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● Symmetries have long been a guiding principle in theoretical physics.
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Symmetries

● Symmetries have long been a guiding principle in theoretical physics.

● Recent developments have led to various extensions of the notion of
symmetry:

– Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willett ‘14]

– Vector and multipole symmetries [Pretko ‘18; Seiberg ‘19]

– Subsystem symmetries [Lawler, Fradkin ‘04; Seiberg ‘19; Seiberg, Shao ‘20]

– Non-invertible symmetries [Frölich, Fuchs, Runkel, Schweigert ‘09; Bhardwaj, Tachikawa ‘17;

Chang, Lin, Shao, Wang, Yin ‘18]
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symmetry:
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– Vector and multipole symmetries [Pretko ‘18; Seiberg ‘19]
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Chang, Lin, Shao, Wang, Yin ‘18]

● Big conceptual breakthrough: symmetries = topological defects!
[Frölich, Fuchs, Runkel, Schweigert ‘09; Kapustin, Seiberg ‘14; Gaiotto, Kapustin, Seiberg, Willett ‘14; ...]
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Symmetries

● Symmetries have long been a guiding principle in theoretical physics.

● Recent developments have led to various extensions of the notion of
symmetry:

– Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willett ‘14]

– Vector and multipole symmetries [Pretko ‘18; Seiberg ‘19]

– Subsystem symmetries [Lawler, Fradkin ‘04; Seiberg ‘19; Seiberg, Shao ‘20]

– Non-invertible symmetries [Frölich, Fuchs, Runkel, Schweigert ‘09; Bhardwaj, Tachikawa ‘17;

Chang, Lin, Shao, Wang, Yin ‘18]

● Big conceptual breakthrough: symmetries = topological defects!
[Frölich, Fuchs, Runkel, Schweigert ‘09; Kapustin, Seiberg ‘14; Gaiotto, Kapustin, Seiberg, Willett ‘14; ...]

● The main focus of today’s talk will actually not be symmetry itself, but
something closely related.
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Selection Rules

● One of the main uses of symmetry is deriving selection rules.
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● One of the main uses of symmetry is deriving selection rules.

● Consider a theory containing fields φi labelled by representations Ri of a
group-like symmetry G. We likewise assume that φ∗i are labelled by Ri.
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Selection Rules

● One of the main uses of symmetry is deriving selection rules.

● Consider a theory containing fields φi labelled by representations Ri of a
group-like symmetry G. We likewise assume that φ∗i are labelled by Ri.

● Having a symmetry means that φ∗1 . . . φ∗nφn+1 . . . φN ⊂ L is allowed
only if id ⊂ R1 . . .RnRn+1 . . .RN .
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● Consider a theory containing fields φi labelled by representations Ri of a
group-like symmetry G. We likewise assume that φ∗i are labelled by Ri.

● Having a symmetry means that φ∗1 . . . φ∗nφn+1 . . . φN ⊂ L is allowed
only if id ⊂ R1 . . .RnRn+1 . . .RN .

● This constraint on the Lagrangian leads to constraints on scattering
amplitudes that hold to all orders in perturbation theory!
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Selection Rules

● One of the main uses of symmetry is deriving selection rules.

● Consider a theory containing fields φi labelled by representations Ri of a
group-like symmetry G. We likewise assume that φ∗i are labelled by Ri.

● Having a symmetry means that φ∗1 . . . φ∗nφn+1 . . . φN ⊂ L is allowed
only if id ⊂ R1 . . .RnRn+1 . . .RN .

● This constraint on the Lagrangian leads to constraints on scattering
amplitudes that hold to all orders in perturbation theory!

● Concretely, a process involving incoming fields φ1, . . . , φn and
outgoing fields φn+1, . . . , φN is allowed only if

id ⊂ R1R2 . . .RnRn+1Rn+2 . . .RN
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Generalizing Selection Rules?

● Sometimes, amplitudes vanish at tree-level (or L-loop order), but become
non-zero at higher loops:

– Gluon scattering amplitudes for some helicities
– Electron dipole moment in the Standard Model
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non-zero at higher loops:

– Gluon scattering amplitudes for some helicities
– Electron dipole moment in the Standard Model

● Can we think of these as “approximate” selection rules?
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● Sometimes, amplitudes vanish at tree-level (or L-loop order), but become
non-zero at higher loops:

– Gluon scattering amplitudes for some helicities
– Electron dipole moment in the Standard Model

● Can we think of these as “approximate” selection rules?

