

Progress of the UTEF Low Energy Light Source

Bocheng Jiang

Ultrafast Transient Experimental Facility-UTEF

UTEF consists of a synchrotron radiation source and electron microscopes, integrating both photon and electron probes

Facilities

- > 0.5GeV SR (UV-EUV)
- > +3 Electron Microscopes
- > 3.0GeV SR
- + Multiple Electron Microscopes

Advantages

- Wide spectral range
- > High flux
- wide field of view

Electron Microscopes

- Comprising two core components: a synchrotron radiation facility delivering high-brilliance and high-flux photon sources, and an advanced cluster of electron microscopes.
- Enabling investigations of the dynamic evolution and regulation of matter across multiple dimensions and scales, with ultrahigh spatial resolution (10⁻¹⁰ m) and ultrafast temporal resolution (10⁻¹²–10⁻¹⁵ s).
- Providing indispensable experimental conditions for addressing fundamental scientific questions

0.5GeV Light Source

Main parameters of storage ring

Parameter	Value	Unit
Energy	0.5	GeV
Circumference	76.78	m
Natural emittance	8.59	nm rad
Period	4	-
RF frequency	499.784	MHz
Current	500-1000	mA
Bunch length	2.7-12.2	mm
Damping time	59/59/29.5 (H/V/Z)	ms
Straight section length	8	m

RF Cavity Impedance

- Achieving high beam intensity while suppressing beam instability has become a key technical challenge.
- 1. Optimize impedance and increase the radius of the vacuum chamber to suppress the impedance, optimize HOM of the RF cavity.
- 2. Use the third harmonic cavity to stretch the bunch, reduce charge density, and provide Landau damping.
- 3. Implement a transverse feedback system to suppress transverse instability.
- 4. Adopt a higher RF cavity voltage to increase the longitudinal oscillation frequency and suppress instability.

ARPES Beamline (Under construction)

- Photon energy: 10-40eV
- Energy resolution: < 0.4meV</p>
- Photon flux at the sample: > 1×10¹⁴ ph/s@0.1%B.W
- Photon polarization can be tuned
- Sample temperature: Main station-1K, Sub-station-5K
- Beam size@sample: 20 μm × 20 μm
- Two analytical chamber: ultra-low temperature high energy resolution, large angle high flux spin resolution
- Configuration: Equipped with PLD, MBE thin film growth sample chamber, ozone system for oxide growth, vacuum interconnected glove box, and offline vacuum transfer sample chamber.

Undulator parameters

Parameter	EPU
Period length	62mm
Period number	78
Total length	4836mm
Peak magnetic field (circular polarization)	0.37T
Peak magnetic field (vertical polarization)	0.45T
Peak magnetic field (horizontally polarized)	0.7T
Minimum gap	20mm

EUV Metrology Beamline (Planned)

	General Test	Angular divergence
Wavelength range	5-70nm (17eV-250eV)	5-20nm (62eV-250eV)
Wavelength resolution	≤0.005nm (12meV-250meV)	≤0.01nm (31meV-500meV)
Divergence angle	≤5mrad@13.5nm	≤0.5mrad
Wavelength stability (RMS)	<0.1%	<0.1%

Future Expansion

Irradiation & Contamination Test

• Max power density: ≥3.5 W/cm²

@13.5nm

- Background vacuum: <1×10⁻⁵ Pa
- In-situ characterization:

Reflectometry, XPS, SEM, TEM, EDS

Operation time: >100 hours

Wave Aberration Measurement

- **Photon flux:** ≥2×10¹⁴ ph/s @13.5nm
- **Stability:** within ±15%
- Beam diameter: 10mm
- Brightness: ≥1×10¹⁷

ph/s/mm²/mrad²/@13.5nm±0.1% BW

RMS accuracy: <0.1 nm

Combustion and Flame BL

3GeV Light Source

Main parameters of the storage ring

Parameter	Sym.	Value	Unit
Energy	E ₀	3	GeV
Circumference	С	590	m
Average Current	l _t	600	mA
Natural Emittance	ϵ_{x0}	349	pm
Coupling	-	100%	-
Momentum comp. factor	α_{c}	1.2 × 10 ⁻⁴	-
Energy loss per turn	U_0	447	keV
RMS energy spread	σ_{δ}	7.0×10^{-4}	-
Beam size@Short Str. Sec.	$\sigma_{xb,yb}$	8.2/12.5	μm
Beam size@Long Str. Sec.	$\sigma_{xc,yc}$	32.3/32.3	μm
Horizontal/Vertical tune	v_x/v_y	61.371/23.154	-
Natural chromaticity	ξ_{x0}/ξ_{y0}	-141.4/-167.9	-
Natural damping time (x/y/z)	$T_x/T_y/T_s$	26.4/26.4/13.2	ms
RF frequency	f_{RF}	499.993	MHz
Max. Bend field	В	1.05	Tesla

