

Timing Pixel Detector Status

Zhe Cao

On behalf of Timing Pixel Detector Group

2025.06.07

➤ Introduction

- ≻Sensor Design
- Electronics Design
- Summary and Plan

Introduction

- ATLAS experiment in HL-LHC: need to improve spatial resolution and radiation tolerance.
- \succ HL-LHC: High Luminosity \rightarrow Pile-up effects \rightarrow High time precision
- Future: used for 4-D tracking, serving as a technological reserve for the next generation.

AC-LGAD R&D

AC-LGAD R&D: pixelated AC-LGAD

- □ Large pad-pitch size: 1 mm-2 mm
- □ To study the process parameter
- Spatial resolution be better

 \square as decreasing the n+ dose (from 10 P to 0.2 P)

> New design:

Pixelated AC-LGAD with different pad-pitch size: 50um-100um, 100um-150um, 100um-200um

- ➢ Submitted in March 2025
- Testing will be done after sensors be received on August 2025

THEP LALS

> Design Challenges of digital ASIC:

	Digital Index				
ТоА	<100 ps LSB @8 bits/hit				
ТоТ	4 bits/hit				
Hit rate	~75 kHz/pixel				
Trigger latency	10 µs				
Trigger rate	1 MHz				

University of Science and Technology of China

- ➤ Modules for the Readout ASIC:
 - Cores Array: 1 core includes 8×8 pixels, the cache and trigger matching of hit data
 - End of Column: connects to the core array, the encoding and readout of hit data

Chip Bottom: connects to the all columns, the concentration and output of hit data

Overview

- Function: receiving and buffering data from TDC, and processing the trigger matching.
- \succ Each core is same as others and they are connected in cascade.
- > Shared memory: reduce storage space significantly

医神学技术 たる University of Science and Technology of China

- > Shared memory structure:
 - ◇ Reduce storage space significantly
 - ♦ Different position with different clusters

pixel

Θ

Ð

♦ Different interleaved grouping

Incident angle

 θ background

pitch

physics

 \rightarrow Eliminate the cluster in the neighboring pixels

epi

According to hit data simulation, we compared different shared map (different shared pixels with different grouping in different position of the detector.)

4 pixels

8 pixels

Core: core design

- > All cores are connected in a chain.
- Global signals and data bus are spread by this chain in the core column
- \succ In the core, there are several regions are connected in a chain.

- \succ Every region shared one memory.
- > Two priority arbiter for LEs and TEs, to manage the address of memory
- > Every cell in shared memory need a FSM to process trigger matching

Core: simulation

- > The cores' results (in130 nm):
 - □ Lower density and handling high data rate

□ Lower power

> Conclusion: shared mem. can reduce power and area obviously.

The power comparison

EOC

- EOC: controlling the readout of cores, and packaging the hit data
- Packaging the data according to physical position can reduce the data bits. It also can compressing the hit map.
- Cluster size: Packaging data along the *eta* direction is the most useful way (black box),
- Pixel data: read by shared map (not neighboring, red & blue square)
- Remapping: turning shared map into physical map (necessary).

EOC: Remapping and encoding

- Encoding: when data is packed together, the hit map can be compressed.
- Hoffman: according to the frequency of hit map, the entropy is the least.

Encoding	Entropy			
Bitmask		8		
Binar	4.74			
Independent address		6.89		
Multi- step Hoffman	4-6-14	4.27		
	2-6-14	4.86		
	3-6-14	4.10		

region address	hit map	hit data

End of Column

Bottom

- Sensors: AC-LGAD pixelated sensors with large pitch is tested and new submission of AC-LGAD designed with smaller pixel size is under fabrication.
- Electronics: the scheme of the chip has been designed (digital part): Pixel array, EOC, Bottom

Timetable and milestones

1、年度: 2023 年 12 月-2024 年 5 月

任务:测试硅微条传感器关键性能,掌握模块生产全部流程。开展时间像素探测器文献 调研,分析明确设计需求。

考核指标:通过硅微条模块站点考核。确定时间像素探测器技术路线。

成果形式: 硅微条探测器国际合作组内部评审报告, 时间像素探测器内部报告。

任务:测试读出芯片关键性能,开始制备长硅微条模块,在卢瑟福实验室完成多桶板小 系统联调测试,在 CERN 搭建桶板接收测试系统。完成时间像素探测器传感器与前端 电子学整体架构设计和功能模块划分。

考核指标:研制出合格的长硅微条探测器模块,完成时间像素探测器技术设计报告。 成果形式:长硅微条探测器模块合作组内测试报告,时间像素探测器技术设计报告。

3、年度: 2024年12月-2025年5月

任务:测试传感器、芯片在不同辐照条件下的性能表现,制备长硅微条模块。时间像素 探测器完成传感器增益层设计与第一版原型验证电路功能层级设计。

考核指标:完善长硅微条探测器模块研制流程,完成时间像素传感器增益层与验证电路 功能层设计验证。

成果形式:长硅微条探测器完整流程优化合作组内报告,时间像素探测器初步设计验证报告。

- 2024-11: Architecture design and functional module division ——completed
- > 2025-5:

Gain layer of sensor ——completed

□ Functional design of the electronics ——completed

- > Tape-out plan:
 - New submission of AC-LGAD is under fabrication, taped out in August this year
 - □ Complete the physical design of the entire chip, adding the analog part, in the second half of this year.
 - Tape out at the beginning of next year, in the 130 nm process (SMIC in China).

^{2、}年度: 2024年6月-2024年11月

Thanks

	预期成果		考核指标2				考核方式	
课题目标'	预期成果名称		预期成果类型	指标 名称	立项时已有指 标值/状态	中期指标 值/状态 ³	完成时指标 值/状态	 (方法)及 评价手段⁴
在高颗粒度时间探 测器方面,研发硅传 感器、前端电子学、 探测器模块组装等, 研制出高时间分辨 率的探测器模块与 前端读出电路板,其 时间分辨率好于 50 皮秒。	1 主要♪	硅径迹探 测器模块	□新理论 □新原理 □新产品□新技 术□新方法 □关键部件 □数 据库 □软件 □应用解决方 案 ■实验装置/系统□临床指 南/规范□工程工艺 □标准 □论文 □发明专利 □其他	硅微条径迹探测器 空间分辨率 (关键核心指标)	原型模块 25 微米	预生产模 块 25 微米	径迹探测器 25 微米	测试报告、 同行评审。
	成 果 2 息由 素杉	有时间信 息的硅像 素探测器	 □新理论 □新原理 □新产品□新技 术□新方法 □关键部件 □数 据库 □软件 □应用解决方 案 ■实验装置/系统□临床指 南/规范□工程工艺 □标准 □论文 □发明专利 □其他 	硅像素探测器时间 分辨率 (关键核心指标)	好于 10ns	好于 1ns	好于 100ps	仿真验证和 实验室测 试,测试报 告
科技报告考核指标	序号		报告类型 ⁵ 数量		提交时间		公开	类别及时限。
	1		课题年度技术进展报告	1	2024年12月		公开	
	2 3 4		课题中期技术进展报告	1	中期检查前		公开	
			课题年度技术进展报告	1	2026年12月			公开
			课题年度技术进展报告	1	2027年12月		公开	
	5		课题最终技术进展报告	1	2028年12月			公开
其他目标与考核指标								

课题目标、预期成果与考核指标表