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Background: non-invertible symmetries in 2D
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Non-Invertible Symmetries in 2D CFTs

In diagonal RCFTs, Verlinde lines are in 1-to-1 correspondence
with conformal primaries [Verlinde ’88].

They exhibit non-group-like fusion rules, and F-symbols as
non-tivial isomorphism induced by an F-move.
See also [Fuchs, Ruhkel, Schweigert ’02; Fuchs, Schweigert ’03; Frohich, Fuch, Runkel, Schweigert ’04]

Following the development of generalized symmetries [GKSW ’14], such
topological lines are identified and characterized in general 2D
theories [Bhardwaj-Tachikawa ’17], [Chang-Lin-Shao-Wang-Yin ’17].
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Example: Ising CFT

Ising CFT: the IR limit of critical Ising model on a square lattice.

Primary operators: 1(0,0) the identity, ϵ( 1
2
, 1
2
) the stress-energy

tensor, and σ( 1
16
, 1
16
) the spin field, which are in 1:1 correspondence

to topological lines Id , η,N with fusion rules

η2 = 1, ηN = Nη = N , N 2 = 1 + η. (1)

Action of topological lines on local operators:

η1 = 1, ηϵ = ϵ, ησ = −σ; (2)

N1 =
√
21, N ϵ = −

√
2ϵ, Nσ = 0. (3)

F-symbol: this fusion rule allows two categories, Ising and su(2)2,
differing by a sign in F σ

σσσ. Simplest examples of [Tambara-Yamagami ’98].
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Example: Rational CFT at c = 1
The moduli space of c = 1 CFT [Ginsparg ’88] consists of the circle
branch, orbifold branch, and three expcetional points:

Starting from SU(2)1 WZW model at Rcircle = 1, we can gauge
discrete ADE subgroup of SO(3) (which is a non-anomalous diagonal symmetry of the

global symmetry SO(4) = (SU(2)L × SU(2)R )/Z2) to get
▶ (A-type) Zn: other points on the circle branch
▶ (D-type) Dihn of order 2n: points on the orbifold branch
▶ (E-type) A4, S4,A5 (of order 12, 24, 60): exceptional points

Question: starting from a different point, possible gaugings?

These points has non-invertible symmetries, so we need to
understand how gauging works for non-invertible symmetries.
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Review: gauging non-invertible symmetries
in group-theoretic fusion categories
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Gauging discrete symmetries: development

Gauging a finite group symmetry: sum over partition functions
with all possible charges, where a dual (“quantum”) symmetry
Ẑn = Hom(Zn,U(1)) appears [Vafa ’88].

Gauging the Ẑn recovers the original theory with Zn symmetry.

For non-Abelian G :

Gauging a non-Abelian G gives Rep(G ).

[Bhardwaj - Tachikawa ’17], in the dual theory, one should be able to
“gauge Rep(G )” to recover the original G theory. How to
understand this formally?
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Gauging discrete symmetry: current understandings

Rather than gauging G , we could gauge by a subgroup K ⊂ G .
We also have a choice of a discrete torsion H2(K ,U(1)).

In the category case, we gauge a symmetric separable Frobenius
algebra object A in C In Rep(G), gauging A =

∑
i didi recovers the original G symmetry.

Physically, gauging A = insert a mesh of A-topological lines
Then, topological lines the dual theory T /A are described by
A− A bimodules, elements of ACA.

For the Ising example, there is an algebra object A = 1 + η
implementing the Krammer-Wannier duality.

The dual theory is isomorphic to the original one in a non-trivial
way: spin σ is mapped to an non-genuine operator µ
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Consistency conditions for an algebra object
Unital, symmetric, Frobenius, separable, associative

To summarize: A should be “sufficiently deformable”
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Gauging Interfaces of 2D CFTs: intuition

Gauging interfaces are right A-modules.
They further admit a C-action, forming a module category CA.

For a given gauging, there can be multiple gauging interfaces
exchanged by a junction with C lines.
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Gauging interfaces in the Ising CFT
Pick a basis Mi of gauging interfaces, C acts on Mi as matrices
R(C), Non-negative Integer Matrix (NIM) representation of C.

