

Simulation Studies of The CEPC Trigger System

Boping Chen, Fei Li On behalf of CEPC TDAQ Group

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

May. 21th, 2025

Introduction

TDAQ overall design:

- Data fully read out from front-end electronics
- Level 1 hardware trigger(L1) + High level trigger(HLT)
- L1: Calorimeter+Muon+(Tracker?)
- HLT: Full detector information
- Simulation manpower:
 - Boping Chen

- Dong liu (Graduate student)

Simulation study

- MC sample simulation (<u>CEPCSW</u>)
 - Physical processes simulation
 - Signal background mixing
 - Cosmic ray study
 - Beam background study
 - Di-photon process
 - Electronic noise
- Trigger algorithm study
 - Vertex, Tracker(ITK, OTK), TPC, Calorimeter, Muon
 - L1 algorithm: fast track reconstruction, calorimeter cluster, Muon track...
 - HLT algorithm: track trigger, event size compress(for TPC, Calorimeter), ... (PID?)
- Hardware firmware/HLT development
- Trigger efficiency (Higgs/background/... rate)

Challenge: track trigger(page 17,18), TPC (page 19)

ECAL Calorimeter module

- Basic module for ECal: ~1.5x1.5x40cm³
 - Cluster modules into 40x40cm² supercell
 - Use supercell as trigger input
 - 15(Z)x32(φ) in Z-φ plane
 - Left&middle: single event ECal Barrel energy distribution
 - Right: Maximum ECal module energy distribution

Calorimeter energy threshold efficiency

- A set of energy threshold applied to ECal/HCal, Barrel/Endcap
- Very good efficiency for most of the physical process

Process	Efficie	ency	Process	Efficie	ency	Process	Efficie	ency	
Higgs production									
$Z(\nu\bar{\nu})H(\gamma\gamma)$	>0.9	999	$Z(\nu\bar{\nu})H(\gamma Z)$	0.99	99	$Z(\nu\bar{\nu})H(b\bar{b})$	>0.9	999	
$Z(\nu\bar{\nu})H(\mu^+\mu^-)$	0.97	79	$Z(\nu\bar{\nu})H(\tau^+\tau^-)$	0.996		$Z(\nu\bar{\nu})H(W^+W^-)$	>0.999		
$Z(\nu\bar{\nu})H(W^+W^-)$ lep	0.99	95	$Z(\nu\bar{\nu})H(ZZ)$	>0.9	999	$Z(\nu\bar{\nu})H(ZZ)$ lep	0.99	0.992	
Two Fermions	ZH mode	Z mode		ZH mode	Z mode		ZH mode	Z mode	
$q \bar{q}$	0.998	>0.999	$\mu^+\mu^-$	0.949	>0.999	$\tau^+\tau^-$	0.958	0.995	
Bhabha	0.998	>0.999							
Di-photon process	ZH mode	Z mode		ZH mode	Z mode		ZH mode	Z mode	
$\gamma\gamma ightarrow b\bar{b}$	0.888	0.996	$\gamma\gamma \to c\bar{c}$	0.846	0.973	$\gamma\gamma ightarrow q \bar{q}$	0.533	0.706	
$\gamma\gamma ightarrow \mu^+\mu^-$	0.154	0.258	$\gamma\gamma \rightarrow \tau^+\tau^-$	0.514	0.785				
Background	Veto effi	ciency							
	ZH mode	Z mode							
Beam Background	0.982	0.991							

Table 12.8: Baseline calorimeter energy threshold efficiency at the ZH mode for 50 MW and the Z mode for 12.1 MW.

