Selection Rules Revisited

Justin Kaidi

Generalized Symmetries in HEP and CMP July 28, 2025

[2402.00105] JK, Yuji Tachikawa, Hao Y. Zhang

Symmetries

• Symmetries have long been a guiding principle in theoretical physics.

Symmetries

- Symmetries have long been a guiding principle in theoretical physics.
- Recent developments have led to various extensions of the notion of symmetry:
 - Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willett '14]
 - Vector and multipole symmetries [Pretko '18; Seiberg '19]
 - Subsystem symmetries [Lawler, Fradkin '04; Seiberg '19; Seiberg, Shao '20]
 - Non-invertible symmetries [Frölich, Fuchs, Runkel, Schweigert '09; Bhardwaj, Tachikawa '17;
 Chang, Lin, Shao, Wang, Yin '18]

Symmetries

- Symmetries have long been a guiding principle in theoretical physics.
- Recent developments have led to various extensions of the notion of symmetry:
 - Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willett '14]
 - Vector and multipole symmetries [Pretko '18; Seiberg '19]
 - Subsystem symmetries [Lawler, Fradkin '04; Seiberg '19; Seiberg, Shao '20]
 - Non-invertible symmetries [Frölich, Fuchs, Runkel, Schweigert '09; Bhardwaj, Tachikawa '17;
 Chang, Lin, Shao, Wang, Yin '18]
- Big conceptual breakthrough: symmetries = topological defects!

[Frölich, Fuchs, Runkel, Schweigert '09; Kapustin, Seiberg '14; Gaiotto, Kapustin, Seiberg, Willett '14; ...]

Symmetries

- Symmetries have long been a guiding principle in theoretical physics.
- Recent developments have led to various extensions of the notion of symmetry:
 - Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willett '14]
 - Vector and multipole symmetries [Pretko '18; Seiberg '19]
 - Subsystem symmetries [Lawler, Fradkin '04; Seiberg '19; Seiberg, Shao '20]
 - Non-invertible symmetries [Frölich, Fuchs, Runkel, Schweigert '09; Bhardwaj, Tachikawa '17;
 Chang, Lin, Shao, Wang, Yin '18]
- Big conceptual breakthrough: symmetries = topological defects! [Frölich, Fuchs, Runkel, Schweigert '09; Kapustin, Seiberg '14; Gaiotto, Kapustin, Seiberg, Willett '14; ...]
- ullet The main focus of today's talk will actually not be symmetry itself, but something closely related.

Selection Rules

• One of the main uses of symmetry is deriving selection rules.

Selection Rules

• One of the main uses of symmetry is deriving selection rules.

• Consider a theory containing fields ϕ_i labelled by representations R_i of a group-like symmetry G. We likewise assume that ϕ_i^* are labelled by \overline{R}_i .

Selection Rules

- One of the main uses of symmetry is deriving selection rules.
- Consider a theory containing fields ϕ_i labelled by representations R_i of a group-like symmetry G. We likewise assume that ϕ_i^* are labelled by \overline{R}_i .
- Having a symmetry means that $\phi_1^* \dots \phi_n^* \phi_{n+1} \dots \phi_N \subset \mathcal{L}$ is allowed only if $\operatorname{id} \subset \overline{R_1} \dots \overline{R_n} R_{n+1} \dots R_N$.

Selection Rules

- One of the main uses of symmetry is deriving selection rules.
- Consider a theory containing fields ϕ_i labelled by representations R_i of a group-like symmetry G. We likewise assume that ϕ_i^* are labelled by \overline{R}_i .
- Having a symmetry means that $\phi_1^* \dots \phi_n^* \phi_{n+1} \dots \phi_N \subset \mathcal{L}$ is allowed only if $\operatorname{id} \subset \overline{R_1} \dots \overline{R_n} R_{n+1} \dots R_N$.
- This constraint on the Lagrangian leads to constraints on scattering amplitudes that hold to all orders in perturbation theory!

