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e Symmetries have long been a guiding principle in theoretical physics.

e Recent developments have led to various extensions of the notion of
symmetry:

— Higher-form symmetries
— Vector and multipole symmetries
— Subsystem symmetries

— Non-invertible symmetries
e Big conceptual breakthrough: symmetries = topological defects!

e The main focus of today’s talk will actually not be symmetry itself, but
something closely related.
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e One of the main uses of symmetry is deriving selection rules.

e Consider a theory containing fields ¢; labelled by representations i; of a
group-like symmetry G. We likewise assume that ¢’ are labelled by 12;.

e Having a symmetry means that ¢} ... ¢;0,.1...9on c L is allowed
only if id c Rl ce Ran+1 ce RN.

e This constraint on the Lagrangian leads to constraints on scattering
amplitudes that hold to all orders in perturbation theory!

e Concretely, a process involving incoming fields ¢,...,¢, and
outgoing fields ¢,,.1,...., ¢y is allowed only if

id c RiRy...R,R,,1R,.0... Ry qﬁz%’ N1
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e Sometimes, amplitudes vanish at tree-level (or /-loop order), but become
non-zero at higher loops:

— Gluon scattering amplitudes for some helicities
— Electron dipole moment in the Standard Model

e Can we think of these as “approximate” selection rules?

e Goal of this talk: generalize the notion of selection rules to account
for such situations.

e Main idea: instead of labelling fields by representations, we will label
them by elements of a hypergroup A.

e Definition: A hypergroup is an algebra a xb =} _N¢ c equipped with an
involution ¢ — @ such that ab=0a and N¢ + 0 iff a = .

— Example: representations of a group form a hypergroup because NleRg # 0
iff Ry =Ry

e Definition: A fusion algebra is a hypergroup such that all N¢, ¢ Z.



Generalizing Selection Rules?

e Setup: Consider a QFT with fields ¢; labelled by elements «a; of a
hypergroup A. We assume that the Lagrangian contains terms of the form
¢1...¢nC£ only ife<a1...an.



Justin Kaidi Selection Rules Revisited

Generalizing Selection Rules?

e Setup: Consider a QFT with fields ¢; labelled by elements «a; of a
hypergroup A. We assume that the Lagrangian contains terms of the form
O1...0npcLonlyife<ay...a,.

— Caution : We are not claiming that the QFT has a non-invertible symmetry
with fusion rules gives by A. The constraint that we imposed above does not
follow from any obvious symmetry principle in QFT alone, but will end up
having a symmetry origin in String Theory.



Generalizing Selection Rules?

e Setup: Consider a QFT with fields ¢; labelled by elements «a; of a
hypergroup A. We assume that the Lagrangian contains terms of the form
O1...0npcLonlyife<ay...a,.

— Caution : We are not claiming that the QFT has a non-invertible symmetry
with fusion rules gives by A. The constraint that we imposed above does not
follow from any obvious symmetry principle in QFT alone, but will end up
having a symmetry origin in String Theory.

e When A is the hypergroup of representations of a group -, we saw that
the constraint ¢ <a;...a, on the Lagrangian extended to a constraint on
scattering amplitudes at all loop orders. What about the more general
case?



Generalizing Selection Rules?

e Setup: Consider a QFT with fields ¢; labelled by elements «a; of a
hypergroup A. We assume that the Lagrangian contains terms of the form
¢1...¢nC£ only ife<a1...an.

— Caution : We are not claiming that the QFT has a non-invertible symmetry
with fusion rules gives by A. The constraint that we imposed above does not
follow from any obvious symmetry principle in QFT alone, but will end up
having a symmetry origin in String Theory.

e When A is the hypergroup of representations of a group -, we saw that
the constraint ¢ <a;...a, on the Lagrangian extended to a constraint on
scattering amplitudes at all loop orders. What about the more general
case?

e Claim 1: Tree-level diagrams satisfy the same selection rules as the
Lagrangian. In other words, a tree-level diagram involving incoming
fields ¢1,..., ¢, and outgoing fields ¢,,.1,..., ¢y is non-zero only if
€E<Q1...070041---AN-
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e Claim 1: A tree-level diagram involving incoming fields ¢{,..., ¢y is
non-zero only if e <ay...apn.

e Proof (by induction):
— When the diagram has one vertex, there's nothing to prove.
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Tree-level proof

e Claim 1: A tree-level diagram involving incoming fields ¢,..., ¢y is
non-zero only if e <ay...ay.

e Proof (by induction):
— When the diagram has one vertex, there's nothing to prove.

— Assume we've proven the claim up to k£ vertices. Then consider a diagram
with k + 1 vertices. We can cut such a diagram into two subdiagrams,

each with less than k£ + 1 vertices. a a1
az b Qp+2
— By the inductive hypothesis, we have a; ;
e<aias...aph , €< Api1pso ... aND

For a hypergroup, these imply the following,

b<a1a2...ag, b<&g+1&g+2...a1\f

— But then we have that e <bb<a; ...ax and hence the property is proven
for (k + 1)-vertices as well.
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e Proof:
— Begin by cutting the diagram in L places to get a tree diagram with N + 2L

. by ba
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. H i . ; i E s

an+1

— Our previous results tell us that e < ajas...an(bib1)(babs) ... (brbr)

— Choose an element ¢; < b;b; so that e<ay...ancC1...CL
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Higher loop result

e Claim 2: Higher loop amplitudes satisfy less restrictive constraints. In
particular, an L-loop amplitude with NV external legs labelled by a,... . ay
is non-zero only when there exists d € Com(A)” such that d<a;...ay.