Ising:R(η)2 = Id , R(N )2 = Id+R(η), R(η)R(N ) = R(N )R(η) = R(N ).

Solution: R(η) =

 1 0 0
0 0 1
0 1 0

 , R(N ) =

 0 1 1
1 0 0
1 0 0

 (4)

Ising

Adjacency graphs of R(η),R(N ). Node: gauging interfaces; arrows: η
(resp., N ) action on the gauging interfaces.
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Gauging and Group-theoretic fusion category

A large family of fusion category can be obtained by starting from
a group G , and gauging a subgroup K .

The resulting group-theoretic fusion category is denoted as
C(G , ω = 0;K , ψ):

▶ ψ ∈ H2(K ,U(1)) is the discrete torsion,

▶ and we work with trivial anomaly: ω = 0 ∈ H3(G ,U(1))

Elements in C (G , 0;K , ψ = 0) are K − K bimodules.

When one add non-trivial ψ, we get twisted K −K bimodules (i.e.,
projective representation for each K )
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Dual fusion category for gauging in G
The fusion coefficient of such K − K bimodules are given explicitly
in [Kosaki-Munemasa-Yamagami ’97].
K − K bimodules in G can be parametrized by

(K − K double coset U in G ,

representation of a centralizer Γ(x , y) ⊂ K of an element in U),

which is reminiscent of Drinfeld Center of a finite group.

We get fusion coefficients NUVW of U,V fusion into W̄ via

NUVW =
1

|G |

∑
x,y,z∈X

∑
γ∈Γ(x,y,z)

χ
x,y
U

(γ)χ
y,z
V

(γ)χ(x,z)
w (γ) (5)

x, y, z ∈ X are left cosets K\G , Γ(x, y, z) = Γ(x, y) ∩ Γ(x, z) ∩ Γ(y, z). χ
(x,y)
U

(γ) is the character of a

representation of the centralizer Γ(x, y), evaluated at an element γ ∈ Γ(x, y, z) ⊂ Γ(x, y) [KMY ’97].

We wrote a code implementing this. It could run for C(G , 1;K , 1)
for G = A4,S4,A5, but it gets slower for larget groups. It takes a few

minutes to run to find all fusion rules for C(A5, 0; Z2, 0).
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Dual fusion category for gaugin in Rep(G )
For each gauging in G by K (to get C(G , 0;K , 0)), we know the
corresponding gauging in Rep(G ) leading to the same C(G , 0;K , 0)
via:
▶ Decompose G into K cosets G/K
▶ Write down the G rep. by examining G -action on G/K
▶ Decompose such a rep. into irreps of G .

This way, we know all possible gaugings in Rep(G ) and the dual
fusion category. Cases with ψ ̸= 0 can be treated using [Putrov-Radhakrishnan ’24] via Z(G).

E.g., all possible gauging in A4 and Rep(A4),
taken from [Perez-Lona, Robbins, Sharpe, Vandermeulen, Yu ’24]
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Motivation: beyond G and Rep(G ),
subfactors are computationally helpful
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Gauging in CT and the need for subfactor theory

The branch point in the c = 1 moduli space is called
Kosterlitz-Thouless (KT) point. It has a CT triality symmetry,
which is Z2 × Z2 enhanced by T , T :

T T = 2T , T T = 1 + η + η′ + ηη′. (6)

There were no systematic approach to understand gaugings of this
symmetry.

We realized subfactor theory to be a useful tool here:

Fusion category C and a gaugeable algebra object A is equivalent
to “a pair of von Neumann subfactors N ⊂ M”.

So we decided to delve into von Neumann subfactor theory.
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von Neumann Subfactors

We won’t need rigorous definition of von Neumann algebra, except:

▶ They are algebra of complex operators acting on a H
▶ A factor is a building block of a von Neumann algebra (just like any

integer decomposes into prime numbers).

See [Jia-Tian ’25] and [Shao-Sorce-Srivastava ’25] for recent works on von Neumann

algebra and generalized symmetries.

