Current Status of Flex Tail and High Voltage module

<u>Kun Hu</u>¹, Chuijiang Meng¹, Xiang Li¹, Lei Fan², Zhijun Liang²

1.Shandong University (SDU)

2. Institute of High Energy Physics (IHEP)

07-06-2025

□Flex tail R&D

- ✓ PCB Structure
- \checkmark Testing: width & thickness, voltage drop, etc

□High voltage R&D

- $\checkmark \quad \text{HV crate}$
- $\checkmark \quad \text{HV testing}$

High granularity timing detector (HGTD):

- ✓ Flexible PCB between low-gain avalanche detector (LGAD) and peripheral electronics board (PEB) : 1/3 mass production;
- ✓ High Voltage (HV) module: ~18%;

FT Parameters:

Width : 36 mm thickness at two ends: ~200 um (<220m)

Impedance: Single-ended 50 Ohm +/-10%

Diff 100 Ohm +/-10%

Two ends: flex+ stiffener=219 um ; Flex =182 um

Line Parameters:

Differential pairs: 90 um line - 335 um gap Single lines: 90 um

Impedance:

Single-ended 50 Ohm +/-10% Diff 100 Ohm +/-10% Two ends: flex+ stiffener=194 um ;

Flex = 182 um

Stiffener layer on the bottom was decreased by 25 um.

Impedance of Power & Gnd Plane ANK

	Current (A)	Applied Voltage(V)	Voltage between A and B	Voltage between C and D	R value for vdda (m Ω)	R value for gnda (m Ω)
Current version	1.053	1.4	0.048	0.024	45.6	22.3
	0.977	1.3	0.045	0.022	46.1	22.4
	0.904	1.2	0.041	0.020	45.4	22.1
Previous version	1.034	1.4	0.071	0.033	68.6	31.9
	0.961	1.3	0.066	0.031	68.7	32.2
	0.888	1.2	0.061	0.029	68.7	32.6
		0.01		spp∧ →		

Nuclear Electronics Lab

New stackup: 45 um Cu

Flex tail Cat. 12L: 32.3 cm

Specifications

Power planes: <2.7 mΩ/cm

Ground planes: <0.7 mΩ/cm

	R _{plane} [mΩ]	R _{plane} [mΩ/cm]
vdda	45.6	1.41
	46.1	1.43
	45.4	1.40
gnda	22.3	0.69
	22.4	0.69
	22.1	0.68

	$R_{plane} [m\Omega]$	R _{plane} [mΩ/cm]	E
vddd	42	1.30	
	41.8	1.29	
2	41.8	1.29	
gndd	19.5	0.60	
	19.3	0.60	
	19.7	0.61	

The test results meets the requirement of the PDR specifications.

54 FT production for demonstrator

L[mm]	Category	L [mm]	Category	Serial Number	Nr or pieces to be	Company	Funding
646,6	1	646 G		0.000000011001	produced	a t -	a 1 -
640,5	2	646, 6	1	20WFTC11F01	2	China	China
637.6	3	640, 5	2	20WFTC11F02	2	China	China
614.5	4	637, 6	3	20WFTC11F03	2	China	China
608.4	5	614, 5	4	20WFTC11F04	2	China	China
605.5	6	608, 4	5	20WFTC11F05	2	China	China
582,2	7	605, 5	6	20WFTC11F06	2	China	China
576,1	8	582, 2	7	20WFTC11F07	2	China	China
573,2	9	576, 1	8	20WFTC11F08	2	China	China
550,1	10	573, 2	9	20WFTC11F09	2	China	China
544,0	11	550, 1	10	20WFTC11F10	2	China	China
541,1	12	544, 0	11	20WFTC11F11	2	China	China
518,0	13	541, 1	12	20WFTC11F12	2	China	China
511,9	14	518, 0	13	20WFTC11F13	2	China	China
509,0	15	511, 9	14	20WFTC11F14	2	China	China
483,0	16	509, 0	15	20WFTC11F15	2	China	China
		483, 0	16	20WFTC11F16	2	China	China

Totally, the demonstrator has 54 flex tails. The first 16 flex tails are relatively longer. German and Slovenian cover the cost of the others.