Selection Rules

- One of the main uses of symmetry is deriving selection rules.
- Consider a theory containing fields ϕ_i labelled by representations R_i of a group-like symmetry G. We likewise assume that ϕ_i^* are labelled by \overline{R}_i .
- Having a symmetry means that $\phi_1^* \dots \phi_n^* \phi_{n+1} \dots \phi_N \subset \mathcal{L}$ is allowed only if $\operatorname{id} \subset \overline{R_1} \dots \overline{R_n} R_{n+1} \dots R_N$.
- ullet This constraint on the Lagrangian leads to constraints on scattering amplitudes that hold to all orders in perturbation theory!
- Concretely, a process involving incoming fields ϕ_1, \ldots, ϕ_n and outgoing fields $\phi_{n+1}, \ldots, \phi_N$ is allowed only if

id
$$\subset \overline{R_1} \overline{R_2} \dots \overline{R_n} R_{n+1} R_{n+2} \dots R_N$$

- Sometimes, amplitudes vanish at tree-level (or *L*-loop order), but become non-zero at higher loops:
 - Gluon scattering amplitudes for some helicities
 - Electron dipole moment in the Standard Model

- Sometimes, amplitudes vanish at tree-level (or L-loop order), but become non-zero at higher loops:
 - Gluon scattering amplitudes for some helicities
 - Electron dipole moment in the Standard Model
- Can we think of these as "approximate" selection rules?

- Sometimes, amplitudes vanish at tree-level (or L-loop order), but become non-zero at higher loops:
 - Gluon scattering amplitudes for some helicities
 - Electron dipole moment in the Standard Model
- Can we think of these as "approximate" selection rules?
- Goal of this talk: generalize the notion of selection rules to account for such situations.

- Sometimes, amplitudes vanish at tree-level (or *L*-loop order), but become non-zero at higher loops:
 - Gluon scattering amplitudes for some helicities
 - Electron dipole moment in the Standard Model
- Can we think of these as "approximate" selection rules?
- Goal of this talk: generalize the notion of selection rules to account for such situations.
- Main idea: instead of labelling fields by representations, we will label them by elements of a hypergroup A.

- Sometimes, amplitudes vanish at tree-level (or *L*-loop order), but become non-zero at higher loops:
 - Gluon scattering amplitudes for some helicities
 - Electron dipole moment in the Standard Model
- Can we think of these as "approximate" selection rules?
- Goal of this talk: generalize the notion of selection rules to account for such situations.
- Main idea: instead of labelling fields by representations, we will label them by elements of a hypergroup A.
- Definition: A hypergroup is an algebra $a \times b = \sum_{c} N_{ab}^{c} c$ equipped with an involution $a \mapsto \overline{a}$ such that $\overline{ab} = \overline{b} \overline{a}$ and $N_{ab}^{e} \neq 0$ iff $a = \overline{b}$.
 - Example: representations of a group form a hypergroup because $N_{R_1R_2}^e \neq 0$ iff R_1 = \overline{R}_2

- Sometimes, amplitudes vanish at tree-level (or *L*-loop order), but become non-zero at higher loops:
 - Gluon scattering amplitudes for some helicities
 - Electron dipole moment in the Standard Model
- Can we think of these as "approximate" selection rules?
- Goal of this talk: generalize the notion of selection rules to account for such situations.
- Main idea: instead of labelling fields by representations, we will label them by elements of a hypergroup A.
- Definition: A hypergroup is an algebra $a \times b = \sum_{c} N^{c}_{ab} c$ equipped with an involution $a \mapsto \overline{a}$ such that $\overline{ab} = \overline{b} \overline{a}$ and $N^{e}_{ab} \neq 0$ iff $a = \overline{b}$.
 - Example: representations of a group form a hypergroup because $N_{R_1R_2}^e \neq 0$ iff R_1 = \overline{R}_2
- Definition: A fusion algebra is a hypergroup such that all $N_{ab}^c \in \mathbb{Z}$.

Generalizing Selection Rules?

• Setup: Consider a QFT with fields ϕ_i labelled by elements a_i of a hypergroup A. We assume that the Lagrangian contains terms of the form $\phi_1 \dots \phi_n \subset \mathcal{L}$ only if $e < a_1 \dots a_n$.

- Setup: Consider a QFT with fields ϕ_i labelled by elements a_i of a hypergroup A. We assume that the Lagrangian contains terms of the form $\phi_1 \dots \phi_n \subset \mathcal{L}$ only if $e < a_1 \dots a_n$.
 - Caution: We are **not** claiming that the QFT has a non-invertible symmetry with fusion rules gives by A. The constraint that we imposed above does not follow from any obvious symmetry principle in QFT alone, but will end up having a symmetry origin in String Theory.

