国家重点研发计划 "高能量加速器关键技术 研究" 项目2025年会

高压 CMOS 芯片研发进展

李一鸣 中国科学院高能物理研究所 2025 年 5 月 28 日

- 研究背景和目标
- 研究进展
- 高压CMOS原理验证芯片:COFFEE2测试
 - 传感器测试
 - 像素读出电路测试
- 全阵列读出芯片:COFFEE3
- 研究计划

研究目标

针对课题二中"硅像素径迹探测器",研发新型高压CMOS技术
未来高能对撞机上对带电粒子径迹探测需要:

- 高定位精度 → 精确测量径迹和带电粒子动量
- 高时间精度 → 以区分高亮度对撞下前后束团对撞
- 低功耗 → 避免因散热引入不必要的物质量、影响动量分辨性能

参数	指标		
位置精度	10 µm		
时间精度	10 ns		
功耗	200 mW/cm ²		

国内外研究现状

高压CMOS是径迹探测理想技术:

- 利用商业CMOS技术,集成探测器和前端读出,具有良好性价比
- 良好的抗辐照性能,适用于高能对撞
- 电荷收集速度快
- 国外高压CMOS技术集中在180/150nm工艺制程
 - 应用于Mu3e等实验
 - 尚无能完全满足本项目需求的芯片
- 本项目计划基于国产55nm先进制程探索高压 CMOS传感器芯片
 - 单位面积内集成更高电路密度,实现更复杂功能, 有望降低功耗
 - 高能实验研发周期长,旧工艺有停产风险
 - 目前依赖国外代工厂;需探索可用的国内工艺

Chip	Pixel size [μm²]	Array size	Noise [e-]	Power density [mW/cm ²]	Fluence [n _{eq} /cm ²]		
AMS/TSI 180 nm							
ATLASPix1	60 × 50	56 × 320	~200	170	1 × 10 ¹⁵		
ATLASPix3	50 × 150	372 × 132	~60	~150	1.5 × 10 ¹⁵		
MuPix10	80 × 80	256 × 250	75	190			
MightyPix1	55 × 165	29 × 320					
LFoundry 150 nm							
LF-Monopix1	50 × 250	129 × 36	~200	~288	10 ¹⁵		
LF-Monopix2	50 × 150	340 × 56	~100	~400			
RD50-MPW1	50 × 50	40 × 78			2 × 10 ¹⁵		
RD50-MPW2	60 × 60	8 × 8	~50		2 × 10 ¹⁵		
RD50-MPW3	62 × 62	64 × 64	~900				
RD50-MPW4	62 × 62	64 × 64	480	~600	3 × 10 ¹⁶		
CACTUS	1000 × 1000	7 × 6	~2k				

前期研究基础(COFFEE1)

典型IV曲线

Voltage [V]

击穿电压~ -9V

-2

0.3

0.2

Current [nA]

-0.2

-0.3

-10

- 非高压工艺,非高阻衬底
- 存在与HV工艺相似的深N阱结构
- 2022年提交3mm*2mm MPW流片
- 初步验证传感器结构

COFFEE1 芯片版图

首个高压CMOS原理验证芯片

- 首个55nm工艺高压CMOS原理验证芯片 COFFEE2 提交流片
 - 2023年8月提交 4mm*3mm MPW流片用于初 步工艺验证
 - 2024年芯片寄回后开展一系列测试

55nm 高压CMOS工艺截面示意图

COFFEE

COFFEE2 设计

 32×20 pixel matrix with various diodes and in-pixel amplifier or discriminator designs for process validation

- 40 × 80 μm²
- 5/10/15um gap btw pixels
- With/ w.o. p-stops
- 3 versions in-pixel electronics

[设计值×0.9 方为实际值]

Passive diode arrays, each has 3×4 pixels of size $40 \times 80 \ \mu m^2$ for study on sensing diode and charge sharing

 26×26 pixel matrix of $25 \times 25 \ \mu m^2$ pixels with digital readout periphery for novel electronics structure study

传感器主要测试结果

■ 击穿电压 – 70V

- 击穿时尚未达到全耗尽,与仿真结果一致
- 击穿发生在深n阱边缘(与p阱接触部分)
- 仿真线上高阻衬底可显著提高击穿电压和耗尽区
- 单个像素电容30-50fF
- 暗电流~0.01nA, 10¹⁴ n_{eq} cm⁻² 辐照后升至~1nA

