Anomaly AND Generalized statistics on lattices

Hanyu Xue (薛寒玉) Peking University -> MIT

arXiv:2110.14644

Yuyang Li (李雨阳) Peking University

Ryohei Kobayashi (小林良平) Princeton/IAS

Po-Shen Hsin (辛柏伸) King's College London

Yu-An Chen (陳昱安)

Generalized Symmetries in HEP and CMP

arXiv:2412.01886

July 28, 2025

arXiv:2412.07653 (Hanyu single author)

Statistics of particles and extended excitations

Statistics of quasiparticles (anyons): crucial properties of phases of matter; topological order, spin liquids

[Levin-Gu, Wen, Wang-Senthil,...]

Nontrivial statistics often implies nontrivial low-energy spectrum, as only bosons can condense.

Typically associated with 't Hooft anomalies of higher-form symmetries.

Dynamical constraints e.g. forbids confined phases

Anyons can be non-invertible, but in this talk we are mostly interested in invertible excitations and symmetries.

Microscopic definition of statistics

Gapped local Hamiltonian system: How to define statistics of quasiparticles in microscopic lattice models?

T-junction: [Levin-Wen]

$$U_{02}U_{03}^{-1}U_{01}U_{02}^{-1}U_{03}U_{01}^{-1}\begin{vmatrix} 3 \\ 1 \end{bmatrix} = e^{i\Theta}\begin{vmatrix} 3 \\ 1 \end{vmatrix} = e$$

This process indeed does half-braiding of two identical particles:

To be qualified as invariants, we further need to check the stability against perturbations.

Microscopic definition of statistics

Gapped local Hamiltonian system: How to define statistics of quasiparticles in microscopic lattice models?

T-junction: [Levin=Wen]

$$U_{02}U_{03}^{-1}U_{01}U_{02}^{-1}U_{03}U_{01}^{-1}\begin{vmatrix}3\\1&0\\2\end{vmatrix} = e^{i\Theta}\begin{vmatrix}3\\1&0\\2\end{vmatrix} = \left[e^{i\Theta}\begin{vmatrix}3\\1&0\\2\end{vmatrix}\right] = \left[e^{i\Theta}\begin{vmatrix}3\\1&0\\2\end{vmatrix}\right] = \left[e^{i\Theta}\begin{vmatrix}3\\1&0\\2\end{vmatrix}\right] = \left[e^{i\Theta}\begin{vmatrix}1\\1&0\\2\end{vmatrix}\right] = \left[e^{i\Theta}\begin{vmatrix}1&1\\1&0\\2\end{vmatrix}\right] = \left[e^{i\Theta}\begin{vmatrix}1&1\\1&0\\2\end{vmatrix}\right] = \left[e^{i\Theta}\begin{vmatrix}1&1\\1&0\\2\end{vmatrix}\right] = \left[e^{i\Theta}\begin{vmatrix}1&1\\1&0\\2\end{vmatrix}\right]$$

- ✓ Invariant under redefinitions of unitary by phases
- ✓ Invariant under perturbations nearby the ends of unitaries
- ✓ Invariant under choices of initial excitation configurations

Question: Spins of Abelian anyons should be quantized. Is this T junction a quantized invariant?

Quantization of T-junction

T junction is a quantized invariant. Let's see this explicitly for Abelian anyons with Z2 fusion rule.

$$U_{02}U_{03}^{-1}U_{01}U_{02}^{-1}U_{03}U_{01}^{-1}\begin{vmatrix} 3 \\ 0 \\ 0 \end{vmatrix} = \exp[i\left(-\theta(U_{01}, \triangle) + \theta(U_{03}, \triangle) - \theta(U_{02}, \triangle) + \theta(U_{02}, \triangle) + \theta(U_{02}, \triangle) + \theta(U_{03}, \triangle) - \theta(U_{02}, \triangle) + \theta(U_{02}, \triangle) + \theta(U_{03}, \triangle) + \theta(U_{0$$

Key observation is that the triple commutator of operators with no common overlap must vanish:

(follows from assumption that unitaries are finite depth local circuit.)

