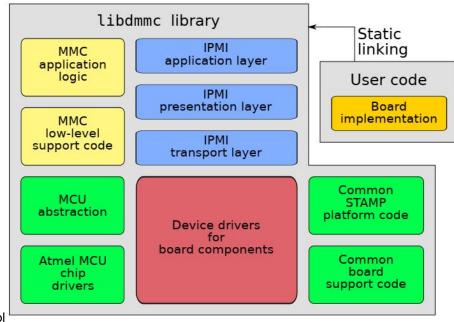
Features

- 8x 14 bits ADC, 5 GSPS, 6GHz analog bandwidth
- 8x 14 bits DAC, 10 GSPS, 4GHz analog bandwidth
- DC- and AC operation (assembly option)

We invite everybody to be part of the MicroTCA ecosystem

What we can offer...

Creative Commons License


DMMC-STAMP: A complete Management solution for MicroTCA

- System on Module (SoM)
 - 25.5 x 29.5 x 2.3 mm
 - Pre-programmed firmware
 - Evaluation board available (BoB)
- Software Development Kit (SDK)
 - MMC firmware customization
 - DESY MMC Software Library (libdmmc)
 - Example implementations (BoB, DAMC-FMC2ZUP)
- Open Source Tools and Templates
 - AMC and RTM Altium Designer Templates
 - mmcterm: serial over IPMB
 - bin2hpm: create HPM files for IPMI upgrade
 - frugy: read and write FRUs
 - cpld-img-tools: bitstream conversion for Lattice CPLDs

Next talk by Patrick Huesmann

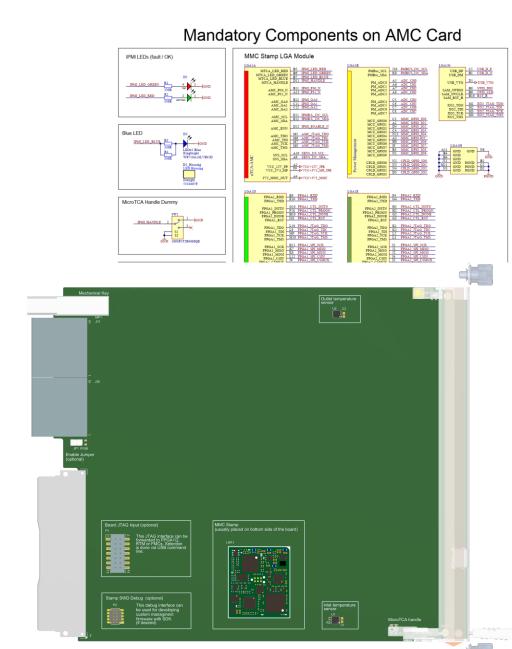
Post-Production test of DMMC-STAMP

MicroTCA.4 Template

Community Support

Idea: Jump-Start with MicroTCA as you would with any other board

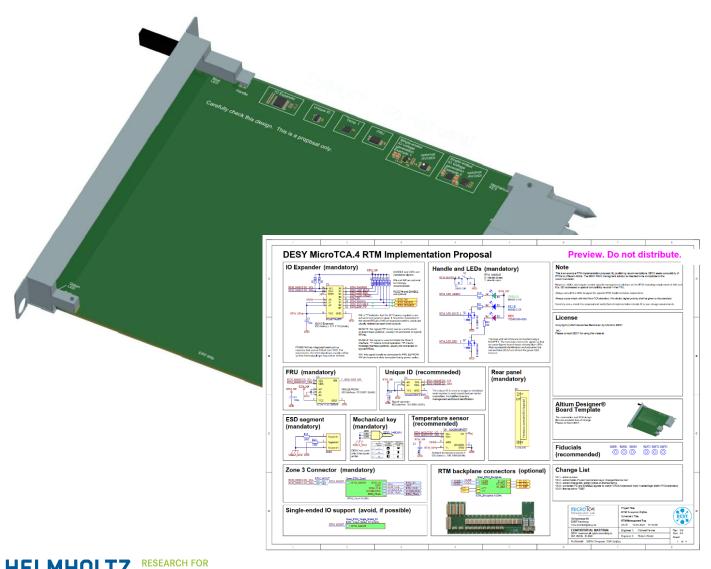
Fully MicroTCA compliant "empty" board


- Already "fully functional"
- Start with correct mechanical shape
- AMC and RTM "only" get power
- All the management is done on DMMC-STAMP