COFFEE2 电路设计

■ 三种像素内电路设计:

- 1- 仅有放大器
- 2-放大器 + NMOS 比较器 → ADC 在阵列外
- 3-放大器 + CMOS 比较器, 数字化读出

• 通过行、列选通选中一个像素读出

COFFEE2测试设置

- 专用芯片载板 → CaR 测试板 → Xilinx

■ 读出测试系统:

Feature

LVDS Links

Input/Output Links

Adjustable Power Supplies

Adjustable Voltage References

Adjustable Current References

Voltage Inputs to Slow ADC

Analog Inputs to Fast ADC Programmable Injection Pulsers

Full-Duplex High-Speed GTx Links

Programmable Clock Generator

External TLU Clock Reference

FEAST Module Compatibility

EMC Interface to EPGA

44

External High-Voltage (HV) Input

SEARAY Interface to Detector Cl

KC705 FPGA → PC

Control and Readout (CaR) board

Description

8 units, 0.8 - 3.6 V, 3 A

- 利用电荷注入功能可研究放大器响应
 - 线性区与仿真基本一致
 - 像素间有不均匀性
 - 来自放大电路 / 注入电路 / 工作点差异; 与设计也相关
 - 可通过阈值调节使响应更均匀

放大器输出幅度与注入电荷量关系 (左) 实测 (右) 仿真

各像素的放大器输出在相同电荷注入电压下的响应

电路测试

- 利用电荷注入功能可研究放大器响应

- 线性区与仿真基本一致
- 像素间有不均匀性
- 观察到对激光信号、放射源信号的模拟前放响应

放大器输出信号

⁵⁵Fe放射源响应

 File
 Utility
 Help

 t:
 -92.0 ns
 4::5.480 µs

 V:
 116.0 mV
 CMOS discriminator

 C
 CMOS discriminator

 C
 Amplifier (discriminator off)

 Amplifier
 Amplifier

 Image: State of the st

利用电荷注入功能可研究放大器响应

三阱工艺对数字电路设计限制:

- 仅使用NMOS数字电路不受影响

观察到对激光信号、放射源信号的模拟前放响应

- CMOS数字电路与前端有串扰现象,需工艺调整加入深 p 阱

CMOS比较器打开后模拟放大器输出受影响 2025/05/28

Charge collection nod

COFFEE3 芯片设计

COFFEE3 芯片照片

- 2025年1月提交流片
 - 4 mm × 3 mm 面积
- 两种像素读出架构
 - 基于CMOS,充分发掘55nm潜力,多种设计如像素内TDC提高时间分辨率
 - 仅适用NMOS电路,如短期内工艺无法改进仍能实现无串扰的信号读出
 - 均可实现10微米空间分辨率指标
- 近日已寄回,即将开始测试验证

详见 周扬老师 报告

COFFEE3 设计版图

研究计划推进

- HVCMOS芯片研发定期召开讨论会
- 对COFFEE3芯片开展全面测试,验证工艺
 - 寻求工艺修改机会
 - 验证设计,为优化提供方向
- 提交一版小型原理样机流片
 - 在COFFEE3基础上加入周边电路中信号处理、压缩等功能
 - 进一步提升时间分辨率、降低功耗
- 基于测试和芯片性能开展探测器单元模块设计

■ 培养人才:

- 博士后项治宇即将出站,到中南大学任教
- 博士后董若石出站,加入比亚迪
- 博士后盛书琪毕业,即将到瑞士EPFL做博士后
- 文章1篇:
 - Feasibility study of CMOS sensors in 55 nm process for tracking , NIM A 1069 (2024) 169905
- 2024年会以来会议报告3次,项目开始以来16次:
 - 国际会议报告如:ICHEP, TREDI, iWORID (已接收), TWEPP (已投稿)等

- 首个基于国产55nm工艺原理验证芯片COFFEE2初步测试取得结果,并指导 COFFEE3设计
- COFFEE3设计流片完成,即将开始测试
- 按计划开展研发,已发表1篇文章、多次会议报告

以書面