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Introduction and Summary



Anomalies of fermionic and bosonic QFTs

There are recently significant improvements in our understanding of
symmetries of quantum field theories (QFTs) and of their anomalies.

(Cf. Invertible phase, Anderson dual IZ(Ω
spin
• ) ... [Freed, Hopkins 16’])

Among others, allowed anomalies of the same symmetry group in the
same spacetime dimensions can differ between bosonic QFTs and
fermionic QFTs.

U(1) in two dimensional spacetime, its anomalies are characterized
by an integer “level” k , arbitary k ∈ Z is allowed in fermionic QFTs,
while k has to be even in bosonic QFTs.

Similarly, in the case of Z2 symmetry in 2d, its anomaly is classified
by Z2 in bosonic QFTs but by Z8 in fermionic QFTs.



The boson/fermion anomaly difference can be understood in many
different ways.

Hamiltonian point of view

Symmetry operations are implemented in terms of unitary operators
acting on the Hilbert space H of the theory.

Our central observation
d dimensional QFT with the Hilbert space H for a spatial slice
Md−1.

Unitary operators U1, U2 representing symmetry operations localized
respectively within disjoint regions R1,R2 ⊂ Md−1, R1 ∩ R2 = ∅.

In a bosonic theory, the locality of the system dictates that they
commute: U1U2 = U2U1.

In a fermionic theory, they can either commute or anticommute:
U1U2 = ±U2U1.



U(1) symmetry and current algebra in 2d



Current algebra and Zero-Winding-Number sector

Consider spacetime: Rtime × S1
space, the U(1)k current charge density

operator J0(x , t) have the equal-time commutation relation

[J0(x , t), J0(y , t)] = k
i

2π

∂

∂y
δ(x − y) .

Picking functions f0, g0 : S
1 → R, with the assignment

LU(1)0 ∋ exp(2πif0) 7−→ U(f0) := exp 2πi

∫
S1

f0(x)J
0(x) dx ,

describing position dependent U(1) transformation.

Loop group of U(1): LU(1) := {f : S1 → U(1)}.
LU(1)0 is its zero-winding-number subgroup that is connected to
the identity.



Using Baker-Campbell-Hausdorff formula to derive

U(f0)U(g0) = exp [2πiβ0(f0, g0)]U(f0 + g0)

= exp [2πiγ0(f0, g0)]U(g0)U(f0)

where the 2-cocycle map β0(f0, g0) and the commutator map γ0(f0, g0)
on LU(1)0 are given by

β0(f0, g0) =
k

2

∫
S1

f0 g
′
0 dx , γ0(f0, g0) = β0(f0, g0)− β0(g0, f0) .

Fact: current algebra determines a U(1) central extension of LU(1)0.

[Faddeev ’84]: This is a manifestation of U(1) anomaly.



Schwinger-term and descent equation for 2d U(1)

Chain of descent equations

I4(F ) =
k

2

F

2π
∧ F

2π
, I4(F ) = d I3(A)

I3(A) =
k

2

A

2π
∧ F

2π
, δf0 I3(A) = d I2(A, f0)

I2(A, f0) =
k

2
f0 ∧

dA

2π
, . . .

. . .

One step further

δg0 I2(A, f0) = I2(A
g0 , f0)−I2(A, g0+f0)+I2(A, g0) =

k

2
df0∧dg0 ≡ dI1(f0, g0) ,

=⇒ I1(f0, g0) =
k

2
f0 ∧ dg0 .

But, this is not the end of the story, cf. LU(1)0 ⊂ LU(1).



The loop group LU(1)

Consider

L := {f ∈ C∞([0, 2π],R) | f (0) = f (2π) mod Z}

An arbitrary element in LU(1) can be described as exp(2πif ) for some
f ∈ L and its winding number is wf := f (2π)− f (0).
Lie algebra of LU(1) is LR := {f0 : S1 → R} with the surjection

exp 2πi(·) : LR −→ LU(1)0 .

