

$e^+e^- \rightarrow \gamma \gamma$ as luminosity process at CEPC

Alexey Kharlamov, Tatyana Kharlamova, Andrey Kupich, Peter Krachkov, Victor Zhabin

Budker Institute of Nuclear Physics

Outline

- 1. Motivation
- 2. MC samples and selections
- 3. Distributions over main parameters
- 4. Possible systematical uncertainty sources
- 5. Summary

Motivation

According to the article [1] ee \rightarrow ee theoretical uncertainty is limited by hadronic vacuum polarization at the level 10⁻⁴, while for ee $\rightarrow \gamma\gamma$ process hadronic loops contribution is less then 10⁻⁵.

Current MC generators uncertainty for $ee \rightarrow \gamma\gamma$ is 10^{-3} at M_Z tested with BABAYagaNLO [2], if some NNLO corrections from [1] are applied the accuracy ~ 10^{-4} could be reached. To get accuracy 10^{-4} - 10^{-5} a full calculation of NNLO QED corrections and, eventually, of two-loop weak contributions will be ultimately needed.

[1] Carlo M. Carloni Calame et all, Physics Letters B, Volume 798, 2019, 134976 (corrections for the θ>20° are present in this paper)
[2] G. Balossini et all, Phys.Lett.B663:209-213,2008

MC samples

- We using CEPCSW tdr25.3.3, all MC is for E = 91.2 GeV
- $ee \to \gamma\gamma~1M$ events produced with BABAYagaNLO (0>10°) and converted to stdhep: /cefs/higgs/alexey/Converter/gg_cepc_E91_stdhep/
- Reco level output: /cefs/higgs/alexey/SamplesProd/E91_gg/Reco/
- MiniTree /cefs/higgs/alexey/TestNt/Init.C
- ee → ee 200k events is taken from: /cefs/higgs/zhagkl/stdhep/E91.2/2fermions/E91.2.Pe1e1.e0.p0.whizard195/
- $ee \rightarrow \mu\mu$ 1M events from /cefs/higgs/wanjiawei/work/E91_e2e2/Reco/
- $ee \rightarrow \tau\tau$ 200k events /cefs/higgs/wanjiawei/work/E91_e3e3/Reco/
- ee → bb 100k events /cefs/higgs/wanjiawei/work/E91_bb.e0.p0/Reco/
- $ee \rightarrow cc$ 100k events /cefs/higgs/wanjiawei/work/E91_cc.e0.p0/Reco/

Selections

Selections:

nc=0

- 1 < nn < 10 number of neutral particles
- $E_{\gamma 2} > 5 \text{ GeV}$ energy of the second energetic neutral particle
 - number of charged particles

 $40 < \text{Etot} < 100 \text{ GeV} - \text{sum of all particle energies (PFO_E)}$ $M_{2v} > 40 \text{ GeV} - \text{invariant mass of the 2 most energetic neutral particles}$

 $20^{\circ} < \theta_{1,2} < 160^{\circ}$ – polar angle of the 2 most energetic neutral particles Not used Ecal, $\Delta \varphi$, $\Delta \theta$ (could be used if some background will be present)

- ee $\rightarrow \gamma\gamma$ 497531 selected from 1M (if no $\theta_{1,2}$ cut 753790, correspond to 75% efficiency)
- $\textbf{ee} \rightarrow \textbf{ee}~\textbf{0}$ selected from 200k events
- ee $\rightarrow \mu\mu$ O selected from 1M events
- $ee \rightarrow \tau\tau$ 0 selected from 200k events
- $ee \rightarrow bb$ 0 selected from 100k events
- $ee \rightarrow cc \ 0$ selected from 100k events

Distributions of the selection variables are at the next slides.

Selections: number of particles

Photon conversion should be studied in detail with data to control systematics of the nc==0 selection

Selections: total energy and momentum

Processes with neutrino contamination in the final state could be rejected by energy and momentum conservation

Selections: Ecal and Hcal energy deposition

 $\gamma\gamma$ final state could be separated with total energy deposition at electromagnetic calorimeter. e+e- final state should have close to 2γ energy deposition in Ecal, but there is some issue (see backup slides).

HcalTotNorm =

Sum(Hcal_E)/(Sum(Hcal_E)+Sum(Ecal_E)) Normalized hadronic leakage could be used to suppress muons, hadrons, taus.