● Goal of this talk: generalize the notion of selection rules to account
for such situations.
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– Gluon scattering amplitudes for some helicities
– Electron dipole moment in the Standard Model

● Can we think of these as “approximate” selection rules?

● Goal of this talk: generalize the notion of selection rules to account
for such situations.

● Main idea: instead of labelling fields by representations, we will label
them by elements of a hypergroup A.
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Generalizing Selection Rules?

● Sometimes, amplitudes vanish at tree-level (or L-loop order), but become
non-zero at higher loops:

– Gluon scattering amplitudes for some helicities
– Electron dipole moment in the Standard Model

● Can we think of these as “approximate” selection rules?

● Goal of this talk: generalize the notion of selection rules to account
for such situations.

● Main idea: instead of labelling fields by representations, we will label
them by elements of a hypergroup A.

● Definition: A hypergroup is an algebra a × b = ∑cN c
ab c equipped with an

involution a↦ a such that ab = b a and Ne
ab ≠ 0 iff a = b.

– Example: representations of a group form a hypergroup because Ne
R1R2

≠ 0

iff R1 = R2
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Generalizing Selection Rules?

● Sometimes, amplitudes vanish at tree-level (or L-loop order), but become
non-zero at higher loops:

– Gluon scattering amplitudes for some helicities
– Electron dipole moment in the Standard Model

● Can we think of these as “approximate” selection rules?

● Goal of this talk: generalize the notion of selection rules to account
for such situations.

● Main idea: instead of labelling fields by representations, we will label
them by elements of a hypergroup A.

● Definition: A hypergroup is an algebra a × b = ∑cN c
ab c equipped with an

involution a↦ a such that ab = b a and Ne
ab ≠ 0 iff a = b.

– Example: representations of a group form a hypergroup because Ne
R1R2

≠ 0

iff R1 = R2

● Definition: A fusion algebra is a hypergroup such that all N c
ab ∈ Z.
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Generalizing Selection Rules?

● Setup: Consider a QFT with fields φi labelled by elements ai of a
hypergroup A. We assume that the Lagrangian contains terms of the form
φ1 . . . φn ⊂ L only if e ≺ a1 . . . an.
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Generalizing Selection Rules?

● Setup: Consider a QFT with fields φi labelled by elements ai of a
hypergroup A. We assume that the Lagrangian contains terms of the form
φ1 . . . φn ⊂ L only if e ≺ a1 . . . an.

– Caution : We are not claiming that the QFT has a non-invertible symmetry
with fusion rules gives by A. The constraint that we imposed above does not
follow from any obvious symmetry principle in QFT alone, but will end up
having a symmetry origin in String Theory.
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Generalizing Selection Rules?

● Setup: Consider a QFT with fields φi labelled by elements ai of a
hypergroup A. We assume that the Lagrangian contains terms of the form
φ1 . . . φn ⊂ L only if e ≺ a1 . . . an.

– Caution : We are not claiming that the QFT has a non-invertible symmetry
with fusion rules gives by A. The constraint that we imposed above does not
follow from any obvious symmetry principle in QFT alone, but will end up
having a symmetry origin in String Theory.

● When A is the hypergroup of representations of a group G, we saw that
the constraint e ≺ a1 . . . an on the Lagrangian extended to a constraint on
scattering amplitudes at all loop orders. What about the more general
case?
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Generalizing Selection Rules?

● Setup: Consider a QFT with fields φi labelled by elements ai of a
hypergroup A. We assume that the Lagrangian contains terms of the form
φ1 . . . φn ⊂ L only if e ≺ a1 . . . an.

– Caution : We are not claiming that the QFT has a non-invertible symmetry
with fusion rules gives by A. The constraint that we imposed above does not
follow from any obvious symmetry principle in QFT alone, but will end up
having a symmetry origin in String Theory.

● When A is the hypergroup of representations of a group G, we saw that
the constraint e ≺ a1 . . . an on the Lagrangian extended to a constraint on
scattering amplitudes at all loop orders. What about the more general
case?

● Claim 1: Tree-level diagrams satisfy the same selection rules as the
Lagrangian. In other words, a tree-level diagram involving incoming
fields φ1, . . . , φn and outgoing fields φn+1, . . . , φN is non-zero only if
e ≺ a1 . . . anan+1 . . . aN .
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Tree-level proof

● Claim 1: A tree-level diagram involving incoming fields φ1, . . . , φN is
non-zero only if e ≺ a1 . . . aN .