Muon detector

Number of hit

- Blue line: baseline cut for the number of hit
 - Barrel > 1
 - Endcap with R>1m > 1
- Efficiency:
 - $H \rightarrow \mu\mu$ =0.998; ee $\rightarrow \mu\mu$ =0.979; Background=0.016

Tracker: Vertex

Left: $Z(vv)H(\mu\mu)$; Right: Beam background

20

-20

-40

Too many hits from beam bkg, difficult to use

Tracker: ITK

- Left: Z(vv)H(μμ); Right: Beam background
- Less hits than vertex
 - Only 3 layers(+1 layers for OTK), difficult to do tracking
 - May be able to reconstruct 2D track, need further study
- Combine ITK/OTK and Muon doesn't improve Muon efficiency

TPC

- Reads all TPC raw data, and uses trigger info to integrate 34 µs data segments sent to DAQ
- Data is packed in blocks by Trigger ID for parallel processing
- Need to study the algorithm to match the TPC data using other subdetector information, and compress the TPC data
- New physics/low energy event may also need TPC to trigger

Summary and Outlook

- L1 Trigger simulation & algorithm results are shown in this talk
 Future:
 - Detail calorimeter cluster algorithm: isolation/depth/location(back to back)/CoM...
 - Tracking algorithm for L1
 - Detector noise
 - ML(BDT, DNN, CNN...)
 - Trigger for BSM

Physical event rate

- Higgs mode (240GeV) bunch crossing rate: 1.33 MHz
 - Higgs boson production rate: ~0.017Hz
 - qq rate: 5Hz
- Z mode (91GeV) bunch crossing rate: 12/39.4 MHz
 - Visible Z rate: 10.5/41.9 kHz
- Cosmic ray: ~56 Hz
- Di-photon processes: 4kHz ~ 9kHz
- Generated by BesTwoGam(only for Di-photon, need further study), Whizard(for all other processes)
- Detector simulation using CEPCSW tdr25.3.6

Table 12.1: CEPC baseline parameters

Operation phase	Ι			II	Ш
Run mode	ZH	Z	W	Z	$t\bar{t}$
SR power per beam (MW)	50	10			
Bunch number	446	3978	2162	13104	58
Bunch spacing (ns)	277 (x12)	69.2 (x3)	138.5 (x6)	23.1 (x1)	2700.0 (x117)
Train gap (%)	63	17	10	9	53
Bunch crossing rate(MHz)	1.33	12	6.5	39.4	0.17
Luminosity per IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	8.3	26	26.7	95.2	0.8
Run time (years)	10	1	1	2	5
Event yields [2 IPs]	4.3x10 ⁶	2.9x10 ¹¹	2.1x10 ⁸	2.0×10^{12}	6x10 ⁵

Table 12.2: Expected event rate at the ZH mode for 50 MW

Processes	Cross section (fb)	Event rate (Hz)
ZH	203.66	0.017
Two Fermions background (exclude Bhabha)	6.4×10^{4}	5.3
Four Fermions background	1.9×10^4	1.6
Bhabha	1.0×10^6	80
$\gamma\gamma \rightarrow bb$	$1.6 imes 10^6$	128
$\gamma\gamma \to cc$	2.1×10^6	168
$\gamma\gamma \to qq$	59.8×10^{6}	4784

Table 12.3: Expected event rate at the Z mode for 10 MW

Processes	Cross section (fb)	Event rate (Hz)
qq	31×10^6	7970
$\mu\mu$	$1.5 imes 10^6$	400
ττ	$1.5 imes 10^6$	396
Bhabha	$6.6 imes 10^6$	1714
$\gamma\gamma \rightarrow bb$	2.8×10^5	73
$\gamma\gamma \rightarrow cc$	$5.1 imes 10^5$	132
$\gamma\gamma \to qq$	34.7×10^6	9011

MC simulation at Higgs mode

- Physical processes:
 - Higgs: ee→ZH
 - Z→ee, μμ, ττ, νν
 - $H \rightarrow bb$, WW, $\tau\tau$, cc, ZZ, XX, ZX, $\mu\mu$...
 - − 2/4 fermions: ee \rightarrow qq, μμ, ττ, ZZ, WW...
 - − Di-photon: $ee \rightarrow ee + XX \rightarrow ee + bb/cc/qq$
- Background:
 - Beam induced background(10000 events by Haoyu)
 - Each event contains 10 BX(safe factor 10)
 - Need further study for the background process
 - Detector noise and other background(to be studied)

Signal MC simulation: $ee \rightarrow ZH$

- ZH sample presented in this talk
 - Z→vv
 - $H \rightarrow bb$, WW, $\tau\tau$, ZZ, XX, ZX, $\mu\mu$
 - Final state: jet, photon, and muon
 - bb, XX and μμ will be shown as example
 - 5000 events for each process

Table 11.3: The branching ratios and the relative uncertainty for a SM Higgs boson with $m_H = 125 \text{ GeV} [39, 40]$.