- Setup: Consider a QFT with fields ϕ_i labelled by elements a_i of a hypergroup A. We assume that the Lagrangian contains terms of the form $\phi_1 \dots \phi_n \subset \mathcal{L}$ only if $e < a_1 \dots a_n$.
 - Caution: We are **not** claiming that the QFT has a non-invertible symmetry with fusion rules gives by A. The constraint that we imposed above does not follow from any obvious symmetry principle in QFT alone, but will end up having a symmetry origin in String Theory.
- When A is the hypergroup of representations of a group G, we saw that the constraint $e < a_1 \dots a_n$ on the Lagrangian extended to a constraint on scattering amplitudes at all loop orders. What about the more general case?

- Setup: Consider a QFT with fields ϕ_i labelled by elements a_i of a hypergroup A. We assume that the Lagrangian contains terms of the form $\phi_1 \dots \phi_n \subset \mathcal{L}$ only if $e < a_1 \dots a_n$.
 - Caution: We are **not** claiming that the QFT has a non-invertible symmetry with fusion rules gives by A. The constraint that we imposed above does not follow from any obvious symmetry principle in QFT alone, but will end up having a symmetry origin in String Theory.
- When A is the hypergroup of representations of a group G, we saw that the constraint $e < a_1 \dots a_n$ on the Lagrangian extended to a constraint on scattering amplitudes at all loop orders. What about the more general case?
- Claim 1: Tree-level diagrams satisfy the same selection rules as the Lagrangian. In other words, a tree-level diagram involving incoming fields ϕ_1, \ldots, ϕ_n and outgoing fields $\phi_{n+1}, \ldots, \phi_N$ is non-zero only if $e < \overline{a_1} \ldots \overline{a_n} a_{n+1} \ldots a_N$.

Tree-level proof

• Claim 1: A tree-level diagram involving incoming fields ϕ_1, \ldots, ϕ_N is non-zero only if $e < a_1 \ldots a_N$.

• Proof (by induction):

Tree-level proof

- Claim 1: A tree-level diagram involving incoming fields ϕ_1, \ldots, ϕ_N is non-zero only if $e < a_1 \ldots a_N$.
- Proof (by induction):
 - When the diagram has one vertex, there's nothing to prove.

Tree-level proof

• Claim 1: A tree-level diagram involving incoming fields ϕ_1, \ldots, ϕ_N is non-zero only if $e < a_1 \ldots a_N$.

- Proof (by induction):
 - When the diagram has one vertex, there's nothing to prove.
 - Assume we've proven the claim up to k vertices. Then consider a diagram with k+1 vertices. We can cut such a diagram into two subdiagrams, each with less than k+1 vertices.

Tree-level proof

• Claim 1: A tree-level diagram involving incoming fields ϕ_1, \ldots, ϕ_N is non-zero only if $e < a_1 \ldots a_N$.

- Proof (by induction):
 - When the diagram has one vertex, there's nothing to prove.
 - Assume we've proven the claim up to k vertices. Then consider a diagram with k+1 vertices. We can cut such a diagram into two subdiagrams, each with less than k+1 vertices.
 - By the inductive hypothesis, we have

$$e < a_1 a_2 \dots a_{\ell} b$$
, $e < a_{\ell+1} a_{\ell+2} \dots a_N \overline{b}$

Tree-level proof

• Claim 1: A tree-level diagram involving incoming fields ϕ_1, \ldots, ϕ_N is non-zero only if $e < a_1 \ldots a_N$.

- Proof (by induction):
 - When the diagram has one vertex, there's nothing to prove.
 - Assume we've proven the claim up to k vertices. Then consider a diagram with k+1 vertices. We can cut such a diagram into two subdiagrams, each with less than k+1 vertices.
 - By the inductive hypothesis, we have

$$e < a_1 a_2 \dots a_{\ell} b$$
, $e < a_{\ell+1} a_{\ell+2} \dots a_N \overline{b}$

For a hypergroup, these imply the following,

$$\overline{b} < a_1 a_2 \dots a_\ell$$
, $b < a_{\ell+1} a_{\ell+2} \dots a_N$

Tree-level proof

• Claim 1: A tree-level diagram involving incoming fields ϕ_1, \ldots, ϕ_N is non-zero only if $e < a_1 \ldots a_N$.

