

中國科學院為能物現研究所 Institute of High Energy Physics, CAS

高时间分辨率TDC的研制

中国科学院高能物理研究所

CONTENTS

1 研究背景

2 工作进展

3 研究计划

总结 4

➢ 高时间分辨率的探测器在医学成像和粒子物理实验中具有重要作用;

研究背景

- ➢ FPMT、SiPM等光电器件具有增益高、噪声低、响应时间快、时间分辨率高(多光子渡越时间展宽(TTS)小于10ps);
- ➤需要极高时间分辨率(ps级)的时间测量芯片对探测器信号进行测量。

工作进展

研究计划

图1: TOF-PET结构示意图

总结

总结

4

1.2 工作规划

- I. 第一版TDC核心的设计与流片--**已完成**
- Ⅱ. 设计文档的撰写--**正在进行**
- Ⅲ. 测试PCB的绘制—未完成
- IV. 编码器与模拟前放的设计—未完成
- V.
- ▶ 芯片于8月流片回来进行测试,测试完成后预计10月进行下一版流片

工作进展

START

研究计划

总结

2.1 测量原理

▶ 两条振荡环中与非门的延迟不同,其中START链的延迟为 τ_1 , STOP链的延迟为 τ_2 ,延迟之差为游标值,即时间分辨 率: $\Delta \tau = \tau_1 - \tau_2 > 0$ 。

研究背景

▶ 时间测量的原理如图所示:

图4:TOT时间测量示意图 (VX代表START链、VY代表STOP链)

图3: 游标振荡环的结构

> 二者相位差不断减小;

▶ 通过鉴相器得到STOP链追上START链 时经过的延迟单元数,即可计算得到 时间测量值。

研究背景

总结

- 量化锁存对START链和STOP链的信号进行鉴相并将量化结果锁存为 30位温度码。
- 4. 计数器包括10位粗计数和10位细计数,提高TDC的动态范围。

研究背景

2.3 版图仿真结果

研究背景

工作进展

研究计划

总结

2.4 TDC整体版图

- ➤ TDC同时包含TOA和TOT测量;
- ➢ 芯片一共60个IO;
- ▶ 敏感信号(例如参考时钟、 输入pulse信号等)使用差 分输入/输出。

图8: TDC整体版图

3 研究计划

研究工作	预期成果	时间
✓ 调研各种TDC结构和FPMT项目要求,确定设计方案✓ TDC各模块的设计、仿真、验证	提交流片	2024年7月 ~2025年4月
 ➤ 研究芯片的系统级测试方案,制备测试PCB > TDC芯片测试 	完成芯片测试	2025年4月 ~2025年10月
➤ TDC编码器的设计、仿真、验证> 模拟前端放大器的设计、仿真、验证	完成功能芯片	2025年4月 ~2026年
 ▶ 多通道TDC设计与电子学系统集成 ▶ 电子学系统与探测器系统连接进行测试 	完成系统集成	2026年 ~2028年

工作进展

4 总结

▶ 研究课题: 基于FPMT的高时间分辨时间测量系统的研制。

▶ 工作内容:

- ✓ 独立完成了TDC各模块的设计、仿真、验证的全流程研发;
- ✓ 对TDC整体版图进行后仿, 基本满足要求;
- ✔ 已提交流片,芯片将作为独立单元进行划片和测试。

指标	需求	后仿(tt27@VC=0.9V)
工艺	SMIC55	_
LSB	2ps	1.77ps
测量范围	>400ps	300ps~2us
DNL/INL	±0.5LSB/±1LSB	±1LSB/±2LSB

中国科学院高能物程研究所 Institute of High Energy Physics, CAS

请各位老师指正

Backup

1 事例驱动型环振

- ▶ 使能信号START/STOP为0时,延迟链各与非门输 出端状态为:
 - > 101010101010101
- ▶ 当使能信号置1时,环振按以下规律开始震荡:
 - > 101010101010101
 - > 001010101010101
 - > 011010101010101
 - ▶
 - > 010101010101010
 - > 110101010101010
 - ▶
 - > 101010101010101

2 测量结果计算

三步时间测量:

- ▶ 粗计数CC——STOP链开始振荡时START链振荡次数;
- ➤ 细计数CF——追上时刻STOP链振荡次数;
- ➤ 温度码N——游标追上的具体位置。
- ▶ 可用参数: START链延迟: τ_1 ; 延迟时间差: $\Delta \tau$;

≻ 测量时间T:

 $T = CC \times 30 \times \tau_1 + CF \times 30 \times \Delta \tau + N \times \Delta \tau$