Decay channel	Branching ratio	Rel. uncertainty
$H\to\gamma\gamma$	2.27×10^{-3}	2.1%
$H \to Z Z$	2.62×10^{-2}	$\pm 1.5\%$
$H \to W^+ W^-$	2.14×10^{-1}	$\pm 1.5\%$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
$H \to b \bar{b}$	5.82×10^{-1}	$^{+1.2\%}_{-1.3\%}$
$H \to c \bar c$	2.89×10^{-2}	$^{+5.5\%}_{-2.0\%}$
$H\to Z\gamma$	1.53×10^{-3}	$\pm 5.8\%$
$H \to \mu^+ \mu^-$	2.18×10^{-4}	$\pm 1.7\%$

Barrel supercell energy distribution

- Large energy deposition(>10GeV) for signal(H→XX, H→bb)
- Very tiny energy deposition(<0.5 GeV) for beam background, mostly from pair production
 - One beam background event contains 10 BX

Endcap supercell energy distribution

- Similar to barrel for signal
- Relatively large energy deposition(~5GeV) for beam background
- Use supercell energy as input

Maximum energy distribution

- Maximum energy for each sub-detector
- Beam induced background contributes little(<1GeV) on calorimeter, except ECal Endcap
- A baseline set of energy threshold
 - Background efficiency is less than 0.5% when any single threshold is used alone
 - A blue line shows the value for Endcap

Subdetector	Threshold(GeV)		
ECAL Barrel	0.38		
ECAL Endcap	7.7		
HCAL Barrel	0.05		
HCAL Endcap	0.33		

Efficiency vs threshold

- Threshold value can be modified for different physics requirement
- A group of sets are tested based on the baseline set, by multiply a "threshold factor" to all the four threshold
- Only the ZH production with an efficiency below 99%, the di-photon processes and background are shown
- Signal processes are affected if the final state contains only neutrinos and muon

Software trigger

- Offline track reconstruction
- Build "CompleteTracks" from all tracking subdetector
- Beam background:
 - ~1s / event for both ZH and Z mode
 - Efficiency: ~20%(N track > 0)
 - Other tracking information(pT) will be studies
 - Need more background events for HLT