Selections: collinearity

Collinearity between 2 most energetic neutral particles is shown.

Selections: 2γ invariant mass, and energy of the second energetic photon

At $E = M_Z$ invariant mass of 2 photons allow to select $ee \rightarrow \gamma\gamma$.

Minimal photon energy is used to calculate number of neutral particles.

Angular distribution for $ee \rightarrow \gamma\gamma$ process.

Relaxed selection 10<0<170°

If we want to increase statistics by using $10 \le \theta \le 170^\circ$ selection then 10^{-4} contamination from the ee \rightarrow ee process appears.

To suppress this ee \rightarrow ee background the condition $abs(\Delta \phi_{2\gamma}) < 1.75$ could be used. In this case:

ee $\rightarrow \gamma\gamma$ 688081 events selected from 1M (~69% efficiency) ee \rightarrow ee 0 events selected from 200k (without $abs(\Delta \phi_{2\gamma}) < 1.75$ 2 events selected)

Possible systematical uncertainty sources

- 1. Theoretical total cross section should be known with accuracy 10⁻⁴
- 2. γ conversion should be studied with data
- 3. Detector acceptance at small angles (10-20°), beam spot position and width
- 4. Scale and resolution of the electromagnetic calorimeter, trigger efficiency
- 5. Backgrounds (are expected to be small: 0 events passed the selection criteria, and several cuts as Ecal, $\Delta \phi$, $\Delta \theta$ are not used yet)

Comparison with $ee \rightarrow ee$ could be used to check the systematical uncertainty. $ee \rightarrow \gamma\gamma$ cross section dependence on energy (line shape) could be used to control

background.

Summary

- 1. ee $\rightarrow \gamma\gamma$ luminosity measurement with main detector is possible at CEPC. This will be offline luminosity measurement, not the online monitoring.
- 2. Theoretical uncertainty could be decreased to the level 10⁻⁵ if NNLO calculations will be available
- 3. The backgrounds are expected to be small
- 4. Resolutions of the detector systems are well enough for precision ee $\rightarrow \gamma\gamma$ study

Cross section $ee \rightarrow \gamma\gamma$

Cross section is calculated with BABAYagaNLO [2]. Expected systematical uncertainty is 10^{-3} . To get the uncertainty 10^{-4} , corrections from [2] should be used (calculated for $20 < \theta < 160^{\circ}$).

 $\sigma(5 \le \theta \le 175^\circ) = 100.181 \pm 0.019 \text{ pb}$ $\sigma(8 \le \theta \le 172^\circ) = 80.299 \pm 0.035 \text{ pb}$ $\sigma(10 \le \theta \le 170^\circ) = 71.602 \pm 0.034 \text{ pb}$

 $\sigma(20 \le \theta \le 160^\circ) = 40.870(4)$ pb (calculated at [1] w h.o.) Only this calculation have 10^{-4} accuracy $\sigma(ee \rightarrow ee \ 20 \le \theta \le 160^\circ) = 2625.9 \text{ pb}$

 $\sigma(ee \rightarrow ee 5 \le \theta \le 175^{\circ}) = 17375.6 + -2.4 \text{ pb}$

 $\sigma(5 < \theta < 175^{\circ} \&\& |\Delta\theta| < 10^{\circ}) = 81.740 + -0.003 \text{ pb}$ $\sigma(8 < \theta < 172^{\circ} \&\& |\Delta\theta| < 10^{\circ}) = 65.978 + -0.006 \text{ pb}$ $\sigma(10 < \theta < 170^{\circ} \&\& |\Delta\theta| < 10^{\circ}) = 58.720 + -0.005 \text{ pb}$

[1] Carlo M. Carloni Calame et all, Physics Letters B, Volume 798, 2019, 134976 (corrections for the θ>20° are present in this paper)
[2] G. Balossini et all, Phys.Lett.B663:209-213,2008

At L= 1.15 pb-1 s-1 and $\sigma(10^\circ) = 71$ pb we have 81 event/s. To get 10⁸ events 14 days required. For 10⁻³ accuracy ~2 hour required.

Relaxed selection 5<0<175°

Some issue with electrons

Is /cefs/higgs/zhagkl/stdhep/E91.2/2fermions/E91.2.Pe1e1.e0.p0.whizard195/ ee \rightarrow ee sample?