Task 1: High Granularity Timing Detector

Zhijun Liang (IHEP) 梁志均(中国科学院高能物理研究所) 代表课题1

High Granularity Timing Detector (HGTD)

- HGTD aim to reduce pileup contribution at HL-LHC
 - Timing resolution is better than 30 ps (start) 50 ps (end) ps per track
 - 6.4 m² area silicon detector and ~ 3.6 \times 10⁶ channels
- 第一个用于对撞机实验的硅基高精度时间探测器
- First silicon-based timing detector in particle physics
- China team is making key contributions to HGTD
 - 100% LGAD sensor (90% IHEP + 10% USTC)
 - 44% detector assembly (34% IHEP + 10% USTC)
 - 100% front-end electronics board (IHEP +NJU)
 - ~33% flex tail (SDU)
 - 50% ASIC testing (IHEP)
 - >16% high-voltage electronic systems (IHEP+ SDU)
 - Software and performance (USTC, IHEP)

Research Content, Assessment Index (考核指标,研究内容)

研究内容: Develop all key components for the Timing Detector

- Developed radiation hard LGAD silicon sensor
- Build large-area ASIC+Sensor Module with robot
- Develop Front-end electronics, high voltage system, flexible cable

Assessment index (考核指标):

Sensor and detector module time resolution reach 30-50 ps

China team in HGTD management

- ATLAS China team played an important role in HGTD management team
 - Mar. 2021- Feb 2025, Joao was HGTD project leader, 1st PL in China LHC community
 - Mar 2023 Feb 2027, Zhijun is serving as deputy project leader
 - 5 person as L2 conveners (Jie Zhang, Mei Zhao, Zhaoru, Zhijun, Yusheng)
 - 3 person as Level-3 convener (Yunyun, Jie, Lei Fan)
 - 1 person as speaker committee (Yanwen)

Low Gain Avalanche Detectors (LGAD)

- Compared to APD and SiPM, LGAD has modest gain (10-50)
- High drift velocity, thin active layer (fast timing)
- High S/B, no self-triggering

国际形势: strong completion in LGAD development

- Lots of prototypes R & D in LGAD in last few years, active vendors includes:
 - IHEP-IME (China), USTC-IME (China), IHEP-NDL(China), FBK (Italy), CNM (Spain), HPK (Japan) ...

6

LGAD sensor after Irradiation

- 挑战: LGAD超快硅传感器技术首次用在对撞机实验,抗辐照能力是最大难点
- IHEP-IME and USTC-IME LGAD with carbon-enriched doping
 - Significantly lower acceptor removal ratio, the most radiation hard
- After $2.5 \times 10^{15} n_{eq}/cm^2$, LGADs can operated below 550 V \rightarrow avoid single event breakdown

LGAD sensors pre-production

- CERN chosen IHEP-IME sensor in tendering, contract signed in Feb 2025
 - IHEP-IME, FBK(Italy) and HPK(Japan) were completing in CERN contract
- The sensor production will be 100% done by China
 - First time domestic silicon sensor was used by CERN in LHC experiment
 - IHEP-IME: 90% (66% from CERN tendering+24% in-kind contribution): ~8 m²
 - USTC-IME: 10% in-kind contribution (~0.8 m²)
- Production status
 - IHEP
 - 1.7k sensor fabricated in pre-production
 - 0.4k sensor fabricated in Production
 - USTC
 - 0.27k sensor fabricated in pre-production
 - Overall status:
 - PRR review passed at July 25, 2024
 - Production is on-going
 - Pushing for the in-kind sensor contract

ALTIROC ASIC wafer process

- IHEP and IJClab/Omega share 50% of wafer probe test (~225 wafers)
 - Agreements was probe cards, and evaluation criteria should have been defined by IJCLab
 - IHEP is now much advanced compared to IJClab, leading in probe tests
- Probing full ASIC wafers before moving into production is essential.
 - 挑战: Has been the bottle neck for the project for sometime (in critical path)
 - FDR was scheduled at Oct 2024, now delayed to June 2025 (delayed by 8+ months)
 - Need to probe at least 10 wafer before ASIC PRR review
 - IHEP probed 7 wafers, IJClab has not probed a full wafer yet

Sensor + ASIC Hybrid

- IHEP is in charge of 50% of hybrids assembly
- 挑战: ATLAS ITK pixel has hybrid bump delamination issue, was delaying HL-LHC
- IHEP solved the bump delamination issue in old ALTIROC2 hybrids, addressed by
 - Switch to using thick sPolyimide layer for ALTIROC3/ALTIROC-A wafer → Softer with correct openin
 - ensor as baseline (775um), instead of thin sensor (300um)
- All ASIC wafers will send to IHEP for Polyimide layer deposition

ALTIROC2 hybrid incorrect Polyimide by TSMC

ALTIROC3 hybrids with correct Polyimide by IHEP/NCAP

Hybrid (bare module) performance

➢IHEP and USTC made key contribution to test beam,

➢IHEP member is the editor of HGTD sensor testbeam paper

Pre-production sensor+ ASIC(Altiroc3 and AltirocA) hybridization tested

Irradiated IHEP LGAD

at CERN and DESY test beam.