Total_name	Abbreviation	Process	Final states	X-sections(fb)	Events generate	Scale factor	Events expected	Total	
		sw_10mu	e,nue,mu,nuµ,T	436.70	2205350	110.89%	2445520		
single_w single_w	sw_10tau	$e, nu_e, tau, nu_{\mu,\tau}$	435.93	2201471	110.89%	2441208	19517400		
		sw_sl0qq	e,nue,up,down	2612.62	13193721	110.89%	14630672		
		sze_l0e	uncertain:e ⁻ , e ⁺ , e ⁻ , e ⁺	78.49	396388	110.89%	439544		
		sze_10mu	e^-, e^+, μ^-, μ^+	845.81	4270357	110.92%	4736536		
	ain also and	sze_10nunu	$e^-, e^+, v_{\mu,\tau}, \overline{v}_{\mu,\tau}$	28.94	146138	110.90%	162064		
	single_sze	sze_l0tau	$e^{-}, e^{+}, \tau^{-}, \tau^{+}$	147.28	743781	110.89%	824767		
		sze_sl0dd	e,e,down,down	125.83	635351	110.91%	704648	0072051	
single_z		sze_sl0uu	e,e,up,up	190.21	960556	110.89%	1065176	9072931	
		sznu_10mumu	$v_e, \overline{v}_e, \mu^-, \mu^+$	43.42	219278	110.89%	243152		
		sznu_10tautau	$v_e, \overline{v}_e, \tau^-, \tau^+$	14.57	100000	81.59%	81592		
	single_sznu	sznu_s10nu_down	$v_e, \overline{v}_e, down, down$	90.03	454649	110.89%	504168		
		sznu_s10nu_up	$v_e, \overline{v}_e, up, up$	55.59	280749	110.88%	311304		
zorw	zorw	szeorsw_101	$e^-, e^+, v_e, \overline{v}_e$	249.48	1259867	110.89%	1397088	1397088	
		ww_h0ccbs	cq,cq,bq,sq	5.89	100000	32.84%	32984		
		ww_h0ccds	cq,cq,dq,sq,	170.18	859417	110.89%	953008		
	ww_h	ww_h0cuxx	cq,uq,down,down	3478.89	17562880	110.93%	19481784	50026214	
		ww_h0uubd	uq,uq,bq,dq	0.05	100000	0.28%	280		
ww	ww_h0uusd	uq,uq,sq,dq	170.45	860029	110.99%	954519	50826214		
	ww_l	ww_1011	$mu, tau, nu_{\mu}, nu_{\tau}$	403.66	2036465	111.00%	2260496		
	nov al	ww_sl0muq	mu,nu,up,down	2423.43	12238338	110.90%	13571207		
	ww_51	ww_sl0tauq	tau,nu,up,down	2423.56	12238057	110.90%	13571936		
		zz_h0cc_nots	cq,cq,(dq,bq),(dq,bq)	98.97	499812	110.89%	554232		
	az b	zz_h0dtdt	down,down,down,down	233.46	1178944	110.89%	1307376		
	22_11	zz_h0utut	up,up,up,up	85.68	432679	110.89%	479808		
		zz_h0uu_notd	uq,uq,(sq,bq),(sq,bq)	98.56	496703	111.11%	551936		
		zz_104mu	$\mu^{-}, \mu^{+}, \mu^{-}, \mu^{+}$	15.56	99902	87.22%	87136		
		zz_104tau	$\tau^-, \tau^+, \tau^-, \tau^+$	4.61	99901	25.84%	25816		
	77.1	zz_10mumu	$v_{\tau}, \overline{v}_{\tau}, \mu^{-}, \mu^{+}$	19.38	99900	108.64%	108528		
ZZ		zz_10taumu	$\tau^{-}, \tau^{+}, \mu^{-}, \mu^{+}$	18.65	99900	104.54%	104440	6389430	
		zz_10tautau	$\nu_{\mu}, \overline{\nu}_{\mu}, \tau^{-}, \tau^{+}$	9.61	99900	53.87%	53816		
		zz_sl0mu_down	mu,mu,down,down	136.14	705743	108.80%	762383		
		zz_sl0mu_up	mu,mu,up,up	87.39	448844	109.03%	489383		
zz_sl	zz_sl0nu_down	$nu_{\mu,\tau}, nu_{\mu,\tau}, down, down$	139.71	708671	110.40%	782376			
	zz_sl0nu_up	$nu_{\mu,\tau}, nu_{\mu,\tau}, up, up$	84.38	429037	110.14%	472528			
	zz_sl0tau_down	tau,tau,down,down	67.31	339928	110.89%	376936			
		zz_sl0tau_up	tau,tau,up,up	41.56	209898	110.88%	232736		
		zzorww_h0cscs	cq,sq,cq,sq	1607.55	8117636	110.90%	9002280		
2205999	7705999	zzorww_h0udud	uq,dq,uq,dq	1610.32	7811146	115.45%	9017792	20440840	
2201 W W	2201 W W	zzorww_10mumu	$mu, mu, nu_{\mu}, nu_{\mu}$	221.10	1116551	110.89%	1238160	20110010	
		zzorww_10tautau	$tau, tau, nu_{\tau}, nu_{\tau}$	211.18	1066451	110.89%	1182608		

Cross section

6 8

11

12

- **<u>CEPC software</u> & Sample generation for CEPC**
- Sample generated by Kaili