Progress of 0.5GeV Light Source

- ✓ For linac, all equipment has been delivered; core systems finished acceptance tests
- ☐ Klystron: high-power microwave generation, (Canon, Japan)
- Modulator: high-voltage pulsed power supply, (Wuhu Micovey, China)
- □ Low-Level Radio Frequency (LLRF) system: phase & amplitude control, in-house developed
- ✓ Electron gun unit, A1 accelerating structure and triplet magnets fully assembled and commissioned

Klystron test platform

Electron gun unit

A1 accelerating structure

Triplet magnets

RF system of storage ring

☐ Third Harmonic Cavity (1.5 GHz TM020)

- ✓ Manufacturing completed
- ✓ Cold test results meet all specifications
- ☐ High-Frequency Solid-state Power Source
- ✓ Assembly completed
- Performance commission in progress
- Nonlinear Kicker Magnet
- ✓ Component processing completed
- Assembly in progress

Solid-state power source

Third harmonic cavity

Nonlinear Kicker Magnet

- ✓ Optical & engineering design completed, and energy resolution< 0.4 meV, world-leading performance</p>
- ☐ The detailed design and engineering drawings of key components have been completed and in production
- ☐ Key Components: Detailed designs and engineering drawings finalized; currently in production
- √ 1.5K ultra-low temperature sample holder
- ✓ Cryogenic high magnetic field sample transfer chamber

M4 mirror

End station

- Installation start: June 2025
- Pre-installation milestones Achieved:
- ✓ Installation positions confirmed through alignment survey.
- ✓ Primary and secondary control networks established.
- ✓ Majority of Linac support girders installed.

Radiation Safety

- ✓ Environmental & Occupational Health Approvals Obtained (Oct 2023)
- Radiation Safety License Application in Progress
- Key Safety Equipment Ready:
- ✓ Radiation monitoring and personnel protection system (PPS) system: fabrication and testing complete.
- ✓ Shielding doors installation completed
- ✓ Radiation safety regulations established

Personnel access control (with EPD)

重庆市建设项目环境影响评价文件批准书

渝(高新)环准[2023]71号

重庆大学:

你单位报送的重庆大学超瞬态实验装置预研项目(项目代码: 2020-500356-83-01-128945) 环境影响评价文件审批申请表及相关

- 一、根据《中华人民共和国环境影响评价法》等法律、法规
- 子能量 500MeV 的直线加速器、500MeV 的强流储存环、1 条超

PLC control in PPS

Shielding door in linac

Calibration test of neutron dosimeter

EIA report approved (Oct. 2023)

Construction Progress-*Science and Research Building*

- ✓ Oct. 2024: Completion of individual building works; passed energy-saving (green building) acceptance.
- ✓ Dec. 26, 2024: Passed final construction quality acceptance by the High-tech Zone Construction Bureau.
- ✓ Electron Microscopy Laboratory Area (#1-15 room) environmental renovation completed.

Science and research building

Interior photos of the building

Electron microscopy laboratory

Construction Progress-*Linac*

- ✓ April 8, 2024: Construction permits approved for the light source, utility building, and guardhouse; project officially launched.
- Dec. 2024: Main structure of the linear accelerator topped out.
- ✓ May 18, 2025: Civil construction of the linear tunnel completed, enabling installation of support systems.

Construction Permit

Excavation & Foundation Work of Linac

Main Structure of Linac Topped Out

Linac Tunnel

Dec. 2024 **April 2024** May 2024

Construction Progress-*Storage Ring*

- □ Light Source Beamline Hall: Base slab and main structure completed; roof steel structure installed; 15t overhead crane installed, Installation of exterior curtain wall trusses and curtain wall mock-ups in progress
- Outdoor Works: Site grading, perimeter walls, stormwater/sewage pipelines, and road construction

Bird's-eye view of storage ring

Curtain wall mock-up