There is a type classification of factors. We will be using factors of
type III, ones that “does not admit any pure states or mixed states”.

All the factor we cares about are isomorphic to each other, but the
embedding ι : N ↪→ M could contain non-trivial information.

Such a pair is called (von Neumann) subfactors.
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Gaugeable algebra object via subfactors

Using diagrams, we now intuitively explain how a subfactor N ⊂ M
(with embedding ι : N ↪→ M) knows about gauging.
▶ A fusion category C is encoded as as the category of certain

(“DHR”) endomorphisms of N
▶ In particular, the F-symbol data is (intriguingly) implicit

▶ A gaugeable algebra object A = (θ in figure ) as ιι, where
ῑ : M ↪→ N is a dual embedding

▶ All possible gauging interfaces (i.e., A-modules) as mixed
(N −M) bimodules
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Recovering all the conditions on A

Then one can “resolve” all the objects A as “a thin strip of M
inside N” Taken from [Bischoff-Kawahigashi-Longo-Rehren] except the last row. The right side acts first

Light shadow: N; dark shadow: M.

Heuristically, we see all the conditions for the algebra object A to
be naturally satisfied by deforming the M-N boundaries.
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Principal graph: A-action on modules

Recall that C elements are N − N bimodules, and modules CA are
N −M bimodules.

Mathematicians likes to organize these data into principal graph of
a subfactor (right), which encodes the adjacency graph (left) of
η/N -action on the modules:

Ising

The odd part connecting to 1 is ι, the identity module.
Here we illustrate the case of Ising, where A = 1 + η.
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Finding Candidate Principal Graph from Fusion rules
For a fusion category C, we look for its potential gaugings.

Here, we want to compute the adjacency matrix Grs of the
principal graph.

▶ Compute the fusion matrix FA
r×r = triple fusion coefficient of

(algebra obj. A, kth1 topological line, kth2 topological line).
▶ It can be shown that FA

r×r = Gr×s(G )Ts×r , so we need to
factorize F into GGT .

▶ Then Gr×s gives the principal graph, s labeling the interfaces.
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Dual and Glued Principal Graphs

(C, A) Physics theory T Subfactor N ⊂ M principal graph

C topological lines in T N − N bimod. even part

CA gauging interfaces N −M bimod. odd part

ACA dual topological lines T /A M −M bimod. dual even part

AC (dual) gauging interfaces M − N bimod. (dual) odd part

M − N bimodules are N −M bimodules are in 1:1 correspondence,

So it is natural to glue a principal graph and a dual one along the
odd parts.
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Disclaimer Slide

Some feedback after previous talks.

The construction of M,N, despite mathematically valid, are very
abstract and implicit.

We are only using M,N as a formal tool to extract key features
from C (into the principal graph of M ⊂ N), and compare with a
candidate dual C′ =A CA

Suppose we know the group case, G , has NG gaugings. If we have
at most NG candidate gaugings in ACA, then these gaugings are all
valid.
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Results: gauging non-invertible symmetry in
c = 1 CFTs
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Results

We use the approach of subfactors to work out all possible
gaugings and gauging interfaces for all C(G , 1;K , ψ) with
G = A4,A5, following [Grossman-Snyder ’11].

▶ We are able to explicitly determine all gaugings from each
dual theories by focusing on the A4 ⊂ SO(3) symmetry.

▶ In particular, we understood all gaugings in the KT point with
CT symmetry - neither G nor Rep(G ).

▶ We identified a self-duality gauging in the A5 exceptional
point. This gauging allows us to construct a self-duality
defect, which enhances the symmetry from Rep(A5) to
Rep(SL(2,F5)), matching expectation from fusion rule of local
operators.
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Brauer-Picard Groupoid and Composing Gaugings

If there is a gauging that sends T → T ′, then all the gaugings in
T are in 1:1 correspondence with gaugings in T ′, since we are
allowed to compose gaugings.

