Radiation hard SiPM development for CEPC calorimeter

<u>Zhijun Liang</u>, Yong Liu liangzj@ihep.ac.cn liuyong@ihep.ac.cn

SiPM introduction

SiPM--silicon photomultiplier: advantage:

- High resolution
- Single photon counting
- The goal is to develop Radiation hard SiPM

Radiation SiPM application

- Astrophysics: Space station scientific experiment (Herd ...)
- Collider physics: calorimeter application
 - CMS timing layer, calorimeter
 - CEPC calorimeter and time of flight detector

CMS MIP timing detector

Example: CMS – ECAL upgrade

pseudo-rapidity

CEPC ECAL: High-granularity crystal calorimeter

Light Yield vs Stochastic Term - 3% Li 4.5 ē. 4 3.5 3 1 4 Stochastic Term [%] Digi 0.4MIP Threshol 2.5 0 350 40 1 I I I 150 250 300 400 100 200 450 Light Yield [p.e./MIP]

- Crystal ECAL with long-bar configuration
- Simulation studies on design specifications
- Dedicated reconstruction software under development
 - Pattern recognition for particle-flow
- Hardware developments: crystal-SiPM characterizations, crystal modules and beamtests

Crystal calorimeter prototypes and beam tests

CERN beamtest: parasitic runs at PS-T09 (May

Crystal calorimeter prototype: key issues

- System integration and EM performance
- Extensive studies in beam tests at CERN and DESY
 - Muons for MIP calibration
 - Electrons for EM shower studies
 - Data sets for validation of simulation + digitisation

CEPC ScintGlass HCAL overview

ScintGlassHCAL: PFA-oriented sampling hadron calorimeter

- A variant option of CALICE-AHCAL: scintillator-SiPM, steel
- Sensitive layer: dense and bright scintillating glass tiles
- Aim to further improve hadron energy resolution, which is a major factor for precision jet energy measurements

Scintillator glass tiles: CERN beamtest in 2023

Successful beamtest with scintillator glass tiles

- Combined tests with CEPC calorimeter prototypes
- 11 pieces of large-area glass tiles: the first batch produced by the "Glass Scintillator Collaboration"
- Clear MIP signals in all 11 glass samples with 15 GeV muons
- 3 glass tiles showed promising MIP response

Glass scintillator (#3): 66 p.e./MIP (29.8×28.1×10.2 mm³)

CEPC calorimeters R&D: a brief overview

CEPC ECAL and HCAL: SiPM requirement

- ECAL : Small pixel size (6um*6um), large dynamic range
- HCAL: High PDE Sipm (PDE>60-70%)

	SiPM for CEPC ECAL	SiPM for CEPC HCAL
Wavelength	350 – 600 nm	350 – 600 nm
Size	3 mm× 3mm	3 mm× 3mm
Pixel size	6 μm × 6 μm	50 μm × 50 μm or larger
PDE	>= 30% (at ~420nm)	>= 60% (at ~400nm)
Number of SiPM	~1 Million	~5 Million

SiPM radiation hardness challenge

- After 10 year operation of CEPC, fluence is above 10¹³ n_{eq}/cm²
- SiPM typically work below 1krad or 10⁹ n_{eq}/cm² fluence
 - Performance drop after 1krad or 10⁹ n_{eq}/cm²
 - In great need to develop radiation hard SiPM

	Long term Satellite	CEPC	Fluence in ZH run (240GeV)
	or Space station application	requirement	1 MeV neutron equivalent fluence [nutrons cm ⁻²] for a year 300 10^{16} 250
TID does	100 krad	>100 krad	10^{15}
Fluence	~10 ¹⁰ n _{eq} /cm ²	>10 ¹³ n _{eq} /cm ²	
			50
			0 0 50 100 150 200 250 300 350 400 Z [cm]

SiPM Radiation hardness

- After 10¹⁰ n_{eq}/cm² or 10Krad dose
 - Signal gain decrease
 - Energy resolution decrease
 - Dark count increase

SiPM gain VS Dose

Response vs. fluence

SiPM radiation hardness theory

SiPM signal gain decreased after irradiation (p+ acceptor removal)

[[]G.Paternoster, FBK, Trento, Feb.2019]

Radiation hard Low Gain Avalanche Detectors (LGAD)

- IHEP developed radiation hard Low Gain Avalanche Detectors (LGAD)
- Developed for ATLAS high granularity timing detector
- LGAD and SiPM has similar structure
 - Good foundation for radiation hard SiPM development

LHC ATLAS experiment High granularity timing detector

LGAD sensor developed by

LGAD sensor after Irradiation

- IHEP-IME LGAD with carbon-enriched doping
 - Significantly lower acceptor removal ratio, the most irradiation hard LGAD sensor by far
- After 2.5×10¹⁵ n_{eq}/cm², IHEP LGADs were operated at voltages below 350 V, avoid HV breakdown
 - Test beams at CERN and DESY, confirm the feasibility of LGAD timing detector for HL-LHC
 - IHEP made a leading contribution to radiation hard LGAD sensors

LGAD pre-production for ATLAS experiment

IHEP-IME sensor Won CERN tendering for ATLAS timing detector

- 1.7k good sensor fabricated in pre-production, PRR passed at July 25, 2024
- Production contract signed in Feb 2025.
- The first time that Chinese irradiation hard sensor used at LHC experiment

Pre-production LGAD sensors from China

SiPM dark count after irradiation

- Bulk damage after irradiation \rightarrow dark count increased
- Potential Solution:
 - Design a special wafer to isolate the dark current from bulk damage

SiPM sample from 1st trial MPW run

We prototyped a small SiPM design

- Pixel size: 50µm
- 16 x 16 pixels

SiPM sample from 1st trial MPW run

SiPM layout and process has been validated

SiPM Leakage current is a bit high in 1st trial run

- Pstop and GR design has some issue
- Optimized the design for engineering runs

Leakage current of Sipm after irradiation

- First trial of this special wafer idea in LGAD development
- Indication that IHEP Sipm has potential to be irradiation hard
 - After 2E10 n_{eq}/cm2, IHEP SiPM leakage current increased by ~10
 - After 2E10 n_{eq}/cm2, HKP sipm increase by 2-3 order of magnitude

Hamamatsu -SiPM

Dedicated SiPM engineering run

Dedicated radiation hard SiPM run will be submitted next month

- Various SiPM size: 1*1mm, 3*3mm, 5*5mm
- Various Pixel size: 10um ,20um, 50um

IHEP SiPM 版图 LACT 专用 SiPM:

- 7.6 mm X 7.6 mm
- 152 x 152 pixels
- Pixel size: 50um
- Fill factor 64%

Time line for radiation hard SiPM

- 2025 :SiPM irradiation hard design validated in LGAD engineering run
 - Two type of radiation hard Sipm
 - ECAL : Small pixel size (6um*6um), large dynamic range
 - HCAL: high PDE Sipm (PDE>60-70%)
- 2026: built prototype for ECAL and HCAL

- Development for radiation hard SiPM
 - Aim for CEPC and Astrophysics application
- Key technology has been validated in ATLAS HGTD detector project
 - Radiation hard LGAD sensor developed by IHEP team
 - First domestic Radiation hard silicon sensor used in LHC experiment
- Radiation SiPM R & D project
 - 1st trial run has been submitted, and preliminary result obtained
 - Dedicated engineering run by this year
 - Integrate into ECAL and HCAL prototyping in 2026