- Proof (by induction):
 - When the diagram has one vertex, there's nothing to prove.
 - Assume we've proven the claim up to k vertices. Then consider a diagram with k+1 vertices. We can cut such a diagram into two subdiagrams, each with less than k+1 vertices.
 - By the inductive hypothesis, we have

$$e < a_1 a_2 \dots a_{\ell} b$$
, $e < a_{\ell+1} a_{\ell+2} \dots a_N \overline{b}$

For a hypergroup, these imply the following,

$$\overline{b} < a_1 a_2 \dots a_\ell$$
, $b < a_{\ell+1} a_{\ell+2} \dots a_N$

– But then we have that $e < b\overline{b} < a_1 \dots a_N$ and hence the property is proven for (k+1)-vertices as well.

Higher loop result

• Claim 2: Higher loop amplitudes satisfy $less\ restrictive$ constraints. In particular, an L-loop amplitude with N external legs labelled by a_1, \ldots, a_N is non-zero only when there exists $d \in \operatorname{Com}(A)^L$ such that $d < a_1 \ldots a_N$.

• Proof:

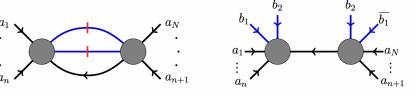
Higher loop result

• Claim 2: Higher loop amplitudes satisfy $less\ restrictive$ constraints. In particular, an L-loop amplitude with N external legs labelled by a_1, \ldots, a_N is non-zero only when there exists $d \in \operatorname{Com}(A)^L$ such that $d < a_1 \ldots a_N$.

• Proof:

– Begin by cutting the diagram in L places to get a tree diagram with N+2L

external legs:



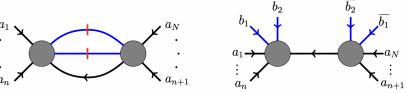
Higher loop result

• Claim 2: Higher loop amplitudes satisfy $less\ restrictive$ constraints. In particular, an L-loop amplitude with N external legs labelled by a_1, \ldots, a_N is non-zero only when there exists $d \in \operatorname{Com}(A)^L$ such that $d < a_1 \ldots a_N$.

• Proof:

– Begin by cutting the diagram in L places to get a tree diagram with N+2L

external legs:



- Our previous results tell us that $e < a_1 a_2 \dots a_N(b_1 \overline{b}_1)(b_2 \overline{b}_2) \dots (b_L \overline{b}_L)$

Higher loop result

• Claim 2: Higher loop amplitudes satisfy $less\ restrictive$ constraints. In particular, an L-loop amplitude with N external legs labelled by a_1, \ldots, a_N is non-zero only when there exists $d \in \operatorname{Com}(A)^L$ such that $d < a_1 \ldots a_N$.

• Proof:

- Begin by cutting the diagram in L places to get a tree diagram with N+2L

external legs: a_1 a_2 a_3 a_4 a_5 a_5 a_5 a_7 a_8 a_8 a

- Our previous results tell us that $e < a_1 a_2 \dots a_N(b_1 \overline{b}_1)(b_2 \overline{b}_2) \dots (b_L \overline{b}_L)$
- Choose an element $\overline{c_i} < b_i \overline{b_i}$ so that $e < a_1 \dots a_N \overline{c_1} \dots \overline{c_L}$

Higher loop result

• Claim 2: Higher loop amplitudes satisfy $less\ restrictive$ constraints. In particular, an L-loop amplitude with N external legs labelled by a_1, \ldots, a_N is non-zero only when there exists $d \in \operatorname{Com}(A)^L$ such that $d < a_1 \ldots a_N$.

