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Statistics of particles and extended excitations

Statistics of quasiparticles (anyons): crucial properties of phases of matter;  topological order, spin liquids

Nontrivial statistics often implies nontrivial low-energy spectrum, as only bosons can condense.

Typically associated with ‘t Hooft anomalies of higher-form symmetries.

Anyons can be non-invertible, but in this talk we are mostly interested in invertible excitations and symmetries. 

Dynamical constraints e.g. forbids confined phases

[Levin-Gu, Wen, Wang-Senthil,…]



Microscopic definition of statistics

Gapped local Hamiltonian system:  How to define statistics of quasiparticles in microscopic lattice models?

T-junction: [Levin-Wen]

This process indeed does half-braiding of two identical particles:

To be qualified as invariants, we further need to check the stability against perturbations.



Microscopic definition of statistics

T-junction:

✓ Invariant under redefinitions of unitary by phases

✓ Invariant under perturbations nearby the ends of unitaries

Question: Spins of Abelian anyons should be quantized.   Is this T junction a quantized invariant?  

✓ Invariant under choices of initial excitation configurations

[Levin=Wen]

Gapped local Hamiltonian system:  How to define statistics of quasiparticles in microscopic lattice models?



Quantization of T-junction

T junction is a quantized invariant.  Let’s see this explicitly for Abelian anyons with Z2 fusion rule. 

Key observation is that the triple commutator of operators with no common overlap must vanish: 

For instance,

03

02

12

(follows from assumption that unitaries are finite depth local circuit.)



Quantization of T-junction

( 4 x T junction ) for ℤ2 Abelian anyons is the combination of triple commutators: 

This shows that the spin of ℤ2 Abelian anyons through T-junction must be quantized as 0, 1/4, 1/2, 3/4 (ℤ4 statistics).
ℤ𝑁 Abelian anyons ⟹ ℤgcd(2,𝑁)×𝑁 statistics

We will see that such mechanism for quantization is observed in a very general setup.

]



Generalized statistics: loop excitation in (3+1)D

Example: Z2 1-form symmetry in (3+1)D.  24 step unitaries:

Such invariants can be defined in generic space dimensions, with generic invertible extended excitations.

We will give the framework for such invariants with generic dimensionality, and discuss physical consequences.

“Fermionic loops”

Ryan Thorngren (2014): 
𝑤3-obstruction

Theo Johnson-Freyd (2021):
Klein bottle invariant of fusion 2-categories

Chen-Hsin (2023):
Lattice 𝑤2𝑤3 (4+1)D TQFT

Fidkowski-Haah-Hastings (2023):
Loop-flipping process



Generalized statistics: particle fusion in (1+1)D 

For ℤ2 particle 𝑠, the “statistics” is equal to:

𝑍3 = 𝐹 𝑠, 𝑠, 𝑠 𝐹 𝑠, 1, 𝑠 .

We can further simplify this expression into hopping

operators:

𝑍3 = 𝑈01
2 , 𝑈12

where [𝐴, 𝐵] ≡ 𝐴𝐵𝐴−1𝐵−1 and 𝑈𝑖𝑗 is the hopping

operator that moves particle from 𝑖 to 𝑗.

Therefore, in (1+1)D, bosons and fermions have trivial 

statistics, while semions exhibit nontrivial statistics. 

This is why higher gauging of fermions is possible 

within a (1+1)D subspace.
Kawagoe-Levin (2020)



Framework for Generalized statistics

• Local gapped lattice system, with tensor product Hilbert spaceSetup:

• Finite invertible p-form symmetry with fusion group G, generated by a finite depth unitary circuit

End of symmetry operators correspond to the extended excitations. 

Input: • Possible configurations of excitations (on a simplicial complex embedded in space):   finite group 

• Set of patch symmetry operators :   symmetry generators creating excitation configurations

Example...   T junction

• : G (=ZN) anyon configurations on a triangulation of 2d sphere: 

(G can be non-abelian when p=0)

• : set of anyon string operators on edges. Six generators of G6 (# of edges)

(anyons on four vertices 
fuse to vacuum)



Framework for Generalized statistics

Invariant is a sequence of unitaries acting on a state, getting back to the original one

In general, it is sum of the phases 

It is convenient to introduce a formal sum of the objects

The invariant is formulated as a specific subgroup

( Let us restrict ourselves to the Abelian fusion group G in this talk. Can be safely generalized to non-Abelian groups. )



Group of invariants: 

The condition for being an invariant:  Linear constraints on integer coefficients                  of

1.   The invariant corresponds to sequence of unitaries, with same initial and final state (Berry phase). 

3.   The invariant has to be stable against perturbations nearby the boundaries of unitary operators.

2.   The invariant has to be stable against phase redefinitions of the unitary operators.

The three types of linear constraints together define 

( Stability against perturbations within a j-simplex        )

( uses exponentially decaying correlation length = gapped )

∈



Trivial invariants from locality: 

Some invariants                       correspond to the trivial invariants  (identity). 

Trivial invariants originate from higher commutator:

Let                            be the group of higher commutators.     Then define generalized statistics as  

Though              is an infinite group (direct sum of integers), the genuine invariant T is a finite Abelian group.

Invariants are torsions, and quantized.



Quantization of Generalized statistics

Let’s explicitly show that the invariant                                     is a finite group (torsion).

First, one can show that the equivalence class                               doesn’t depend on initial state, i.e., the ratio

for any pair of initial states.

In other words, it is equal to product of higher commutators, and actually = 1

Then, sum up the phase over all choices of initial states:

[e] has finite order,

Showing T is a finite group



Computation of invariants: Smith normal form

One can systematically compute                                  based on a simple algorithm.