# of gaugings in G = # of (K , ψ) (7)

!
= # of gaugings in C(G , 0;K , ψ). (8)

[Choi, Lu, Sun ’23], [Perez-Lona, Robbins, Sharpe, Vandermeulen, Yu ’23 ’24], [Diatlyk, Luo, Wang, Weller ’23]

used this to determine gaugings in Rep(G ).

Mathematically, we are looking for the Brauer-Picard Groupoid of
a fusion category

▶ where objects are fusion categories

▶ morphisms are “gauging” / Morita equivalences: map from C
to its bimodule category ACA.
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Gaugings in the orbifold groupoid of A4

So can have the following table (two gaugings in the same line do
not produce each other but they go to a common third theory):
Each row is a different theory, their symmetry may coincide since we just look at A4.

Theory ACA K ⊂ A4 A of Rep(A4) A′ of CT
Rc = 1 VecA4 1 (1 + X + Y + 3Z )1 ???
K.T. CT Z2 1 + X + Y + Z ???
Rc = 3 Rep(A4) Z3 (1 + Z )1 ???
Ro = 2 VecA4 (Z2)

2 1 + X + Y ???
Ro = 2 VecA4 (Z2)

2
d.t. (1 + X + Y + 3Z )2 ???

A4 point Rep(A4) A4 1 ???
A4 point Rep(A4) (A4)d.t. (1 + Z )2 ???

Where the Rep(A4) column can be found by known techniques
But the CT column needs subfactors.
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Gaugings in the K.T. point via Gluing Principal Diagrams

1 11 1 1

▶ Gauging 1 is trivial: remains CT .
▶ Gauging 1 + η: dual to Gauging Z2 in G
▶ Gauging 1 + η + η′ + ηη′: dual to gauging Z2 × Z2 in G
▶ Gauging 1 + η + T + T : dual to gauging 1 + X + Y + Z in

Rep(A4). Illustrated above, second last elements in each row
can be glued.
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All possible gaugings in CT = C (A4, 1;Z2, 1)
Via the above subfactor analysis, we get

C(G , 1;K , ψ) K ⊂ A4 A of Rep(A4) A′ of CT
VecA4 1 (1 + X + Y 2 + 3Z )1 1 + η
CT Z2 1 + X + Y 2 + Z 1

Rep(A4) Z3 (1 + Z )1 1 + η + T + T̄
VecA4 (Z2)

2 1 + X + Y 2 1 + η′

VecA4 (Z2)
2
d.t. (1 + X + Y 2 + 3Z )2 1 + ηη′

Rep(A4) A4 1 1 + η′ + T + T̄
Rep(A4) (A4)d.t. (1 + Z )2 1 + ηη′ + T + T̄

T T = 2T , T T = 1 + η + η′ + ηη′
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Brauer-Picard Groupoid v.s. CFT Physics

Recall that objects are categories and morphisms are Morita
equivalences / gaugings

Physical splitting: A4 is seen both at Rcircle = 1 and Rorbifold = 2,
Rep(A4) is seen both at Rcircle = 3 and the A4 point.
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Discussions and outlook
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Conclusions

The triplet of

(original symmetry, dual symmetry, gauging interfaces)

can be effectively determined and conveniently packaged using the
formalism of von Neumann subfactors.

Starting from the SU(2)1 CFT, we gauged various subgroups of its
A4 ⊂ SO(3) global symmetry. We further studied how the
resulting theories are related to each other by gauging.
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Future directions

We hope to better understand how the data of F-symbol /
associator of a fusion category is encoded on the subfactor side.

Intermediate subfactors N ⊂ P ⊂ M is well-studied on the
subfactor side, but less on the fusion category side. We hope to
use it to understand sequential gauging.

Subfactors are known to describe extension of local conformal nets,
which appears to be a distinct physical setup than gauging
non-invertible symmetries. Can we learn anything from comparing
these two (apparently distinct) scenarios in physics that are both
described by subfactors?
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Bonus Content: Duality Enhancement
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All possible gaugings in A5

Our code explicitly computed the dual fusion rings

but further determine the gaugings among the dual categories
C(A5, 1;H, 1) besides H ∈ {1,A5} is difficult.