● Proof (by induction):
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Tree-level proof

● Claim 1: A tree-level diagram involving incoming fields φ1, . . . , φN is
non-zero only if e ≺ a1 . . . aN .

● Proof (by induction):

– When the diagram has one vertex, there’s nothing to prove.
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Tree-level proof

● Claim 1: A tree-level diagram involving incoming fields φ1, . . . , φN is
non-zero only if e ≺ a1 . . . aN .

● Proof (by induction):

– When the diagram has one vertex, there’s nothing to prove.

– Assume we’ve proven the claim up to k vertices. Then consider a diagram
with k + 1 vertices. We can cut such a diagram into two subdiagrams,
each with less than k + 1 vertices.
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Tree-level proof

● Claim 1: A tree-level diagram involving incoming fields φ1, . . . , φN is
non-zero only if e ≺ a1 . . . aN .

● Proof (by induction):

– When the diagram has one vertex, there’s nothing to prove.

– Assume we’ve proven the claim up to k vertices. Then consider a diagram
with k + 1 vertices. We can cut such a diagram into two subdiagrams,
each with less than k + 1 vertices.

– By the inductive hypothesis, we have

e ≺ a1a2 . . . a`b , e ≺ a`+1a`+2 . . . aNb
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Tree-level proof

● Claim 1: A tree-level diagram involving incoming fields φ1, . . . , φN is
non-zero only if e ≺ a1 . . . aN .

● Proof (by induction):

– When the diagram has one vertex, there’s nothing to prove.

– Assume we’ve proven the claim up to k vertices. Then consider a diagram
with k + 1 vertices. We can cut such a diagram into two subdiagrams,
each with less than k + 1 vertices.

– By the inductive hypothesis, we have

e ≺ a1a2 . . . a`b , e ≺ a`+1a`+2 . . . aNb
For a hypergroup, these imply the following,

b ≺ a1a2 . . . a` , b ≺ a`+1a`+2 . . . aN
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Tree-level proof

● Claim 1: A tree-level diagram involving incoming fields φ1, . . . , φN is
non-zero only if e ≺ a1 . . . aN .

● Proof (by induction):

– When the diagram has one vertex, there’s nothing to prove.

– Assume we’ve proven the claim up to k vertices. Then consider a diagram
with k + 1 vertices. We can cut such a diagram into two subdiagrams,
each with less than k + 1 vertices.

– By the inductive hypothesis, we have

e ≺ a1a2 . . . a`b , e ≺ a`+1a`+2 . . . aNb
For a hypergroup, these imply the following,

b ≺ a1a2 . . . a` , b ≺ a`+1a`+2 . . . aN
– But then we have that e ≺ bb ≺ a1 . . . aN and hence the property is proven

for (k + 1)-vertices as well.
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Higher loop result

● Claim 2: Higher loop amplitudes satisfy less restrictive constraints. In
particular, an L-loop amplitude with N external legs labelled by a1, . . . , aN
is non-zero only when there exists d ∈ Com(A)L such that d ≺ a1 . . . aN .

● Proof:
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Higher loop result

● Claim 2: Higher loop amplitudes satisfy less restrictive constraints. In
particular, an L-loop amplitude with N external legs labelled by a1, . . . , aN
is non-zero only when there exists d ∈ Com(A)L such that d ≺ a1 . . . aN .

● Proof:
– Begin by cutting the diagram in L places to get a tree diagram with N + 2L

external legs:
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Higher loop result

● Claim 2: Higher loop amplitudes satisfy less restrictive constraints. In
particular, an L-loop amplitude with N external legs labelled by a1, . . . , aN
is non-zero only when there exists d ∈ Com(A)L such that d ≺ a1 . . . aN .

● Proof:
– Begin by cutting the diagram in L places to get a tree diagram with N + 2L

external legs:

– Our previous results tell us that e ≺ a1a2 . . . aN(b1b1)(b2b2) . . . (bLbL)
– Choose an element ci ≺ bibi so that e ≺ a1 . . . aNc1 . . . cL
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Higher loop result

● Claim 2: Higher loop amplitudes satisfy less restrictive constraints. In
particular, an L-loop amplitude with N external legs labelled by a1, . . . , aN
is non-zero only when there exists d ∈ Com(A)L such that d ≺ a1 . . . aN .