e Proof:
— Begin by cutting the diagram in L places to get a tree diagram with N + 2L

. b b
external legs: . . . .
C.l” an.+1 a'n a7:1.+1

— Our previous results tell us that e < ajas...an(bib1)(babs) ... (brbr)

— Choose an element ¢; < b;b; so that e<ay...ancCy...CL

— Because A was a hypergroup, we can choose d < ¢y, ...cq such that
d<ai...an. This is what we wanted to prove, upon introducing the
following definitions:

Com(A) = {c|c<bbforsomebeA}
Com(A)r = {d|d<ci...cp for someci,...,cp € Com(A)}
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Comments

e The higher loop “selection rules” might seem somewhat complicated, but
intuitively they are very simple to understand:

e Note that Com(A) c Com(A)?c.... Hence as we go to higher loop order,
the selection rules become weaker and weaker, and eventually reduce to
those coming from a certain Abelian group Gr[A], which is schematically

Gr[A]:= A/Com(A)*

e Let’s now give a concrete example.
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Example: A =Conj(G)

e Recall that for a standard symmetry &, the fields ¢, are labelled by
representations 1, of G.

e Instead, let’s label fields by conjugacy classes [g;]. If we define the
involution [¢|:=[¢7!], then we have

el {#[g] if [7] =[g7"]

0 otherwise

so this forms a hypergroup which we denote by A = Conj(G).

e In this case Com(A)>* =[G, G] is the “commutator subgroup” of ¢, and
we have

Gr[Conj(G)] = teRel = Ab[G]

i.e. the Abelianization of G.

e Summary: at tree-level the amplitudes are constrained by the Conj(G)
selection rules, but at arbitrary high loop order they obey only the selection
rules for a standard Ab|(G| symmetry.
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String Theory and Non-Invertible Symmetries

e So far we have simply assumed the existence of a QFT with fields ¢;
labelled by a; € A such that ¢, ...¢y is present in the Lagrangian only if
e<daq...an-.

e In String Theory there is a natural way to realize such QFTs: consider
worldsheets with non-invertible symmetry (!

¢ In such cases, spacetime fields are labelled by “representations” of C,
i.e. by elements of the Drinfeld center Z(C), which contains in it a certain
hypergroup Ac Z(C).

e So in the context of String Theory, the selection rules described above can
be understood as coming from non-invertible worldsheet symmetries!
(also studied in )
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String Theory Example I: Non-Abelian Orbifolds
e Consider strings propagating on C?/I" with I" a finite subgroup of SU(2).

e The worldsheet theory is known to have a non-invertible Rep(I') symmetry.
The spacetime states are labelled by (a subset of) the elements of

Z(Rep(I")). The associated hypergroup turns out to be that associated to
Conj(T").

e Hence this is precisely the conjugacy class example studied before, and
we conclude that in the presence of a non-Abelian orbifold, the tree-level
scattering amplitudes are constrained by

le] < [g1'] .- [9n 1[gn+1] - - [gn]

In fact, this is a well-known fact about non-Abelian orbifolds!

e Furthermore, for [' c SU(2), one can show that at one-loop the selection
rules already reduce to their final form, i.e. to those dictated by Ab[I'].
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String Theory Example II: S1/Z,

e Consider the worldsheet theory for strings on S'. Denote the momentum
m, winding w operator by ®,, .

e This theory has a U(1),, x U(1),, symmetry generated by operators Uy
acting as

U(@,qb) : (I)m = 6im9+iw¢q)m’w

Y

This is an invertible symmetry since Uy 4y x Uigr o) = Ugr6r, 644/

e Now perform an orbifold by X R -X? - Since this Z, symmetry acts
as ¢, > Py and U 4) > U _4), the gauge-invariant operators in
the orbifold theory are

~ 1
Prw = —=(Prmwt Pom,—w
) \/i( ) ) )

Uw,p) = Us,e) +Uro,-¢)
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String Theory Example II: S1/Z,

e The orbifold worldsheet theory has a continuum of non-invertible
symmetries, since

Ui,p) x Ui, g) = Utosor, 919y T Uo-07,6-¢)

e This non-invertible symmetry gives rise to constraints on tree-level
spacetime amplitudes in the way discussed before.

e As an example of such a constraint, one can show that the tree-level
potential for the radion field Gy 9 can contain terms of the form (Gg )"
only if n is even (at higher loops such terms can be generated though).

e Similar results hold for more general toroidal orbifolds, e.g. 7°/Zs.
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Conclusions

e When a QFT has a group-like symmetry, the fields are labelled by
representations, and terms in the Lagrangian of the form ¢, ... oy c L
are allowed only if id ¢ R ®---® Ry. This gives rise to selection rules
on amplitudes that hold to all orders in perturbation theory.

e We can instead imagine a QFT whose fields are labelled by elements of a
hypergroup, and demand that all terms in the Lagrangian of the form
O1...0n C L satisfy e <aq...an. This gives rise to selection rules that hold
at tree-level, but are increasingly broken at higher loop level, eventually
reducing to selection rules coming from an Abelian group Gr[A].

e A natural context in which such a QFT arises is in String Theory when the
worldsheet has a non-invertible symmetry. Specific examples include non-
Abelian and toroidal orbifolds.

e The case of 7°/73 has some potentially interesting phenomenological
applications, and will be explored in upcoming work
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The End (for now)

Thank youl!