Purpose: facilitate development

- Allows design migration (e.g. from VME)
- Source design files (Altium Designer) are provided
 - Schematics
 - PCB

Components:


- MMC SoM, LEDs, Connectors, Temperature Sensors
- USB Interface for management and status

RTM Template

Community Support

- We also provide a RTM Template
- Complete guide and "empty board" for own MTCA RTM designs □ Altium Designer Template
- MTCA Standard leaves freedom for RTM interface implementation (vendor-specific) □ risk of noninterchangeable AMC-RTM pairs
- DESY has a "class concept" □
 Interchangeable boards
- DESY collected and documented best design practices beyond the standard

Benchtop Setup - Typical Bring-Up environment

With RTM Support...

- We have flexible lab development tools
- DESY provides them on request:
 - Aluminum frame production files
 - Bring-up PCB production files

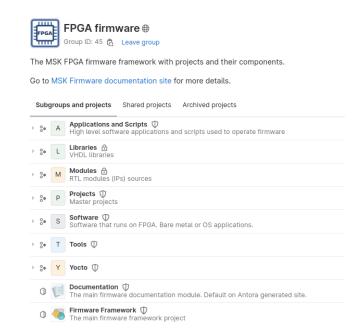
Adatper brings out PCIe x1 Gen. 3 (8Gbps) connectivity "on the lab desk"

Typical Lab bring-up Setup

- Flexible and handy development tools
- DESY provides them (Creative Commons)
 - bring-up PCB production files
 - Aluminium frame production files

Write an email to me if you are interested in these designs.



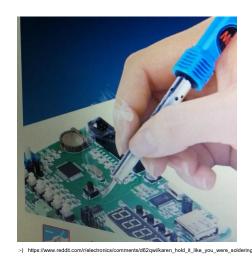


FWK: The Swiss Army Knife of FPGA development

- MSK Firmware group maintains a large open-source repository for FPGA development. It contains:
 - BSPs, IPs,
 - FWK, Scripts, Tools, Example Designs in Vivado
 - Documentation
 - Is actively used in DESY's accelerators
- FWK: FPGA development toolkit written in Tcl for large FPGA projects
- Create and implement FPGA project using various vendor tools (including Vivado)
- Handle versioning
- Combine multiple IPs and create address mapping for each register
- Create documentation of the IPs
- Package an IP
- Create an IP using Higher-Level-Synthesis (eg. Xilinx HLS)
- Embedded Linux Creation with Yocto Flow