For instance,

Quantization of T-junction

(4 x T junction) for \mathbb{Z}_2 Abelian anyons is the combination of triple commutators:

$$\exp\left[4i\left(\theta(U_{01}^{-1}, \triangle) + \theta(U_{03}, \triangle) + \theta(U_{02}^{-1}, \triangle)\right) \\
+ \theta(U_{01}, \triangle) + \theta(U_{03}^{-1}, \triangle) + \theta(U_{02}, \triangle)\right)\right] \\
+ \left(\left[U_{02}, U_{03}\right], U_{12}\right) \times \left\langle\left[\left[U_{01}, U_{02}\right], U_{13}\right]\right\rangle \times \left\langle\left[\left[U_{03}, U_{01}\right], U_{23}\right]\right\rangle \\
\times \left\langle\left[\left[U_{02}^{-1}, U_{03}^{-1}\right], U_{12}\right]\right\rangle \times \left\langle\left[\left[U_{01}^{-1}, U_{02}^{-1}\right], U_{13}\right]\right\rangle \times \left\langle\left[\left[U_{03}^{-1}, U_{01}^{-1}\right], U_{23}\right]\right\rangle \\
\times \left\langle\left[\left[U_{03}, U_{02}\right], U_{23}\right]\right\rangle^{2} \times \left\langle\left[\left[U_{02}, U_{01}\right], U_{12}\right]\right\rangle^{2} \times \left\langle\left[\left[U_{01}, U_{03}\right], U_{13}\right]\right\rangle^{2} \\
= 1$$

This shows that the spin of \mathbb{Z}_2 Abelian anyons through T-junction must be quantized as 0, 1/4, 1/2, 3/4 (\mathbb{Z}_4 statistics). \mathbb{Z}_N Abelian anyons $\implies \mathbb{Z}_{\gcd(2,N)\times N}$ statistics

We will see that such mechanism for quantization is observed in a very general setup.

Generalized statistics: loop excitation in (3+1)D

Such invariants can be defined in generic space dimensions, with generic invertible extended excitations.

Example: Z2 1-form symmetry in (3+1)D. 24 step unitaries:

 $\mu_{24} := U_{014} U_{034} U_{023} U_{014}^{-1} U_{024}^{-1} U_{012} U_{023}^{-1} U_{013}^{-1} \times U_{024} U_{014} U_{013} U_{024}^{-1} U_{034}^{-1} U_{034} U_{013} U_{012}^{-1} U_{034}^{-1} U_{013} U_{012}^{-1} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} U_{023}$

$\underbrace{\begin{array}{c} U_{012}^{-1} \\ V_{013}^{-1} \\ \end{array}} \underbrace{\begin{array}{c} U_{023}^{-1} \\ V_{024}^{-1} \\ \end{array}} \underbrace{\begin{array}{c} U_{014}^{-1} \\ V_{024} \\ \end{array}} \underbrace{\begin{array}{c} U_{014} \\ V_{024} \\ \end{array}} \underbrace{\begin{array}{c} U_{014} \\ V_{024} \\ \end{array}} \underbrace{\begin{array}{c} U_{024} \\ V_{024} \\ \underbrace{\begin{array}{c} U_{02$

"Fermionic loops"

Ryan Thorngren (2014): w_3 -obstruction

Theo Johnson-Freyd (2021): Klein bottle invariant of fusion 2-categories

Chen-Hsin (2023): Lattice w_2w_3 (4+1)D TQFT

Fidkowski-Haah-Hastings (2023): Loop-flipping process

We will give the framework for such invariants with generic dimensionality, and discuss physical consequences.

Generalized statistics: particle fusion in (1+1)D

FIG. 4. The two processes that are compared in the microscopic definition of the F-symbol.

Kawagoe-Levin (2020)

For \mathbb{Z}_2 particle s, the "statistics" is equal to:

$$Z_3 = F(s, s, s)F(s, 1, s).$$

We can further simplify this expression into hopping operators:

$$Z_3 = [U_{01}^2, U_{12}]$$

where $[A, B] \equiv ABA^{-1}B^{-1}$ and U_{ij} is the hopping operator that moves particle from i to j.

Therefore, in (1+1)D, bosons and fermions have trivial statistics, while semions exhibit nontrivial statistics.

This is why higher gauging of fermions is possible within a (1+1)D subspace.

Framework for Generalized statistics

Setup: • Local gapped lattice system, with tensor product Hilbert space

• Finite invertible p-form symmetry with fusion group G, generated by a finite depth unitary circuit (G can be non-abelian when p=0)

End of symmetry operators correspond to the extended excitations.

Input: • Possible configurations of excitations $\mathcal A$ (on a simplicial complex embedded in space): finite group

• Set of patch symmetry operators $\mathcal S$: symmetry generators creating excitation configurations

Example... T junction

• $\mathcal{A}: G$ (=ZN) anyon configurations on a triangulation of 2d sphere:

$$A = G^3$$

(anyons on four vertices fuse to vacuum)

• ${\mathcal S}$: set of anyon string operators on edges. Six generators of G⁶ (# of edges) $\partial: {\mathcal S} o {\mathcal A}$