• Proof:

- Begin by cutting the diagram in L places to get a tree diagram with N+2L external legs:

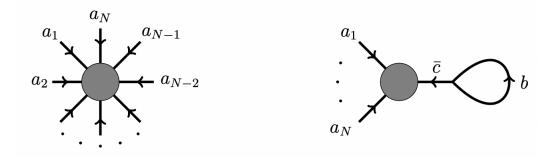
- Our previous results tell us that $e < a_1 a_2 \dots a_N (b_1 \overline{b}_1) (b_2 \overline{b}_2) \dots (b_L \overline{b}_L)$

- Choose an element $\overline{c_i} < b_i \overline{b_i}$ so that $e < a_1 \dots a_N \overline{c_1} \dots \overline{c_L}$
- Because A was a hypergroup, we can choose $d < c_L \dots c_1$ such that $d < a_1 \dots a_N$. This is what we wanted to prove, upon introducing the following definitions:

```
\operatorname{Com}(A) := \{c \mid c < b\overline{b} \text{ for some } b \in A\}
\operatorname{Com}(A)^{L} := \{d \mid d < c_{1} \dots c_{L} \text{ for some } c_{1}, \dots, c_{L} \in \operatorname{Com}(A)\}
```

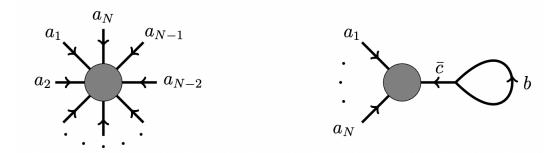
Comments

• The higher loop "selection rules" might seem somewhat complicated, but intuitively they are very simple to understand:



Comments

• The higher loop "selection rules" might seem somewhat complicated, but intuitively they are very simple to understand:

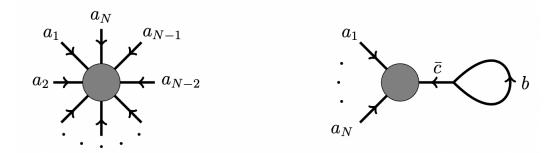


• Note that $Com(A) \subset Com(A)^2 \subset ...$ Hence as we go to higher loop order, the selection rules become weaker and weaker, and eventually reduce to those coming from a certain Abelian group Gr[A], which is schematically

$$Gr[A] := A/Com(A)^{\infty}$$

Comments

• The higher loop "selection rules" might seem somewhat complicated, but intuitively they are very simple to understand:



• Note that $Com(A) \subset Com(A)^2 \subset ...$ Hence as we go to higher loop order, the selection rules become weaker and weaker, and eventually reduce to those coming from a certain Abelian group Gr[A], which is schematically

$$Gr[A] := A/Com(A)^{\infty}$$

• Let's now give a concrete example.

Example: $A = \operatorname{Conj}(G)$

• Recall that for a standard symmetry G, the fields ϕ_i are labelled by representations R_i of G.

Example:
$$A = \operatorname{Conj}(G)$$

- Recall that for a standard symmetry G, the fields ϕ_i are labelled by representations R_i of G.
- Instead, let's label fields by $conjugacy\ classes\ [g_i]$. If we define the involution $\overline{[g]}\coloneqq [g^{-1}]$, then we have

$$N_{[g][h]}^{[e]} = \begin{cases} \#[g] & \text{if } [h] = [g^{-1}] \\ 0 & \text{otherwise} \end{cases}$$

so this forms a hypergroup which we denote by $A = \operatorname{Conj}(G)$.

Example:
$$A = \operatorname{Conj}(G)$$

- Recall that for a standard symmetry G, the fields ϕ_i are labelled by representations R_i of G.
- Instead, let's label fields by $conjugacy\ classes\ [g_i]$. If we define the involution $\overline{[g]}\coloneqq [g^{-1}]$, then we have

$$N_{[g][h]}^{[e]} = \begin{cases} \#[g] & \text{if } [h] = [g^{-1}] \\ 0 & \text{otherwise} \end{cases}$$

so this forms a hypergroup which we denote by $A = \operatorname{Conj}(G)$.

• In this case $Com(A)^{\infty} = [G, G]$ is the "commutator subgroup" of G, and we have

$$\operatorname{Gr}[\operatorname{Conj}(G)] = \frac{G}{[G,G]} = \operatorname{Ab}[G]$$

i.e. the Abelianization of G.

Example: $A = \operatorname{Conj}(G)$

- Recall that for a standard symmetry G, the fields ϕ_i are labelled by representations R_i of G.
- Instead, let's label fields by $conjugacy\ classes\ [g_i].$ If we define the involution $\overline{[g]}\coloneqq [g^{-1}]$, then we have

$$N_{[g][h]}^{[e]} = \begin{cases} \#[g] & \text{if } [h] = [g^{-1}] \\ 0 & \text{otherwise} \end{cases}$$

so this forms a hypergroup which we denote by $A = \operatorname{Conj}(G)$.