CEPC Software	Guides Rele	ases Packages	News Physics Stu	by Validation		
Introduction - Installation and Quick Start -	240 Higgs	GeV signal				IZ Edit this page ✓ Request docs chang III houses in 674ab
SURAV (Sim-Rec Schware Chain) - Vertil Generation - Introduction - Introduction - Douting samples - Customized generation - Digitization - Digitization - Reconstruction - Analytis -	Proces Higgs s	s <u>f</u> L ignal 5 ab 5 ab 5 ab 5 ab 5 ab 5 ab	Final static -1 ffi -1 e^+e^-j -1 $\mu^+\mu^-j$ -1 $\tau^+\tau^-j$ -1 τ^+q^-j -1 $q\bar{q}J$ -1 $q\bar{q}J$	es X-sections (fb) H 203.66 H 7.04 H 6.77 H 6.75 H 45.29 H 136.81	Comments all signals: including 22 fusion all neutrinos (27+WW fusion) all quark pars (2→ qQ).	C Contents on this page: 20 Over ingo signal 2 demons had yound 4 emmo had yound 2 and 2 ango signal 2 minor had yound 2 homos had yound 3 minor had yound
Peretopuly – Development – Sohwer Architecture – Performance – Analysis Examples – DAQ & Prototype Test – Computing – About Web	Proces e*e*	s $\rightarrow e^+e^-$ $\rightarrow \mu^+\mu^-$ $\rightarrow r^+\tau^-$ $\rightarrow \nu \bar{\nu}$ $\rightarrow \nu_{\bar{\nu}}\bar{\nu}_e$ $\rightarrow \nu_{\bar{\nu}}\bar{\nu}_\mu$ $\rightarrow \nu_{\bar{\nu}}\bar{\nu}_\mu$ $\rightarrow \mu_{\bar{\nu}}\bar{\nu}_\mu$ $\rightarrow u\bar{u}$ $\rightarrow dd$ $\rightarrow c\bar{c}$	1 5 ab ⁻¹ 5 ab ⁻¹	Final states $\kappa^{+}\kappa^{-}$ $\mu^{+}\mu^{-}$ $\tau^{+}\tau^{-}$ $\nu\sigma'$ $\nu_{\mu}\nu_{\mu}$ $\nu_{\mu}\nu_{\mu}$ $\nu_{\mu}\nu_{\mu}$ $\phi \eta$ $\alpha \eta$ $\alpha \eta$ αd d	Xsections (fb) Comments 2470.90	 Statistical and generative basis Statistical and generative region served The signature A formation basis generative differences basis generative

version 0.1

CEPC Note

August 24, 2020 Sample generation for CEPC Yuhang Tan^a, Xin Shi^a, Manqi Ruan^a, and Ryuta Kiuchi^a ^aInstitute of High Energy Physics, Beijing 100049, People's Republic of China

Abstract This note focus on the event generation for CEPC studies. The signal and background samples are generated by Monte-Carlo generator Whizard and grouped according to their

final states, and the cross sections are given out.

Bhabha cross section from generator

From babayaga, remove energy cut, add theta cut [8, 172]

• Higgs: ~1000 pb, ~ 100Hz; Z: 6593pb, ~ 2kHz

From Whizard:

• Higgs: 743 pb; Z: 13147pb, ~ 6kHz

BesIII bhabha from babayaga: 800Hz, 800nb

Bhabha cross section from theory

paper

- Large-angle Bhabha scattering, Link
 - 10<θ<170 (CEPC: 8-172)
 - Z pole: ~6000pb=6nb, close to babayaga result
- Naive calculation:
 - σ~1/CoM²
 - ZH pole bhabha xsec = Z pole bhabha xsec *91GeV*91GeV/240GeV/240GeV
 - =Z pole bhabha xsec (~6nb) *0.144~0.9nb

Fig. 3. The total cross section as a function of the energy, using an angular cut of 10° and an energy cut of 10 GeV. The conventions a.e the same as in fig. 2.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{\pi\alpha^2}{s} \left(u^2 \left(\frac{1}{s} + \frac{1}{t}\right)^2 + \left(\frac{t}{s}\right)^2 + \left(\frac{s}{t}\right)^2 \right)$$

Di-photon from Guinea-Pig

- Beam background: electron pair production($\gamma\gamma \rightarrow ee$)
 - Generated using GUINEA-PIG by Haoyu
 - For higgs mode: ~1000 collision for one BX
- Hadron final state($\gamma\gamma \rightarrow qq$) using GUINEA-PIG:
 - Total hadron final state: 2 kHz, 25 nb
 - Minijet ($\gamma\gamma \rightarrow jj$): 33 Hz, 413 pb (pT>2GeV)

