

Presenter: Xue Yang

Advisor: Junqiang Zhang, Lingxi Ye, Zhongquan Li

Affiliation: Chongqing University (LUTF)

Part I: Research Background

Part II: Comparative Study of ADRC and PI

Part III:Simulation Analysis

Part IV:Conclusion

Part I: Research Background

UTEF (Ultrafast Transient Experimental Facility)

Parameters	Value	Unit
Energy	0.5	GeV
Ring circumference	76.78	m
Beam current	0.5~1	A
Focusing type	QBA	
Natural emittance	8.56	nm rad
Working point (x, y)	6.198, 3.357	-
Length of straight section	8*4	m
Working frequency	499.8	MHz
Energy loss per turn	4.34	keV
Natural energy spread	0.37×10^{-3}	

Including the linac accelerator and the storage ring, with the storage ring operating at an energy of 0.5 GeV / 3 GeV.

Part I: Research Background

third-harmonic cavity

NC cavity with TM020 mode, the first used in China

Frequency: **1500 MHz** Q0:~**33000**

Low-Level Radio Frequency Systems

Part II: Comparative Study of ADRC and PI Theory (本) 本度大

ADRC

Active Disturbance Rejection Control (ADRC) was first proposed in 1998 by Han Jingqing. It is a control algorithm independent of the plant model, has huge potential in engineering applications.

Extended State Observer (ESO) and State Error Feedback (SEF):

ESO estimates $\hat{x}_1 \approx y$, $\hat{x}_2 \approx f$; SEF cancels the estimated disturbance \hat{x}_2 through feedforward and adds a proportional term $\ell(r-\hat{x}_1)$

$$\begin{vmatrix}
\hat{x}_1 = \beta_1 (y - \hat{x}_1) + l(r - \hat{x}_1) \\
\hat{x}_2 = \beta_2 (y - \hat{x}_1) \\
u = \frac{\ell (r - \hat{x}_1) - \hat{x}_2}{b_0}
\end{vmatrix} (1)$$

Part II: Comparative Study of ADRC and PI Theory

Laplace Transform

$$s\widehat{X}_{1}(s) = -(\beta_{1} + l)\widehat{X}_{1}(s) + \beta_{1}Y(s) + lR(s)$$

$$s\widehat{X}_{2}(s) = -\beta_{2}\widehat{X}_{1}(s) + \beta_{2}Y(s)$$

$$\widehat{X}_{1} = \frac{\beta_{1}}{s + \beta_{1} + \ell}Y + \frac{\ell}{s + \beta_{1} + \ell}R$$

$$\widehat{X}_{2} = \frac{\beta_{2}}{s}(Y - \widehat{X}_{1})$$

$$U = \frac{\ell(R - \widehat{X}_{1}) - \widehat{X}_{2}}{b_{0}} = \frac{1}{b_{0}}\left[\ell R - \ell \widehat{X}_{1} - \frac{\beta_{2}}{s}(Y - \widehat{X}_{1})\right]$$

$$\frac{U(s)}{R(s)} = \frac{\ell(s^{2} + \beta_{1}s + \beta_{2})}{b_{0}s(s + \beta_{1} + \ell)}$$

$$C(s) = -\frac{U(s)}{Y(s)} = \frac{(\beta_1 \ell + \beta_2)s + \beta_2 \ell}{b_0 s (s + \beta_1 + \ell)}$$

$$C_1(s) = \frac{U(s)/R(s)}{C(s)} = \frac{\ell(s^2 + \beta_1 s + \beta_2)}{(\beta_1 \ell + \beta_2)s + \beta_2 \ell}$$

Part II: Comparative Study of ADRC and PI Theory () 全度大学

$$C(s) = \frac{(\beta_{1}\ell + \beta_{2})s + \beta_{2}\ell}{b_{0} s (s + \beta_{1} + \ell)}$$

$$C(s) = \frac{\beta_{1}\ell + \beta_{2}}{b_{0} (+\beta_{1} + \ell)} + \frac{\beta_{2}\ell}{b_{0} s (s + \beta_{1} + \ell)}$$

$$= \frac{\beta_{1} + \ell}{s + \beta_{1} + \ell} \left[\frac{\beta_{1}\ell + \beta_{2}}{b_{0}(\beta_{1} + \ell)} + \frac{\beta_{2}\ell}{b_{0}(\beta_{1} + \ell)} \frac{1}{s} \right]$$

$$F(s) = \frac{\beta_{1} + \ell}{s + \beta_{1} + \ell} \quad k_{p} = \frac{\beta_{1}\ell + \beta_{2}}{b_{0}(\beta_{1} + \ell)} \quad k_{i} = \frac{\beta_{2}\ell}{b_{0}(\beta_{1} + \ell)}$$

$$C(s) = F(s) \left(k_{p} + \frac{k_{i}}{s} \right) = F(s) \cdot PI(s)$$

Physical Significance: Here, F(s) denotes a low-pass filter, while k_p and k_i represent the control parameters of the PI controller. Thus, the distinction between C(s) and PI(s) depends on the low-pass filter F(s). When $\omega \gg \omega_F$, C(s) exhibits superior noise suppression compared to PI(s).

Part II: Comparative Study of ADRC and PI Theory () 4度大学

Framework Diagram of ADRC in Simulink

Cavity Response:

Detuning

Noise + Detuning

The Influence of Temperature Drift

Comparative Diagram of the Influence on Phase

×10⁻⁴ time/s

Part IV: Conclusion

Sammary:

- According to the simulation results, ADRC demonstrates superior disturbance rejection performance compared to PI control.
- However, parameter tuning for ADRC is relatively complex.
- Next step: It is planned to implement ADRC assisted by PI in the LLRF systems of UTEF's linac accelerator and storage ring to achieve better disturbance rejection.

