

Develop FPGA-Based 144-Channel DAQ in RPC Phase-II Upgrade

Jiaxuan Li On behalf of RPC group @ USTC 2025.06.06

Outline

Motivation

• FPGA-Based 144-Channel DAQ design

- Hardware design
- Principle diagram in FPGA
- Software
- Performance of the TDC
 - Test with the signal generator
 - Test with RPC detector

• Summary

Motivation: Cosmic ray test in RPC production

Monitor singlets

- used for trigger
- 2/3 coincidence
- the largest size of BIS singlets (Type BIS-1, 6 FE boards width)

Test singlets

• different types to test \rightarrow Align with monitor singlets

Advantages

- can operate the test singlets easliy
- monitor singlets are very close together \rightarrow a better triggering rate (try to accept all hit angles)

DAQ design goals

- 288 channels
- TDC function with backup chip
- or Manchester decoder with baseline chip
- three trigger modes: external/self/master-slave

test singlets

muon

As small

Overall signals system

Signals "spyder" board

- The Signals "spyder" board is an adaptor board with 4 connectors.
- Located directly within the service boxes of the detector
- It couples in a single **68 pins** cable the signals of 3 FEBs of a readout panel column

Front-end board

- Backup solution
- 20 pins connect with spyder board
 - [↑]16 differential output (not LVDS)
 - 1 discriminator_OR 1.3LVTTL

L3 GND

Discriminator FE ASIC DCT Derivative LVDS DCT Derivative LVDS DCT DCT Derivative LVDS DCT DCT</li

2025/6/7

DAQ hardware design

Receive data from FE board

18 FE boards = **144 channels** in total.

Integrates 144 channels **polarization circuitry**. Capable of receiving signals from **baseline or backup FE**

Temperature sensor, SMA, buttons, fan, **cascading signals** between two boards, and etc.

2025/6/7

Principle diagram in FPGA

Input sample part

- Phase shift sampling clock: 500MHz
- 8 bit thermometer code
- Analysis part
 - 8 bit \rightarrow 3 bit fine count
 - Analyze edges \rightarrow time information
- Trigger logic
 - External/self/master-slave
- Ethernet communication part
 - Transfer the data to the total FIFO
 - Gigabit Ethernet

Software design

Data structure: 64 bits

Performance: time resolution

Test setup

• Two pulse signals as trigger and stop

Width: 21ns Trigger delay: 400ns

 $\frac{LSB^2}{12} + \sigma_{time}^2 + \sigma_C^2 + \frac{{\sigma_L}^2}{4}$

• Standard deviation is the time resolution

Test results

 $\sigma =$

Conclusion: Some channels meet the time resolution requirement, but further optimization is still needed.

Performance with RPC detector: setup

Trigger System: three scintillators operate in coincidence to generate the external trigger signal.

RPC Configuration utilizes two RPCs:

BIL: standard RPC BIS: implements eta-eta readout

Results

DAQ system can realize TDC function, data taking and transmission.

Summary and Plan

Hardware architecture: passed initial validation, no critical issues observed.

TDC module: key functions verified, optimization in progress.

Readout system: full-chain testing pending.

≻Next step:

Test with multi-DAQ boards

Cosmic ray test in September at BB5

Back up

• leading and falling

Back up

• cluster size

Performance with the signal generator: nonlinearity

Test setup

The test setup used two clocks that were not completely independent. A retest is currently in progress; the previous results are shown below.

- Secondary contribution to σ
- Convenient method: offline modification

$$\sigma = \sqrt{\frac{LSB^2}{12} + \sigma_{time}^2 + \sigma_C^2 + \frac{{\sigma_L}^2}{4}}$$