Photon BG

Di-photon paper 1

1 Introduction

- Top: di-photon cross section vs energy
- Bottom left: di-photon energy distribution, theory calculation by prof.代建平
- Integrate to get the final cross section:
 - From 0.1GeV to 200GeV
 - Higgs: 850pb (68Hz)
 - Z: 917pb
 - From 0.01GeV to 200GeV
 - Higgs: 4150pb (~300Hz)
 - Z: 4560pb;

Chinese Physics C Vol. 40, No. 5 (2016) 053001

Study of beamstrahlung effects at CEPC^{*}

Qing-Lei Xiu (修音磊)^{1,2,1)} Hong-Bo Zhu (朱宏博)^{1,2,2)} Teng Yue (岳勝)^{2,3} Xin-Chou Lou (斐辛丑)^{1,2,4} ¹ State Key Laboratory of Particle Detection and Electronics, Beijing 100049, China ² Institute of High Energy Physics, CAS, Beijing 100049, China ³ University of Chinese Academy of Sciences, Beijing 100049, China ⁴ University of Chinesa Loadamy Chinardson, TX 75008-0321, USA

Abstract: The discovery of a 125 GeV Higgs boson at the LHC marked a breakthrough in particle physics. The relative lightness of the new particle has inspired consideration of a high-luminosity Circular Electron Positron Collider (CEPC) as a Higgs Ractory to study the particle's properties in an extremely clean environment. Given the high luminosity and high energy of the CEPC, beamstrahlung is one of the most important sources of beaminduced background that might degrade the detector performance. It can introduce even more background to the detector through the consequent electron-positron pair production and hadronic event generation. In this paper, beamstrahlung-induced backgrounds are estimated with both analytical methods and Monte Carlo simulation. Hit density due to detector backgrounds at the first vertex detector layer is found to be ~ 0.2 hits/cm² per bunch crossing, resulting in a low detector occupancy below 0.5%. Non-ionizing energy loss (NIEL) and total ionizing dose (TID), respectively.

Keywords: CEPC, beamstrahlung, pair production, detector backgrounds, radiation damage PACS: 29.20.db, 29.27.-a, 25.20.Lj DOI: 10.1088/1674-1137/40/5/053001

> opposite charge inside the crossing bunch. During this process, a particular kind of synchrotron radiation, called

2016 Chinese Phys. C 40 053001

2.3 Hadronic backgrounds

In addition to electron-positron pairs, two colliding photons can also produce hadrons. The cross section of the hadronic process, in units of nb, can be parameterised as [14]:

$$\sigma_{\rm H} = 211 \left(\frac{s}{{\rm GeV}^2}\right)^{0.0808} + 297 \left(\frac{s}{{\rm GeV}^2}\right)^{-0.4525} \tag{5}$$

where s is the square of the center-of-mass energy of the two colliding photons. The number of hadronic events produced in each bunch crossing at CEPC will be very small. A small fraction of the events could contain final state particles of high transverse momenta and have a potential impact on the calorimeter detector performance.

Boost Decision Tree

- Choose two leading energy supercells for Ecal/Hcal; Barrel/Endcap
 Totally 8 values(input features)
 Signal: Z(vv)H(γγ, γZ, bb, ττ, WW, and ZZ)
 n estimators=20, learning rate=1.0, max depth=3
 Background: 2000 beam background events
 Signal: 5000 for each process
 80% for training, 20 for validation
 Total signal efficiency: 99.97%; background efficiency: <0.1%
 - $Z(vv)H(\mu\mu)$ efficiency: 99.45%

Crystal ECAL option compatible with PFA Updated: crystal granularity

- A new option: R&D activities started since ~2020
- Compatible for PFA: Boson mass resolution (BMR) < 4%
- Optimal EM performance: $\sigma_E/E < 3\%/\sqrt{E}$
- Minimal longitudinal dead material: orthogonal arranged bars
 - 3D positioning with two-sided readout for timing

CEPC Electromagnetic Calorimeter

lasic Modu

of 15×15 mm²

Modules with cracks not pointing to IP (with an inclined angle of 12 degrees)

- Total depth of 24 X_0 with 18 longitudinal layers
- Modularity: 32-sided polygons in azimuthal angle

40cm

####