• In this case $Com(A)^{\infty} = [G, G]$ is the "commutator subgroup" of G, and we have

$$\operatorname{Gr}[\operatorname{Conj}(G)] = \frac{G}{[G,G]} = \operatorname{Ab}[G]$$

- i.e. the Abelianization of G.
- Summary: at tree-level the amplitudes are constrained by the Conj(G) selection rules, but at arbitrary high loop order they obey only the selection rules for a standard Ab[G] symmetry.

String Theory and Non-Invertible Symmetries

• So far we have simply assumed the existence of a QFT with fields ϕ_i labelled by $a_i \in A$ such that $\phi_1 \dots \phi_N$ is present in the Lagrangian only if $e < a_1 \dots a_N$.

String Theory and Non-Invertible Symmetries

- So far we have simply assumed the existence of a QFT with fields ϕ_i labelled by $a_i \in A$ such that $\phi_1 \dots \phi_N$ is present in the Lagrangian only if $e < a_1 \dots a_N$.
- In String Theory there is a natural way to realize such QFTs: consider worldsheets with non-invertible symmetry C!

String Theory and Non-Invertible Symmetries

- So far we have simply assumed the existence of a QFT with fields ϕ_i labelled by $a_i \in A$ such that $\phi_1 \dots \phi_N$ is present in the Lagrangian only if $e < a_1 \dots a_N$.
- In String Theory there is a natural way to realize such QFTs: consider worldsheets with non-invertible symmetry C!
- In such cases, spacetime fields are labelled by "representations" of \mathcal{C} , i.e. by elements of the Drinfeld center $\mathcal{Z}(\mathcal{C})$, which contains in it a certain hypergroup $A \subset \mathcal{Z}(\mathcal{C})$.

String Theory and Non-Invertible Symmetries

- So far we have simply assumed the existence of a QFT with fields ϕ_i labelled by $a_i \in A$ such that $\phi_1 \dots \phi_N$ is present in the Lagrangian only if $e < a_1 \dots a_N$.
- In String Theory there is a natural way to realize such QFTs: consider worldsheets with non-invertible symmetry C!
- In such cases, spacetime fields are labelled by "representations" of \mathcal{C} , i.e. by elements of the Drinfeld center $\mathcal{Z}(\mathcal{C})$, which contains in it a certain hypergroup $A \subset \mathcal{Z}(\mathcal{C})$.
- So in the context of String Theory, the selection rules described above can be understood as coming from non-invertible worldsheet symmetries! (also studied in [Heckman, McNamara, Montero, Sharon, Vafa, Valenzuela '24])

String Theory Example I: Non-Abelian Orbifolds

• Consider strings propagating on \mathbb{C}^2/Γ with Γ a finite subgroup of SU(2).

String Theory Example I: Non-Abelian Orbifolds

- Consider strings propagating on \mathbb{C}^2/Γ with Γ a finite subgroup of SU(2).
- The worldsheet theory is known to have a non-invertible $\operatorname{Rep}(\Gamma)$ symmetry. The spacetime states are labelled by (a subset of) the elements of $\mathcal{Z}(\operatorname{Rep}(\Gamma))$. The associated hypergroup turns out to be that associated to $\operatorname{Conj}(\Gamma)$.

String Theory Example I: Non-Abelian Orbifolds

- Consider strings propagating on \mathbb{C}^2/Γ with Γ a finite subgroup of SU(2).
- The worldsheet theory is known to have a non-invertible $\operatorname{Rep}(\Gamma)$ symmetry. The spacetime states are labelled by (a subset of) the elements of $\mathcal{Z}(\operatorname{Rep}(\Gamma))$. The associated hypergroup turns out to be that associated to $\operatorname{Conj}(\Gamma)$.
- Hence this is precisely the conjugacy class example studied before, and we conclude that in the presence of a non-Abelian orbifold, the tree-level scattering amplitudes are constrained by

$$[e] < [g_1^{-1}] \dots [g_n^{-1}][g_{n+1}] \dots [g_N]$$

In fact, this is a well-known fact about non-Abelian orbifolds! [Hamidi, Vafa '87]