➤The timing resolution can reach <50ps.</p>

best time resolution reached O(42 ps)

Irradiated sensors(2.5e15 n_{eq}/cm²) with AltirocA Best time resolution:~43ps

USTC LGAD+ ALTIROCA

ATLAS

HGTD module assembly

- 6 module assembly site at HGTD (IHEP, USTC, Mainz, France, IFAE, Morocco)
 - IHEP is largest site, 34% of module (~3000)
 - USTC, 10% of module (~1000)
- IHEP designed and fabricated module flex
- IHEP and USTC developed gantry robot for automatic assembly
 - IHEP has set up for production, will produce 10 modules each time
 - USTC completed preparation, but can not get ASIC (US restriction)
 - Plan to do assemble at IHEP (share gantries, detailed plan being workded out with IHEP)

Gantry robot @IHEP

Gantry robot @USTC

HGTD module loading

- Achievement: IHEP made the first two ALTIROC3 detector unit
 - Use Gantry robot system to position all 15 modules and glue dispending
- USTC assembled detector unit with dummy modules.
- IHEP/LPNHE-Paris shared 50% of support unit (PEEK) manufacture
 - Support unit 100% fabricated in Chinese company

Put the support unit

Detector unit shipped to CERN

#Modules for ALTIROC-A/ALTIROC3/ALTIROC2

- 54 modules (4 detector units) installed in demonstrator
 - IHEP is leading module and detector unit prototyping
 - Contributed two detector units with ALTIORC3 modules

Cooling plate 4 DU (54 modules) FB 1F 4 DU (54 modules) PEB 1F PEB 1F + associated DUs integrated on the cooling plate							
		# Hybrids	#modules	Usage			
	ALTIROC-A	25 (23 by IHEP)	7	Test beams, hybrids irradiation			
	ALTIROC-3	219 (121 by IHEP)	106	Demonstrator, therma cycle study, test beam irradiations			

Peripheral Electronics Boards (PEB)

- ➢ IHEP and NJU is responsible for 100% PEB production .
- PEB is very challenging, Comments from P2UG review 2023 about PEB :
 Comparable with the most difficult boards for HEP projects
- IHEP and NJU developed 1st Peripheral Electronics Boards at early 2024
 - IHEP led designed PEB 1F, NJU manufactured 4 PEB prototyping
 - Selected the best company for production
- PEB FDR review in (May 2025), conditional passed
- PEB design in next step
 - Design: PEB 1B/2F/2B by IHEP; PEB 3B by NJU; PEB 3F by Morocco
 IHEP/ Jie Zhang will coordinate and verify all the designs

Demonstrator (大规模时间探测器样机)

IHEP and NJU played important role testing demonstrator system at CERN Noise levels were measured with 54 modules, no major problem 沙挑战: 1st time to demonstrate that in large-scale system level

High voltage power supply for HGTD

- IHEP developed HV power supplies with FULLDE Chinese company
 - Tested at IHEP and CERN, Passed FDR, now in pre-production
 - ▶ 挑战: 100nA current precision, completion with CANE
- ➤ 100% contract of HV assigned to FULLDE.
 - IHEP/SDU will contribute to 17.7% of the cost, including testing

Flex tails (柔性电子学尾板)

- SDU is responsible for 33% of flex tails production
- Prototype has been made, and satisficed the requirement
- Ready for pre-production

Assessment index status (考核指标):

\succ Final goal:

Final production sensor and detector module time resolution 30-50 ps
 This year (1st year):

- pre-production sensor and hybrids resolution better than 50ps
 - Irradiated sensor +ASIC hybrids can reach 43ps in test beam

	预期成果		考核指标 2				考核方式	本年度指标状	
课题目标「	预期成果 名称		预期成果类型	指标 名称	立项时已有指标值/状 态	中期指标值/状态	完成时指标 值/状态	(方法)及 评价手段4	态
在时方传电器等时的块出时好秒。 高间面感子模,间探与电间于。 频探研、、组出辨器端,辨为现前板。 发生,一个分别的一个。	主要成果	高糧度时间挤测器	 □新理论 □新原理 □新产 品 ■新技术 □新方法 □ 关键部件 □数据库 □软件 □应用解决方案 □实验装置/ 系统 □临床指南/规范 □工 程工艺 □标准 □论文 □ 发明专利 □其他 	时间分辨率 (关键核心 指标)	小面积原型硅传感器时 间分辨率好于 50 皮秒	为 ATLAS 升级研 制出正式的硅传 感器,时间分辨率 达到 30-50 皮秒	探测器模块 时间分辨率 达到30-50皮 秒	测试报告、 同行评审。	为 ATLAS 升 级项目研制出 预生产的硅传 感器,以及传 感器倒装焊后 做出裸模块, 时间分辨好于 50 皮秒

Summary and plan

Summary :

- Sensor pre-production done, passed CERN review, production on-going
- Prototyping done for Module and Electronics Boards , HV power, flex tails

Next Milestones

- Sensor production finished in 2026
- Electronics boards and flex tails completed in 2027
- Module and detector unit and HV power supply completed in 2028
- Detector assembly and Commissioning at CERN (2026 2029)

课题1:	High Voltage Power Supply					
High	Electronics, flex tails			н	ligh granularity	
Granularity Timina		Module and De	etector Unit		Detector Assembly	
Detector	LGAD se	nsor				
	第一年	第二年	第三年	第四年	第五年	2029
	2024					