Status & Plan:

- ✓ module demonstrator needs 54 FT with different lengths, used to validate the detector performance. First 16 FT with longer lengths are produced and tested and had been sent to CERN.
- ✓ Discuss with Lucia (Germany) and Gregor (Slovenia) about the lowest possible quotations. We may discuss the specifics very soon.

caliper

micrometer

The overall design of HV PS

- High Voltage power supply is to power each module with a separate individual floating HV channel, and the bias voltage of the sensors must be adjusted due to the gain degradation with the received fluence.
- **8512** channels in total will be required.

HV power supply

- One high voltage power supply has 16 HV modules. Each HV module has 14 HV channels.
- The crate is made of aluminum and each HV module can be removed and replaced.

- After the PDR, we got two HV power supplies prototype with 3 modules. The supplies was tested in IHEP firstly. Then one HV prototype was sent to CERN.
- 1 individual grounding HV PS crate and two common grounding HV modules are in IHEP.
 - 1 common grounding HV PS crate and one individual grounding HV modules are in CERN.
- The two types of HV PS were tested with filter, PEB and sensor module.

Interlock connector

- When interlock is 3.3V, the HV supply can be operated.
- After the high voltage loses the interlock signal, the time required to decrease from -900V to -50V is about 500us. About 1ms to -1V (without loading)
- Ramp up/down speed can be adjusted based on the requirements
- By testing, STA-PWR and STA-HV can correctly display the status of the device.

HV prototype Test in IHEP

1 sensor module is tested with HV PS and filter. Other 13 channels are running with resistors.(300K&3mA) Nosie level is almost same compared with 2410.

HV power supply bidding result

- The bidding process for the high-voltage power supply project, involving IHEP and Shandong University, has been completed.
- The bidding result is showed on the China Government Procurement Network.

https://www.ccgp.gov.cn/cggg/zygg/zbgg/202501/t20250122_24105341.htm

http://www.cgw.sdu.edu.cn/zb/jggghwl/15849.chtml

• The contract was also finished.

The HV manufacturer is producing PCB and the **first two crates will be ready in July**. Mass production will start once the two crates pass all the testings:

- 1, After the Pre-production(2 crates), Shandong University students and IHEP will go to the HV company for Factory test.
- 2, During the Mass production(38 crates), 1~2 students from Shandong will go to Fullde four times and stay at the company for testing.

- 1 After the Pre-production, the acceptance test is very important for the PRR. There will be module 0 testing. I believe a lot of person in IHEP and Shandong will go to test together.
- 2 During the Mass production, 1 or 2 students from Shandong or IHEP will go to CERN four times to test HV PS together.

Training at IHEP

Thank you for your listening!

Backup

- Rj45 is used for communication. USB is used for updating the firmware.
- Each high-voltage connector has 16 pairs of pins. 14 pairs are used for high voltage output (HV/GND) . 1 pair of pins would be used safe loop.
- STA-PWR and STA-HV can show the status of the device by level signal.
- LED show the working condition.

20

HV prototype Test in IHEP

Test

Module #8

Module #9

- Test the IV characteristic curve of two real sensor modules(#8 and #9) with HV PS and Keithley 2410(1pA). The test results are also very similar.
- By comparing the results of the noise levels , there is no difference between the test results of 2410 and HV PS.

- The bidding process for the high-voltage power supply project, involving IHEP and Shandong University, has been completed.
- The bidding result is showed on the China Government Procurement Network. <u>https://www.ccgp.gov.cn/cggg/zygg/zbgg/202501/t20250122_24105341.htm</u> <u>http://www.cgw.sdu.edu.cn/zb/jggghwl/15849.chtml</u>
- The contract was also finished.

	CHs	Cost for one channel	Total cost
IHEP	8174(mass-production)	876.4 RMB/channel	7163000.05RMB
Shandong University	448 (pre-production) + 338(mass-production)	876.7 RMB/channel	689141.8RMB
total	448(pre)+8512		7852141.85RMB=950887.27 CHF