● Proof:
– Begin by cutting the diagram in L places to get a tree diagram with N + 2L

external legs:

– Our previous results tell us that e ≺ a1a2 . . . aN(b1b1)(b2b2) . . . (bLbL)
– Choose an element ci ≺ bibi so that e ≺ a1 . . . aNc1 . . . cL
– Because A was a hypergroup, we can choose d ≺ cL . . . c1 such that
d ≺ a1 . . . aN . This is what we wanted to prove, upon introducing the
following definitions:

Com(A) ∶= {c ∣ c ≺ bb for some b ∈ A}
Com(A)L ∶= {d ∣ d ≺ c1 . . . cL for some c1, . . . , cL ∈ Com(A)}
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Comments

● The higher loop “selection rules” might seem somewhat complicated, but
intuitively they are very simple to understand:
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Comments

● The higher loop “selection rules” might seem somewhat complicated, but
intuitively they are very simple to understand:

● Note that Com(A) ⊂ Com(A)2 ⊂ . . . . Hence as we go to higher loop order,
the selection rules become weaker and weaker, and eventually reduce to
those coming from a certain Abelian group Gr[A], which is schematically

Gr[A] ∶= A/Com(A)∞
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Comments

● The higher loop “selection rules” might seem somewhat complicated, but
intuitively they are very simple to understand:

● Note that Com(A) ⊂ Com(A)2 ⊂ . . . . Hence as we go to higher loop order,
the selection rules become weaker and weaker, and eventually reduce to
those coming from a certain Abelian group Gr[A], which is schematically

Gr[A] ∶= A/Com(A)∞

● Let’s now give a concrete example.
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Example: A = Conj(G)
● Recall that for a standard symmetry G, the fields φi are labelled by

representations Ri of G.
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Example: A = Conj(G)
● Recall that for a standard symmetry G, the fields φi are labelled by

representations Ri of G.

● Instead, let’s label fields by conjugacy classes [gi]. If we define the
involution [g] ∶= [g−1], then we have

N
[e]
[g][h] = {#[g] if [h] = [g−1]

0 otherwise

so this forms a hypergroup which we denote by A = Conj(G).
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Example: A = Conj(G)
● Recall that for a standard symmetry G, the fields φi are labelled by

representations Ri of G.

● Instead, let’s label fields by conjugacy classes [gi]. If we define the
involution [g] ∶= [g−1], then we have

N
[e]
[g][h] = {#[g] if [h] = [g−1]

0 otherwise

so this forms a hypergroup which we denote by A = Conj(G).

● In this case Com(A)∞ = [G,G] is the “commutator subgroup” of G, and
we have

Gr[Conj(G)] = G

[G,G] = Ab[G]

i.e. the Abelianization of G.
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Example: A = Conj(G)
● Recall that for a standard symmetry G, the fields φi are labelled by

representations Ri of G.

● Instead, let’s label fields by conjugacy classes [gi]. If we define the
involution [g] ∶= [g−1], then we have

N
[e]
[g][h] = {#[g] if [h] = [g−1]

0 otherwise

so this forms a hypergroup which we denote by A = Conj(G).

● In this case Com(A)∞ = [G,G] is the “commutator subgroup” of G, and
we have

Gr[Conj(G)] = G

[G,G] = Ab[G]

i.e. the Abelianization of G.

● Summary: at tree-level the amplitudes are constrained by the Conj(G)
selection rules, but at arbitrary high loop order they obey only the selection
rules for a standard Ab[G] symmetry.
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String Theory and Non-Invertible Symmetries

● So far we have simply assumed the existence of a QFT with fields φi
labelled by ai ∈ A such that φ1 . . . φN is present in the Lagrangian only if
e ≺ a1 . . . aN .
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String Theory and Non-Invertible Symmetries

● So far we have simply assumed the existence of a QFT with fields φi
labelled by ai ∈ A such that φ1 . . . φN is present in the Lagrangian only if
e ≺ a1 . . . aN .

● In String Theory there is a natural way to realize such QFTs: consider
worldsheets with non-invertible symmetry C!
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String Theory and Non-Invertible Symmetries

● So far we have simply assumed the existence of a QFT with fields φi
labelled by ai ∈ A such that φ1 . . . φN is present in the Lagrangian only if
e ≺ a1 . . . aN .

● In String Theory there is a natural way to realize such QFTs: consider
worldsheets with non-invertible symmetry C!