The idea is to first list all possible higher commutators:

Then, some linear combinations of higher commutators happen to have overall integer N factor:

This implies the existence of invariant quantized in ℤ𝑁:

and many other <[U,[U,U]]> =1 type equations and many equations 

<[U,[U,U]]>  x  <[U’,[U’,U’]]>  x  …



Computation of invariants: Smith normal form

The combination of higher commutators with overall integer factor can be obtained by Smith normal form

Let’s say we have higher commutators

Then make an integer matrix

Linear combination 
of eqs (row)

Redefiniton of theta 
by linear combinations
(column)

correspond to quantized invariants  (single nontrivial one is Z3)

SNF



Computation of invariants: Smith normal form

Summarizing, the algorithm for computing the statistics is as follows:

1. First fix the simplicial complex and fusion group G, the configurations of excitations      , and unitaries

2. Enumerate all possible higher commutators of unitaries which evaluates trivially

3. Put the higher commutators into a matrix, and compute its Smith normal form 

4. Invariants are classified by the entries of Smith normal form:



Conjecture:  Generalized Statistics  =  Group Cohomology

Take a triangulation on a sphere embedded in d dimensional space.

Then, computation results imply the correspondence with the group cohomology:

p-dimensional excitation  ((d-p-1)-form symmetry)  with fusion group G.

For instance, 𝑑 = 2, 𝑝 = 0, 𝐺 = ℤ𝑁 (anyons):
Checked up to N = 10 on laptop.

2d 3d

Verified for 
small groups G.

Spin quantization rule of anyons;



Examples of invariants

• 1+1D:

• 3+1D: 1-form ZN symmetry

0-form ZN symmetry

0-form ZN symmetry ……

• 2+1D: 0-form ZN x ZN symmetry

“Fermionic loops” for N = 2



Generalized statistics as anomalies: obstruction to gauging

The nontrivial invariant is directly regarded as obstruction to gauging the symmetry.

A take is that the product of unitaries is the product of Gauss law operators.

It means that the invariant obstructs commuting Gauss laws within the initial symmetric state.

Obstruction to gauging the symmetry  =  Microscopic definition of ‘t Hooft anomalies

Gauss law operator on local simplex Δ, and the unitary is product of Gauss laws



Generalized statistics as anomalies: dynamical consequences

Generalized statistics is understood as the ’t Hooft anomaly.

Indeed, generalized statistics has a direct dynamical consequence (similar to Lieb-Schultz-Mattis):

Generalized statistics                  on the symmetric state          implies that the state cannot be short-range entangled. 

Such result has been known for anyons in (2+1)D:     T-junction must be trivial on SRE states

For instance, Z2 1-form symmetry in (3+1)D: 

LRE state

(i.e., cannot be connected to tensor product state by finite depth circuit)

[Bravyi-Hastings-Verstraete, 
Li-Lee-Yoshida]



Warm-up (review):  Anyons imply long-range entanglement

Let us see how the anyon T-junction forbids the short-range entanglement.

Suppose           is SRE state in 2d.   i.e.,                               with a finite depth circuit V. 

In this setup, each excited state                     is trivial product state away from the excitation:    

So excitation is just a disentangled 0d state. This greatly constrains the property of Berry phase. 

The action of            is independent of the excitations away from k, l.     This leads to cancellation of T-junction: 



Fermionic loops imply long-range entanglement

Such argument can be generalized to extended excitations as well.  Let’s consider Z2 1-form symmetry in (3+1)D 

LRE state

Let’s consider 3d SRE state           w/ Z2 1-form symmetry.

Then, each state              can be taken to be a trivial product state away from excitations: 

(up to finite depth circuit)

Then, each excited state is essentially a 1d gapped state, which can be described by matrix product state (MPS). 



Each excited state in SRE is the 1d MPS state along excitations.

Fermionic loops imply long-range entanglement

For instance, 

Let’s consider a “patchwork” of MPS:

This patchwork representation allows us to construct a canonical choice of excited state         for generic configuration. 

MPS V only depends on excitation configuration near a vertex, and E only depends on those near an edge.

This specific structure of an excited state again greatly constrains the Berry phase  



Fermionic loops imply long-range entanglement

The symmetry operator also decomposes into circuits near vertex, edge, bulk.

Berry phase decomposes into smaller part, and each phase only depends on MPS on specific j-simplex:

Then, invariance under local perturbations at j-simplex enforces the Berry phase on each j-simplex to cancel out.

One can then show                      has trivial invariant on SRE.



Generalized statistics imply long-range entanglement

Let’s consider SRE state           w/ G p-form symmetry in generic dimensions.

Then, each state              can be taken to be a trivial product state away from excitations: 

(up to finite depth circuit)

Such argument can be extended to generic setup: Need to assume tensor network representation of excited states.

Tensor network at the excitations

Then decompose the tensor network and operators into the ones localized nearby j-simplices. 

We can use the conditions of            for the stability against perturbations at j-simplex, leads to cancellation of phases.

One can then show                      has trivial invariant on SRE.



Summary

• Universal microscopic descriptions for statistics of invertible deconfined excitations 

• Generalized statistics is quantized, and systematically computed using Smith normal form 

• Generalized statistics gives microscopic definition of anomalies, and constrains low-energy spectrum

Future directions

• Gapless systems?   If the perturbation is always symmetric, the definition should also work for gapless systems.

• Non-invertible symmetries / non-Abelian anyons?  Is there analogue of higher commutators of unitaries?

• Proof for the correspondence between generalized statistics and group cohomology?