String Theory Example I: Non-Abelian Orbifolds

- Consider strings propagating on \mathbb{C}^2/Γ with Γ a finite subgroup of SU(2).
- The worldsheet theory is known to have a non-invertible $\operatorname{Rep}(\Gamma)$ symmetry. The spacetime states are labelled by (a subset of) the elements of $\mathcal{Z}(\operatorname{Rep}(\Gamma))$. The associated hypergroup turns out to be that associated to $\operatorname{Conj}(\Gamma)$.
- Hence this is precisely the conjugacy class example studied before, and we conclude that in the presence of a non-Abelian orbifold, the tree-level scattering amplitudes are constrained by

$$[e] \prec [g_1^{-1}] \dots [g_n^{-1}][g_{n+1}] \dots [g_N]$$

In fact, this is a well-known fact about non-Abelian orbifolds! [Hamidi, Vafa '87]

• Furthermore, for $\Gamma \subset SU(2)$, one can show that at one-loop the selection rules already reduce to their final form, i.e. to those dictated by $Ab[\Gamma]$.

String Theory Example II: S^1/\mathbb{Z}_2

• Consider the worldsheet theory for strings on S^1 . Denote the momentum m, winding w operator by $\Phi_{m,w}$.

String Theory Example II: S^1/\mathbb{Z}_2

- Consider the worldsheet theory for strings on S^1 . Denote the momentum m, winding w operator by $\Phi_{m,w}$.
- This theory has a $U(1)_m \times U(1)_w$ symmetry generated by operators $U_{(\theta,\phi)}$ acting as

$$U_{(\theta,\phi)}: \Phi_{m,w} \to e^{im\theta + iw\phi} \Phi_{m,w}$$

This is an invertible symmetry since $U_{(\theta,\phi)} \times U_{(\theta',\phi')} = U_{(\theta+\theta',\phi+\phi')}$.

String Theory Example II: S^1/\mathbb{Z}_2

- Consider the worldsheet theory for strings on S^1 . Denote the momentum m, winding w operator by $\Phi_{m,w}$.
- This theory has a $U(1)_m \times U(1)_w$ symmetry generated by operators $U_{(\theta,\phi)}$ acting as

$$U_{(\theta,\phi)}: \Phi_{m,w} \to e^{im\theta + iw\phi} \Phi_{m,w}$$

This is an invertible symmetry since $U_{(\theta,\phi)} \times U_{(\theta',\phi')} = U_{(\theta+\theta',\phi+\phi')}$.

• Now perform an orbifold by $X_{L,R}^9 \to -X_{L,R}^9$. Since this \mathbb{Z}_2 symmetry acts as $\Phi_{m,w} \to \Phi_{-m,-w}$ and $U_{(\theta,\phi)} \to U_{(-\theta,-\phi)}$, the gauge-invariant operators in the orbifold theory are

$$\widehat{\Phi}_{m,w} := \frac{1}{\sqrt{2}} (\Phi_{m,w} + \Phi_{-m,-w})$$

$$\widehat{U}_{(\theta,\phi)} := U_{(\theta,\phi)} + U_{(-\theta,-\phi)}$$

String Theory Example II: S^1/\mathbb{Z}_2

• The orbifold worldsheet theory has a continuum of non-invertible symmetries, since

$$\widehat{U}_{(\theta,\phi)} \times \widehat{U}_{(\theta',\phi')} = \widehat{U}_{(\theta+\theta',\phi+\phi')} + \widehat{U}_{(\theta-\theta',\phi-\phi')}$$

String Theory Example II: S^1/\mathbb{Z}_2

• The orbifold worldsheet theory has a continuum of non-invertible symmetries, since

$$\widehat{U}_{(\theta,\phi)} \times \widehat{U}_{(\theta',\phi')} = \widehat{U}_{(\theta+\theta',\phi+\phi')} + \widehat{U}_{(\theta-\theta',\phi-\phi')}$$

• This non-invertible symmetry gives rise to constraints on tree-level spacetime amplitudes in the way discussed before.

String Theory Example II: S^1/\mathbb{Z}_2

 The orbifold worldsheet theory has a continuum of non-invertible symmetries, since

$$\widehat{U}_{(\theta,\phi)} \times \widehat{U}_{(\theta',\phi')} = \widehat{U}_{(\theta+\theta',\phi+\phi')} + \widehat{U}_{(\theta-\theta',\phi-\phi')}$$

- This non-invertible symmetry gives rise to constraints on tree-level spacetime amplitudes in the way discussed before.
- As an example of such a constraint, one can show that the tree-level potential for the radion field $G_{9,9}$ can contain terms of the form $(G_{9,9})^n$ only if n is even (at higher loops such terms can be generated though).