We leave this part for future work.
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Duality enhancement and local operators

There is a self-dual gauging in Rep(A4) by (1 + Z )d .t., which
enhances the fusion category to Rep(SL(2,F3)).

Concretely, the original Rep(A4) generated by 10, 11, 12, 3 is
augmented by a defects D0 and two more 2-dimensional elements
D1,D2 where D2

i = 1i + 3 (i = 0, 1, 2).

We now take a pause and compare the above result with the
operator algebra of orbifold models by [Dijkgraaf-Vafa-Verlinde-Verlinde ’88] .

They already considered the SU(2)1/A4 orbifold model, and they
found that the untwisted sector organizes into the representation
ring of SL(2,F3), whose order is 24: twice of that of A4.
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All possible gaugings in Rep(A5)

We look again all the gaugings starting from Rep(A5)

We know there is a loop in the upper-left, which is a self-dual
gauging.
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Rep(A5) self-dual gaugings via odd parts

Recall that Rep(A5) can be produced by gauging the whole A5

with non-trivial algebraic structure

Under this correspondence, the Rep(A5) objects should be thought
of as twisted A5 − A5 bimodules, and the odd parts have a twisted
A5-module structure (by the non-trivial element of
H2(A5,U(1)) ∼= Z2).

i.e., we want projective representations of A5, and math literature
tell us that they are of dimension 2, 2, 4, 6.

Recall: representations of C and C∨ are given by odd parts of the
principal diagram!

So we want to find algebra objects whose odd parts had ratio of
dimension 1:1:2:3
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Example of self-dual gauging in Rep(A5)

The dimension of the odd part is defined by the (weighted) sum of
all even parts that it connects to.

1

1+X

So, in the above diagram of gauging 1 + X , we get the ratio of
odd parts to be
d(1 + X3) : d(U4) : d(X3 + V5) : d(X

′
3 + U4 + V5) = 1 : 1 : 2 : 3,

matching the spectrum of twisted A5-representations.
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Duality Defect and Symmetry Enhancement

The self-dual gauging has multiple candidate algebra objects

1+X3, 1+X ′
3, 1+X3+X ′

3+U4+V ′
5, 1+2X3+2X ′

3+2U4+3V5 (9)

of dimension 4, 4, 16, 36 (as sums of A5 reps of dimension 1, 3, 3, 4, 5).

We learn that we need to include four more duality defects of
dimension

2, 2, 4, 6 (10)

so that N2N 2 = 1 + X3, etc.

These objects, together with Rep(A5), exactly reproduces the
fusion rule for Rep(SL(2,F5)) (binary isocahedral group) of
dimension 120, matching our expectation from the A4 case.
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Different looks at a same theory

Physical remark: the gauging of Z2 takes from SU(2)1 to the K.T.
point, irrespective of which symmetry we focus on to begin with
(A4, A5, etc.)

Therefore, we should expect the C (A5, 1;Z2, 1) extends the
“triality extension of Z2 × Z2”, C(A4, 1;Z2, 1).

We hope to see how this works explicitly in the future.

In a long term, one might expect both these symmetries fits into a
Z2 gauging of the anomalous SO(4), whose mathmatical
description is not available yet.
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Non-commutative non-invertible fusion rules when gauging
A5 subgroup

We take C(A5, 1;Z2, 1) as an example.

There are 4 invertible elements forming Z2 × Z2, and 14 elements
each of quantum dimension 2.

We named them X a
2 ,X

b
2 , ...... For non-self-conjugate elements, we also use X a

2 , X
a′
2 to label

conjugate pairs.

And we get

X a
2X

b
2 = X i

2 + X f
2 , X b

2 X
a
2 = X h

2 + X j
2 (11)

Together with many other pairs of non-commuting elements.
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Backup Slides
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[Backup] Another physical interpretation: Conformal
Embedding

In Algebraic QFT, M ⊂ N is sometimes interpreted as “conformal
embedding”, e.g. SU(2)10 ⊂ SO(5)1.

These Lie algebra are “conformal nets”. They describe Chiral CFTs
by picking a single light ray, compactify it on S1, and assigning a
von Neumann algebra for each subset (interval) I ⊂ S1.