● In such cases, spacetime fields are labelled by “representations” of C,
i.e. by elements of the Drinfeld center Z(C), which contains in it a certain
hypergroup A ⊂ Z(C).
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String Theory and Non-Invertible Symmetries

● So far we have simply assumed the existence of a QFT with fields φi
labelled by ai ∈ A such that φ1 . . . φN is present in the Lagrangian only if
e ≺ a1 . . . aN .

● In String Theory there is a natural way to realize such QFTs: consider
worldsheets with non-invertible symmetry C!

● In such cases, spacetime fields are labelled by “representations” of C,
i.e. by elements of the Drinfeld center Z(C), which contains in it a certain
hypergroup A ⊂ Z(C).

● So in the context of String Theory, the selection rules described above can
be understood as coming from non-invertible worldsheet symmetries!
(also studied in [Heckman, McNamara, Montero, Sharon, Vafa, Valenzuela ‘24] )
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String Theory Example I: Non-Abelian Orbifolds

● Consider strings propagating on C2/Γ with Γ a finite subgroup of SU(2).
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String Theory Example I: Non-Abelian Orbifolds

● Consider strings propagating on C2/Γ with Γ a finite subgroup of SU(2).

● The worldsheet theory is known to have a non-invertible Rep(Γ) symmetry.
The spacetime states are labelled by (a subset of) the elements of
Z(Rep(Γ)). The associated hypergroup turns out to be that associated to
Conj(Γ).
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String Theory Example I: Non-Abelian Orbifolds

● Consider strings propagating on C2/Γ with Γ a finite subgroup of SU(2).

● The worldsheet theory is known to have a non-invertible Rep(Γ) symmetry.
The spacetime states are labelled by (a subset of) the elements of
Z(Rep(Γ)). The associated hypergroup turns out to be that associated to
Conj(Γ).

● Hence this is precisely the conjugacy class example studied before, and
we conclude that in the presence of a non-Abelian orbifold, the tree-level
scattering amplitudes are constrained by

[e] ≺ [g−11 ] . . . [g−1n ][gn+1] . . . [gN]

In fact, this is a well-known fact about non-Abelian orbifolds! [Hamidi, Vafa ‘87]
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String Theory Example I: Non-Abelian Orbifolds

● Consider strings propagating on C2/Γ with Γ a finite subgroup of SU(2).

● The worldsheet theory is known to have a non-invertible Rep(Γ) symmetry.
The spacetime states are labelled by (a subset of) the elements of
Z(Rep(Γ)). The associated hypergroup turns out to be that associated to
Conj(Γ).

● Hence this is precisely the conjugacy class example studied before, and
we conclude that in the presence of a non-Abelian orbifold, the tree-level
scattering amplitudes are constrained by

[e] ≺ [g−11 ] . . . [g−1n ][gn+1] . . . [gN]

In fact, this is a well-known fact about non-Abelian orbifolds! [Hamidi, Vafa ‘87]

● Furthermore, for Γ ⊂ SU(2), one can show that at one-loop the selection
rules already reduce to their final form, i.e. to those dictated by Ab[Γ].
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String Theory Example II: S1/Z2

● Consider the worldsheet theory for strings on S1. Denote the momentum
m, winding w operator by Φm,w.
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String Theory Example II: S1/Z2

● Consider the worldsheet theory for strings on S1. Denote the momentum
m, winding w operator by Φm,w.

● This theory has a U(1)m ×U(1)w symmetry generated by operators U(θ,φ)
acting as

U(θ,φ) ∶ Φm,w → eimθ+iwφΦm,w

This is an invertible symmetry since U(θ,φ) ×U(θ′,φ′) = U(θ+θ′,φ+φ′).
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String Theory Example II: S1/Z2

● Consider the worldsheet theory for strings on S1. Denote the momentum
m, winding w operator by Φm,w.

● This theory has a U(1)m ×U(1)w symmetry generated by operators U(θ,φ)
acting as

U(θ,φ) ∶ Φm,w → eimθ+iwφΦm,w

This is an invertible symmetry since U(θ,φ) ×U(θ′,φ′) = U(θ+θ′,φ+φ′).