Naive definition

LU(1) ∋ exp(2πif ) 7−→ U(f ) := “ exp

ñ
2πi

∫ 2π

0

dx f (x)J0(x , t)

ô
” ,

would fail and one needs careful regularization to proceed [OSTZ].

Alternatively, extending the 2-cocycle β0 and commutator map γ0
from LU(1)0 to LU(1), e. g. β and γ.



The commutator map γ

Only aiming at the commutator map γ without considering the cocycle β
is sufficient for U1U2 = e2πiγU2U1 = ±U2U1.

(γ-0) Recall L = {f ∈ C∞([0, 2π],R) | f (0) = f (2π) mod Z},
γ: L × L → R/Z such that

γ(f + 1, g) = γ(f , g + 1) = γ(f , g) mod 1.

(γ-1) γ is bi-additive

γ(f+h, g) = γ(f , g)+γ(h, g), γ(f , g+h) = γ(f , g)+γ(f , h) mod 1,

and alternating γ(f , f ) = 0 mod 1.

(γ-2) For f0, g0 ∈ C∞(S1,R) with winding number zero, γ reduces to γ0

γ(f0, g0) = γ0(f0, g0) =
k

2

∫
S1

(f0(x)g
′
0(x)− g0(x)f

′
0 (x))dx mod 1.

(γ-3) γ satisfies the graded locality condition

γ(f , g) ∈ 1

2
Z if supp f ∩ supp g = ∅.

Here, supp f := {x ∈ [0, 2π] | f (x) ̸= 0 mod 1} for f ∈ L.



Theorem 1 [Okada-Shimamura-Tachikawa-Zhang ’25]

There is a unique commutator map γ satisfying the consistency
conditions (γ-0)–(γ-3), and with the explicit formula given as

γ(f , g) =
k

2

Ç∫ 2π

0

(f (x)g ′(x)− g(x)f ′(x)) dx + f (0)wg − wf g(0)

å
.

Comments:

This formula first appeared in the work by Segal and collaborators
in the 1980s, where the expression was derived as a unique solution
generalizing the zero-winding-number result satisfying a covariance
under the action of orientation preserving diffeomorphisms on S1.

Differential cohomology Ĥ1(S1) = {f : S1 → S1} = LU(1) has the
feature that the graded product [Cheeger, Simons ’85]

Ĥ1(S1)× Ĥ1(S1) → Ĥ2(S1)

naturally gives a function γ̃(f , g) : LU(1)× LU(1) → R/Z that
relates to the commutator map by [Freed, Moore and Segal ’06]

γ̃(f , g) = γ(f , g) +
1

2
wfwg .



The 2-cocycle β

We then start with the following conditions.

(β-0) β is a map L × L → R/Z such that

β(f + 1, g) = β(f , g + 1) = β(f , g) mod 1.

(β-1) β satisfies the cocycle condition

β(g , h)− β(f + g , h) + β(f , g + h)− β(f , g) = 0 mod 1.

(β-2) For f0, g0 ∈ C∞(S1,R) with winding number zero, β reduces to β0

β(f0, g0) =
k

2

∫
S1

f0(x)g
′
0(x)dx mod 1.

(β-3) β is a 2-cocycle for the commutator map γ determined previously

β(f , g)− β(g , f ) = γ(f , g) mod 1.



Theorem 2 [Okada-Shimamura-Tachikawa-Zhang ’25]

There is a unique 2-cocycle β up to coboundary satisfying the conditions
(β-0)–(β-3), and the explicit formula for a representative can be given as

β(f , g) =
k

2

Ç∫ 2π

0

f (x)g ′(x)dx + wg f (0)

å
.

Comments:

In the choice of a representative β, there is a degree of freedom of
adding a coboundary term. This leads to some variations of the
2-cocycles appearing in literature [Segal et. al; Cheeger and Simons;
Bohm and Szlachanyi].