But this “conformal embedding” appears to be physically unrelated
to “gauging non-invertible symmetry”, other than sharing the same
mathematical structure.

So they will not play a role in our talk today.
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K.T. point

Kosterlitz-Thouless CFT is the CFT that describes the
Berezinskii-Kosterlitz-Thouless transition in 2D XY model.

I learned a bit of this from this slide
https://oshikawa.issp.u-tokyo.ac.jp/Slides/BKT-SCGP-May2021.pdf

by prof. Oshikawa.

It can be seen in the XY model with Lagrangian

HXY = −J
∑
⟨ij⟩

cos(θi − θj) (12)

And it is also supposed to be found in the S = 1/2 XXZ chain:

H =
∑
j

(Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

j S
Z
j+1) (13)
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Numerical Works

See numerical work by [Huang-Lin-Ohmori-Tachikawa-Tezuya ’21] (I heard these
from slides of Yuji about this paper), [Vanhove-Lootens-Van

Damme-Wolf-Osborne-Haegeman-Verstraete ’21],

both conjectured the IR limit of an “anyon chain” gives a CFT
with Haagerup symmetry.

An estimate of central charge c ∼ 2 was obtained in both works.

After learning about these works, we appreciated the power of
subfactor theory, and we decided to learn more about them.



14/17

von Neumann Algebra

They are C ∗ algebra, whose elements are bounded operators acting
on a Hilbert H. ∗ refers to a conjugation.

Given a Hilbert space H and the space of bounded operators on it
B(H), we can define the commutant of A ⊂ B(H) to be
A′ = {T ∈ B(H)|TS = ST , ∀S ∈ B(H)}.

Then, von Neumann algebra needs to satisfy A = A′′ certain
“completeness” condition w.r.t. double commutant. Textbook
[Jones and Sander ’97] (see also [Sorce ’23])

A factor is a von Neumann algebra A that A ∩ A′ only contains
identity and its multiplets. They play a similar role as simple Lie
algebras.

They are math objects that originate from physics of QM, so it is
natural for physicists today to keep an eye on them. There are
many conceptual discussions on von Neumann algebras in
Holography.
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How did subfactor theory became useful in non-invertible
symmetries?

I first heard of subfactor theory from the fact that, there is a fusion
category (called the Haagerup fusion category) that is first
constructed using subfactor theory.

It has fusion algebra of

a3 = 1, aX = Xa = X , X 2 = X + 1 + a+ a2. (14)

At the same time, there are no construction of a CFT that admit
Haagerup category as its categorical symmetries.

There were efforts of numerically constructing the Haagerup CFT.
[Huang-Lin-Ohmori-Tachikawa-Tezuya ’21][Vanhove-Lootens-Van Damme-Wolf-Osborne-Haegeman-Verstraete ’21]

Lesson for us: subfactor is a fruitful framework that produces
physically interesting examples. There are probably more to be
found.
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Principal graph vs fusing ring and its representation

As we have seen, principal graphs keeps track of the fusion ring
and part of its representation data.

However, given a principal graph, there could be 0, 1, or several
underlying subfactors. So principal graph does not specify
everything [?]ven mathematicians struggle in extracting explicit
F-symbols from subfactors.

Nonetheless, the non-existence of the principal graph for a fusion
rule would exclude it.

The glued principal graph builds in the condition that the M − N
bimodules and N −M bimodules matches one-to-one.
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Principal Graph vs Underlying Fusion Category

In fact, the first paper [Haagerup ’93], only proved the existence of
the principal graph of the Haagerup subfactor by analyzing its
principal graph.

But he did not construct it explicitly.

Only a subsequenst paper by [Asaeda-Haagerup ’97], the Haagerup
subfactor is constructed (together with some generalizations by
replacing Z3 with larger cyclic groups).

In [Grossman-Snyder ’11], another fusion category with Haagerup
fusing ring was identified, again using a lot of principal diagrams.

Still, they did not explicitly compute F-symbols, which was not
done until [Osborn-Stiegemann-Wolf ’19].
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