Visit now! gitlab.desy.de/fpgafw

Documentation: fpgafw.pages.desy.de/docs-pub/doc/



Courtesy of Çağıl Gümüş

Summary

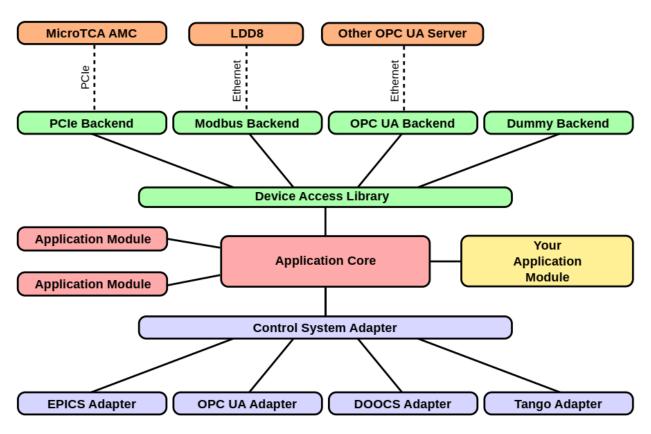
- Overview: DESY's MSK Digital Team develops and maintains FPGA- and SoC-based MicroTCA platforms for accelerator beam control, focusing on reliability, modularity, and full in-house hardware/firmware/software development.
- Ecosystem & Licensing: DESY has licensed nearly all of its developments, making the components accessible both internally and to external partners. The strategy is to focus on application-specific solutions while sourcing standard infrastructure from external suppliers.
- Key Hardware: The DMMC-STAMP ecosystem standardizes MicroTCA management, allowing for significant hardware/firmware reuse (95%), supporting in-system updates, and has been adopted by over 30 partners due to its open licensing strategy. Boards like DAMC-FMC2ZUP (high-performance MPSoC carrier), DAMC-UNIZUP (cost-optimized version), and DAMC-MOTCTRL (motor controller) enable scalable, processor-centric, "Raspberry Pi inside FPGA" solutions for data acquisition and control. High-speed digitizers: Includes 8-channel gigasample digitizers (DAMC-DS812ZUP), RFSoC-based converters (DAMC-DS5014DR).
- Development Support: DESY provides open-source FPGA tools (FWK), Altium design templates for AMC/RTM boards, and lab bring-up setups under Creative Commons to encourage community collaboration and rapid prototyping.
- Future Outlook: Next-generation MTCA efforts focus on PCIe Gen 5, 100 GbE, higher power per AMC (up to 220 W), and lower latency to meet the demands of future large research facilities.

Thank you!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de


Michael Fenner

MSK michael.fenner@desy.de +49 (0) 40-8998-1885 **Behzad Boghrati**

MSK Behzad.boghrati@desy.de +49 (0) 40-8998-4766

Thank you!

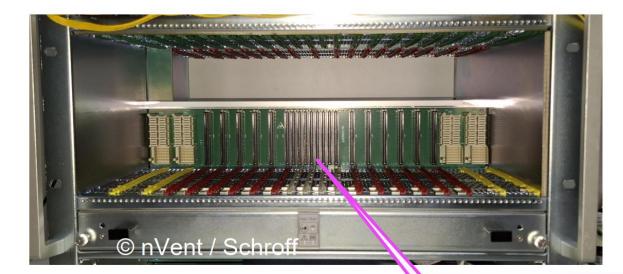
ChimeraTK – A software tool kit to facilitate control application development

DeviceAccess

- Common API for different backends
- Seamless integration with FWK
- Improved device abstraction
 - Named registers → process variables
- C++ (native)
 - Python bindings
 - Matlab bindings
 - Command line interface
 - Graphical user interface

ApplicationCore

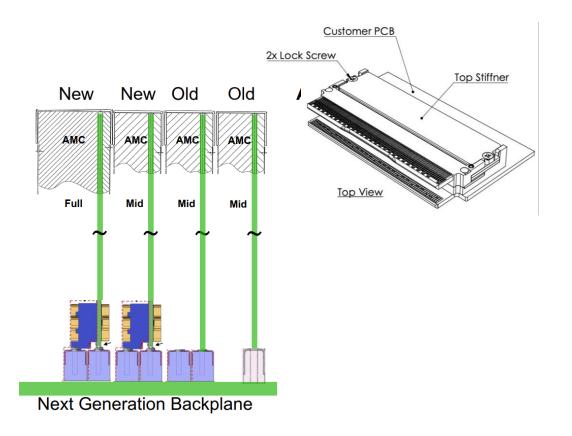
- Model data flow with process variables
- Small self-contained modules
- Modern multi-threading

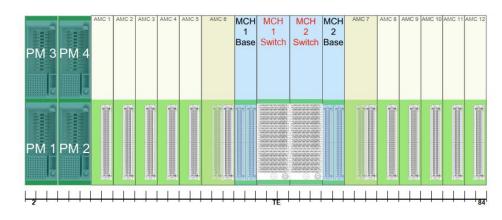

ControlSystemAdapter

- Native integration into control systems
- Publish process variables

Next Generation MTCA

Community Support


- PCIe Gen. 5 and 100 GbE → 32 Gbps → lower latency
- Power: up to 220 W per AMC, more power on RTM
- Crate power ≥ 2 kW
- Split MCH



Redundant MCH in center of crate to achieve 32 Gbps in all slots

Courtesy of Kay Rehlich