In particular, when the level k is even, we can choose β so that it is
Diff+(S1)-invariant. For example, β = 1

2γ and

β(f , g) = k
2

Ä∫ 2π

0
f (x)g ′(x)dx − wf g(0)

ä
are Diff+(S1)-invariant,

but satisfy (β-0) only when k is even.



Zn ⊂ U(1) symmetry in 2d



Fermionic SPT for (2 + 1)d bulk and (1 + 1)d boundary

Anomaly consists of three data

(µ, ν, α) ∈ C 1(BG ;Z2)× C 2(BG ;Z2)× C 3(BG ;U(1)),

where C d(BG ;A) is the set of A-valued cochains of degree d with the
condition that

δµ = 0, δν = 0, δα = (−1)ν
2

.

Gu-Wen ferminic SPT for µ = 0.

[Gu, Wen ’14]: anomaly data for 2d finite group Z2 symmetry

(ν, α) ∈ C 3(BZ2,U(1))× Z 2(BZ2,Z2) ,

such that
δα = (−1)ν

2

.

Gaiotto-Kapustin Phase

[Gaiotto, Kapustin ’14] explained how µ emerges and [Brumfiel, Morgan

’16] proved {[(µ, ν, α)]} ∼= Hom(Ωspin
3 (BG ),U(1)), known from hep-th by

eta-invariant.



‘Hamiltonian’ derivation of the anomaly 3-cocycle

What if we wish to extract the anomaly information from the
Hamiltonian point of view?

It is possible and the answer is known as Else-Nayak argument [Else,
Nayak ’14] from cond-mat.

Known in the algebraic quantum field theory (AQFT) community
already in the 80’s or 90’s, recent ref. see [Muger ’05]

Recently, S. Seifnashri had several articles discussing it on lattice
models, e. g. [2308.05151].

Key observation

Ug can be “manipulated” such that

UgUh ∝ u(g , h)Ugh ,

where u(g , h) is a unitary operator supported “somewhere”, instead of
closes up to a phase. u(g , h) itself is defined up to a phase.



Derive (α, ν) from Else-Nayak’s argument

An application of g ∈ G on a finite segment better defined than a
semi-infinite segment, and abstractly using ρg (O) as UgOU

−1
g .

gh

h

g

λL
g,h ∈ AL λR

g,h ∈ AR

ρgρh(O) = +λLg ,hλ
R
g ,hρgh(O)(λRg ,h)

−1(λLg ,h)
−1

In general, operators OL ∈ AL and OR ∈ AR should either commute or
anti-commute,

OLOR = (−1)|OL||OR |OROL,

where |O| = 0, 1 is the fermion parity. (Impossible in a bosonic theory!)



Details

ρgρh(O) = +λLg ,hλ
R
g ,hρgh(O)(λRg ,h)

−1(λLg ,h)
−1 (1)

Take O above to be OL ∈ AL, as λ
R
g ,h ∈ AR , we have

λRg ,hOL = (−1)|OL||λR
g,h|OLλ

R
g ,h.

Plugging it in (1) we find

ρgρh(OL) = (−1)|OL||λR
g,h|λLg ,hρgh(OL)(λ

L
g ,h)

−1.

Also, by letting O = (−1)F in (1) and assuming ρg etc. preserve (−1)F ,
we can show |λRg ,h| = |λLg ,h| =: ν(g , h). We then conclude

ρgρh(OL) = (−1)|OL||λL
g,h|λLg ,hρgh(OL)(λ

L
g ,h)

−1 . (2)



Assuming the existence of F -symbol (associator α)

ρg (ρhρk)(O) = α(g , h, k)(ρgρh)ρk(O) ,

one can derive that

ν(g , h) is a 2-cocycle with value in Z2, cf.

(−1)FλLg ,h(−1)F = (−1)ν(g ,h)λLg ,h (3)

And
ρg (λ

L
h,k)λ

L
g ,hk = α(g , h, k)λLg ,hλ

L
gh,k , (4)

a lengthy but straightforward computation shows that

δα = (−1)ν
2

.