● Now perform an orbifold by X9
L,R → −X9

L,R. Since this Z2 symmetry acts
as Φm,w → Φ−m,−w and U(θ,φ) → U(−θ,−φ), the gauge-invariant operators in
the orbifold theory are

Φ̂m,w ∶= 1√
2
(Φm,w +Φ−m,−w)

Û(θ,φ) ∶= U(θ,φ) +U(−θ,−φ)
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String Theory Example II: S1/Z2

● The orbifold worldsheet theory has a continuum of non-invertible
symmetries, since

Û(θ,φ) × Û(θ′,φ′) = Û(θ+θ′,φ+φ′) + Û(θ−θ′,φ−φ′)
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String Theory Example II: S1/Z2

● The orbifold worldsheet theory has a continuum of non-invertible
symmetries, since

Û(θ,φ) × Û(θ′,φ′) = Û(θ+θ′,φ+φ′) + Û(θ−θ′,φ−φ′)

● This non-invertible symmetry gives rise to constraints on tree-level
spacetime amplitudes in the way discussed before.
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String Theory Example II: S1/Z2

● The orbifold worldsheet theory has a continuum of non-invertible
symmetries, since

Û(θ,φ) × Û(θ′,φ′) = Û(θ+θ′,φ+φ′) + Û(θ−θ′,φ−φ′)

● This non-invertible symmetry gives rise to constraints on tree-level
spacetime amplitudes in the way discussed before.

● As an example of such a constraint, one can show that the tree-level
potential for the radion field G9,9 can contain terms of the form (G9,9)n
only if n is even (at higher loops such terms can be generated though).
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String Theory Example II: S1/Z2

● The orbifold worldsheet theory has a continuum of non-invertible
symmetries, since

Û(θ,φ) × Û(θ′,φ′) = Û(θ+θ′,φ+φ′) + Û(θ−θ′,φ−φ′)

● This non-invertible symmetry gives rise to constraints on tree-level
spacetime amplitudes in the way discussed before.

● As an example of such a constraint, one can show that the tree-level
potential for the radion field G9,9 can contain terms of the form (G9,9)n
only if n is even (at higher loops such terms can be generated though).

● Similar results hold for more general toroidal orbifolds, e.g. T 6/Z3.
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Conclusions

● When a QFT has a group-like symmetry, the fields are labelled by
representations, and terms in the Lagrangian of the form φ1 . . . φN ⊂ L
are allowed only if id ⊂ R1 ⊗ ⋅ ⋅ ⋅ ⊗RN . This gives rise to selection rules
on amplitudes that hold to all orders in perturbation theory.
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Conclusions

● When a QFT has a group-like symmetry, the fields are labelled by
representations, and terms in the Lagrangian of the form φ1 . . . φN ⊂ L
are allowed only if id ⊂ R1 ⊗ ⋅ ⋅ ⋅ ⊗RN . This gives rise to selection rules
on amplitudes that hold to all orders in perturbation theory.

● We can instead imagine a QFT whose fields are labelled by elements of a
hypergroup, and demand that all terms in the Lagrangian of the form
φ1 . . . φN ⊂ L satisfy e ≺ a1 . . . aN . This gives rise to selection rules that hold
at tree-level, but are increasingly broken at higher loop level, eventually
reducing to selection rules coming from an Abelian group Gr[A].
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● We can instead imagine a QFT whose fields are labelled by elements of a
hypergroup, and demand that all terms in the Lagrangian of the form
φ1 . . . φN ⊂ L satisfy e ≺ a1 . . . aN . This gives rise to selection rules that hold
at tree-level, but are increasingly broken at higher loop level, eventually
reducing to selection rules coming from an Abelian group Gr[A].

● A natural context in which such a QFT arises is in String Theory when the
worldsheet has a non-invertible symmetry. Specific examples include non-
Abelian and toroidal orbifolds.

55



Justin Kaidi Selection Rules Revisited

Conclusions
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representations, and terms in the Lagrangian of the form φ1 . . . φN ⊂ L
are allowed only if id ⊂ R1 ⊗ ⋅ ⋅ ⋅ ⊗RN . This gives rise to selection rules
on amplitudes that hold to all orders in perturbation theory.

● We can instead imagine a QFT whose fields are labelled by elements of a
hypergroup, and demand that all terms in the Lagrangian of the form
φ1 . . . φN ⊂ L satisfy e ≺ a1 . . . aN . This gives rise to selection rules that hold
at tree-level, but are increasingly broken at higher loop level, eventually
reducing to selection rules coming from an Abelian group Gr[A].

● A natural context in which such a QFT arises is in String Theory when the
worldsheet has a non-invertible symmetry. Specific examples include non-
Abelian and toroidal orbifolds.

● The case of T 6/Z3 has some potentially interesting phenomenological
applications, and will be explored in upcoming work [JK, Shi, Shimamori] .
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The End (for now)

Thank you!
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