String Theory Example II: S^1/\mathbb{Z}_2

 The orbifold worldsheet theory has a continuum of non-invertible symmetries, since

$$\widehat{U}_{(\theta,\phi)} \times \widehat{U}_{(\theta',\phi')} = \widehat{U}_{(\theta+\theta',\phi+\phi')} + \widehat{U}_{(\theta-\theta',\phi-\phi')}$$

- This non-invertible symmetry gives rise to constraints on tree-level spacetime amplitudes in the way discussed before.
- As an example of such a constraint, one can show that the tree-level potential for the radion field $G_{9,9}$ can contain terms of the form $(G_{9,9})^n$ only if n is even (at higher loops such terms can be generated though).
- Similar results hold for more general toroidal orbifolds, e.g. T^6/\mathbb{Z}_3 .

Conclusions

• When a QFT has a group-like symmetry, the fields are labelled by representations, and terms in the Lagrangian of the form $\phi_1 \dots \phi_N \subset \mathcal{L}$ are allowed only if $\operatorname{id} \subset R_1 \otimes \dots \otimes R_N$. This gives rise to selection rules on amplitudes that hold to all orders in perturbation theory.

Conclusions

- When a QFT has a group-like symmetry, the fields are labelled by representations, and terms in the Lagrangian of the form $\phi_1 \dots \phi_N \subset \mathcal{L}$ are allowed only if $\operatorname{id} \subset R_1 \otimes \dots \otimes R_N$. This gives rise to selection rules on amplitudes that hold to all orders in perturbation theory.
- We can instead imagine a QFT whose fields are labelled by elements of a hypergroup, and demand that all terms in the Lagrangian of the form $\phi_1 \dots \phi_N \subset \mathcal{L}$ satisfy $e < a_1 \dots a_N$. This gives rise to selection rules that hold at tree-level, but are increasingly broken at higher loop level, eventually reducing to selection rules coming from an Abelian group Gr[A].

Conclusions

- When a QFT has a group-like symmetry, the fields are labelled by representations, and terms in the Lagrangian of the form $\phi_1 \dots \phi_N \subset \mathcal{L}$ are allowed only if $\operatorname{id} \subset R_1 \otimes \dots \otimes R_N$. This gives rise to selection rules on amplitudes that hold to all orders in perturbation theory.
- We can instead imagine a QFT whose fields are labelled by elements of a hypergroup, and demand that all terms in the Lagrangian of the form $\phi_1 \dots \phi_N \subset \mathcal{L}$ satisfy $e < a_1 \dots a_N$. This gives rise to selection rules that hold at tree-level, but are increasingly broken at higher loop level, eventually reducing to selection rules coming from an Abelian group Gr[A].
- A natural context in which such a QFT arises is in String Theory when the worldsheet has a non-invertible symmetry. Specific examples include non-Abelian and toroidal orbifolds.

Conclusions

- When a QFT has a group-like symmetry, the fields are labelled by representations, and terms in the Lagrangian of the form $\phi_1 \dots \phi_N \subset \mathcal{L}$ are allowed only if $\operatorname{id} \subset R_1 \otimes \dots \otimes R_N$. This gives rise to selection rules on amplitudes that hold to all orders in perturbation theory.
- We can instead imagine a QFT whose fields are labelled by elements of a hypergroup, and demand that all terms in the Lagrangian of the form $\phi_1 \dots \phi_N \subset \mathcal{L}$ satisfy $e < a_1 \dots a_N$. This gives rise to selection rules that hold at tree-level, but are increasingly broken at higher loop level, eventually reducing to selection rules coming from an Abelian group Gr[A].
- A natural context in which such a QFT arises is in String Theory when the worldsheet has a non-invertible symmetry. Specific examples include non-Abelian and toroidal orbifolds.
- The case of T^6/\mathbb{Z}_3 has some potentially interesting phenomenological applications, and will be explored in upcoming work [JK, Shi, Shimamori].

The End (for now)

Thank you!