Anomaly of Zn ⊂ U(1)

Now define the carry for b, c ∈ {0, 1, 2, . . . , n − 1}

p(b, c) =

ß
0 (b + c < n)
1 (b + c ≥ n)

,

and the residue of an integer m modulo n is denoted by m.
We specify the profile function κ(x) of the generator
exp 2πi 1n ∈ Zn ⊂ U(1)

κ(x) =


0 (0 ≤ x < a1)
interpolate (a1 ≤ x < a2)
1
n (a2 ≤ x ≤ a3)
interpolate (a3 < x ≤ a4)
0 (a4 < x ≤ 2π)

,

where 0 < a1 < a2 < a3 < a4 < 2π.



fL(x) =

 0 (0 ≤ x < a1)
nκ(x) (a1 ≤ x < a2)
1 (a2 ≤ x ≤ 2π)

, fR(x) =

 0 (0 ≤ x < a3)
nκ(x)− 1 (a3 ≤ x < a4)
−1 (a4 ≤ x ≤ 2π)

xa1 a2 a3 a4 2π0

1
n

a
n

1

−1

aκ

κ

fL

nκ

fR

When comparing ρbρc(O) and ρb+c(O), the fusion operators appear if
and only if b + c ≥ n and we then conclude that

λLb,c = U(fL)
p(b,c) , λRb,c = U(fR)

p(b,c) .



We can compute

ρa(λ
L
b,c) = U(aκ)

Ä
U(fL)

p(b,c)
ä
U(aκ)−1 = (exp 2πi γ(aκ, fL))

p(b,c) U(fL)
p(b,c)

=

Å
exp 2πi

k

2

a

n
p(b, c)

ã
U(fL)

p(b,c) .

Put the result back to the identity (4), we get

α(a, b, c) = exp 2πi
k

2

a

n
p(b, c) .

For the fermion parity we take (−1)F = U(− 1
2 ) with the constant map

g = − 1
2 and

(−1)FλLb,c(−1)F = (−1)ν(b,c) λLb,c =⇒ (−1)ν(b,c) =

Å
exp 2πi γ(−1

2
, fL)

ãp(b,c)
= exp 2πi(−k

2
) p(b, c) .

It is straightforward to verify that

(δα)(a, b, c , d) = exp 2πi(
k

2
)p(a, b)p(c , d) .



SU(2) in 4d via 2d invertible phase



SU(2) symmetry transformation in 4d

Consider 4d theory with SU(2) symmetry on M3 × R and consider
the action of position-dependent symmetry operation specified by
f : M3 → SU(2).

Take f , g : M3 → SU(2) whose supports are distinct.

Aim: show that

U(f )U(g) = (−1)wf wgU(g)U(f ) .

[Faddeev ’84, Zumino 85’]: Schwinger-term in spacetime dimensions
higher than two must contain gauge field potential.

[G a(x),G b(y)] = if abcG c(x)δ3(x−y)− i

12π2
dabcϵijk∂iA

c
j (x)∂kδ

3(x−y) .

G a(x) := ∂iE
a
i (x) + f abcAb

i E
c
i + iψ̄γ0T aψ.



Effective gauge group Map(M3, SU(2))

1 Strategy: M5 = M3 × S1
X × S1

Y construct an SU(2) bundle on
M3 × S1

X using the gauge transformation f , and an SU(2) bundle on
M3 × S1

Y using the gauge transformation g .

(Just the mapping torus construction)

2 Now study the anomaly on T 2
X ,Y = S1

X × S2
Y , where the effective

symmetry group on the torus T 2
X ,Y is the mapping space

Map(M3,SU(2)) := {f : M3 → SU(2)}.

3 Map(M3,SU(2))-background on T 2
X ,Y have holonomy f on S1

X and

g on S1
Y , respectively.



The light-red shaded region is where the SU(2) field is nontrivial due to
the gauge transformation by f . (This entire gauge configuration on
M3 × S1

X is pulled back to S1
Y , and therefore it might be better to fill by

light-red along the S1
Y direction too.)



Gluing property of eta-invariant

The anomaly is detected by the so-called eta-invariant.

η(M5) =
1

2

Ñ∑
λ̸=0

signλ+ dim ker(D5)

é
reg.

M3 = (supp(f )) ⊔ (supp(g)) ⊔M ′
3

The anomaly Z (M5) = exp(2πiη(M5)),

η(M5) = η((supp(f ))× T 2
X ,Y )η((supp(g)× T 2

X ,Y )η(M
′
3 × T 2

X ,Y ).

This means, with a fixed spin structure on T 2
X ,Y , we have

Z (M5; f , g)Z (M5; e, e) = Z (M5; f , e)Z (M5; e, g),

where now Z (M5; f , g) can be view as the 2d invertible phase on
T 2
X ,Y with f and g holonomy on the 1-cycles.



Making use of 2d invertible phase (Anomaly)

Recall, fermionic 2d invertible phase is the pairing between

(α, ν) ∈ H2(BG ,U(1))× Z 1(BG ,Z2)

and 2d Spin bordism class [(Σ, φ)] with a G -bundle.

Brumfiel-Morgan pairing is

(α, ν)× (Σ, φ) 7−→ Z (Σ, φ) := exp 2πi

ÅÅ∫
Σ

φ∗(α)

ã
+ qΣ(φ

∗(ν))

ã
where qΣ : H1(Σ;Z2) → Z2 is the quadratic refinement associated
to the spin structure σ on Σ.

Practically, given the Arf invariant, qΣ(x) = ArfΣ(σ + x)− ArfΣ(σ),
σ + x is the spin structure obtained by adding x ∈ H1(Σ;Z2).



2d invertible phase evaluation on two torus

The pullback
∫
T 2 φ

∗(α) evaluates to α(f , g)− α(g , f ) = γ(f , g) on
T 2 with holonomy (f , g).

On T 2, Arf invariant is nontrivial 1 ∈ Z2 if and only if the fermion is
periodic on all directions, e. g. (R,R).

Specifying the spin structure (NS ,R) and holonomy (f , g = e), we
get

Z (T 2
NS,R ; f , e) =

®
+1 (ν(f ) = 0),

−1 (ν(f ) = 1).

Next we consider T 2
NS,NS with holonomy (f , g). Then the value is

Z (T 2
NS,NS ; f , g) = exp(2πi(γ(f , g) +

1

2
ν(f )ν(g))).



Compare the 5d eta with 2d invertible phase

Back to 5d , Z (M5; f , e) corresponds to M5 = M4 × S1
Y with f

holonomy on S1
X and holonomy e on S1

Y .

On M4 = M3 × S1
X , we have the gauge field potential Af = f −1df

on M3, where d is the exterior derivative on M3.

The eta invariant we want is

η(M4 × S1
Y ) =

Å∫
M4

1

2
tr

Ff

2π
∧ Ff

2π

ã
× η(S1

Y )

=

Å∫
M3

1

2
CS

Å
Af

2π

ãã
× η(S1

Y ) ,

We exponentiate the eta invariant with 2πi , taking into account the spin
structure on S1

Y and we will get the result

Z (M5; f , e) = (−1)wf aY ,

aY = 0 or 1 depending on spin structure of S1
Y being NS or R.



Anti-commutation of Unitaries in QFT

From the previous computation, we find the fermion number ν(f ) of the
unitary operator U(f ) to be given by ν(f ) = wf .
Then taking aX = aY = 0, we see Z (M5; f , g) = 1, and from the torus
invertible phase

Z (T 2
NS,NS , f , g) = exp(2πi(γ(f , g) +

1

2
ν(f )ν(g))),

we find

γ(f , g) = −1

2
ν(f )ν(g).

Conclusion

If the support of f and g are distinct on M3

U(f )U(g) = (−1)wf wgU(g)U(f ) .
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