Framework for Generalized statistics

Invariant is a sequence of unitaries acting on a state, getting back to the original one

$$U_{02}U_{03}^{-1}U_{01}U_{02}^{-1}U_{03}U_{01}^{-1}\begin{vmatrix}3\\0\\2\end{vmatrix} = \exp[i\left(-\theta\left(U_{01}, \right) + \theta\left(U_{03}, \right) - \theta\left(U_{02}, \right)\right) + \theta\left(U_{02}, \right) + \theta\left(U_{0$$

In general, it is sum of the phases $\; \theta(s,a) \; \; \; \; \; s \in \mathcal{S}, a \in \mathcal{A} \;$

$$U(s) |a\rangle = \exp(i\theta(s, a)) |a + \partial s\rangle$$

It is convenient to introduce a formal sum of the objects $E = \bigoplus_{s \in \mathcal{S}, a \in \mathcal{A}} \mathbb{Z}\theta(s,a)$

The invariant is formulated as a specific subgroup $E_{
m inv} \subset E$

(Let us restrict ourselves to the Abelian fusion group G in this talk. Can be safely generalized to non-Abelian groups.)

Group of invariants: $E_{\rm inv} \subset E$

The condition for being an invariant: Linear constraints on integer coefficients $\ \epsilon(s,a)$ of

$$e = \bigoplus_{(s,a)} \epsilon(s,a)\theta(s,a) \in E = \bigoplus_{s \in S, a \in A} \mathbb{Z}\theta(s,a)$$

1. The invariant corresponds to sequence of unitaries, with same initial and final state (Berry phase).

$$\sum_{s \in \mathcal{S}} \epsilon(s, a) - \sum_{s \in \mathcal{S}} \epsilon(s, a - \partial s) = 0, \text{ for any } a \in \mathcal{A}.$$

2. The invariant has to be stable against phase redefinitions of the unitary operators.

$$\sum_{a \in A} \epsilon(s, a) = 0, \quad \text{for any } s \in \mathcal{S} .$$

3. The invariant has to be stable against perturbations nearby the boundaries of unitary operators.

$$\sum_{\substack{a\in\mathcal{A}\\a|_{\sigma_{j}}=a_{*}^{(j)}}}\epsilon(s,a)=0\;\;,\quad \sigma_{j}\in\operatorname{supp}(s) \tag{Stability against perturbations within a j-simplex }\sigma_{j}\;)$$
 (uses exponentially decaying correlation length = gapped)

The three types of linear constraints together define $E_{\mathrm{inv}} \subset E$

Trivial invariants from locality: $E_{\rm id} \subset E_{\rm inv}$

Some invariants $\ e \in E_{\mathrm{inv}}$ correspond to the trivial invariants (identity).

Trivial invariants originate from higher commutator:

$$\langle a | [[[U(s_1), U(s_2)], \cdots], U(s_n)] | a \rangle = 1$$
 $\sup_{supp}(s_1) \cap \cdots \cap \sup_{supp}(s_n) = \emptyset$

Let $E_{\mathrm{id}} \subset E_{\mathrm{inv}}$ be the group of higher commutators. Then define generalized statistics as

$$T = E_{\rm inv}/E_{\rm id}$$

Though $E_{\rm inv}$ is an infinite group (direct sum of integers), the genuine invariant T is a finite Abelian group. Invariants are torsions, and quantized.

Quantization of Generalized statistics

Let's explicitly show that the invariant $T=E_{
m inv}/E_{
m id}$ is a finite group (torsion).

First, one can show that the equivalence class $[e] \in E_{\mathrm{inv}}/E_{\mathrm{id}}$ doesn't depend on initial state, i.e., the ratio

$$\frac{\langle a_0 | \prod U(s_j)^{\pm} | a_0 \rangle}{\langle a_0' | \prod U(s_j)^{\pm} | a_0' \rangle} \in E_{\mathrm{id}} \qquad \text{for any pair of initial states}.$$

In other words, it is equal to product of higher commutators, and actually $\frac{\sqrt{c}}{\sqrt{c}}$

$$\frac{\langle a_0 | \prod U(s_j)^{\pm} | a_0 \rangle}{\langle a_0' | \prod U(s_j)^{\pm} | a_0' \rangle} = 1$$

Then, sum up the phase over all choices of initial states:

Computation of invariants: Smith normal form

One can systematically compute $T=E_{
m inv}/E_{
m id}$ based on a simple algorithm.

The idea is to first list all possible higher commutators:

$$\left\langle \left. \bigwedge \right| \left[\left[U_{02}, U_{03} \right], U_{12} \right] \right| \left. \bigwedge \right\rangle = 1$$

and many other <[U,[U,U]]> =1 type equations

$$\theta\left(U_{03}, \bigtriangleup\right) + \theta\left(U_{02}, \bigtriangleup\right) + \theta\left(U_{03}^{-1}, \bigtriangleup\right) + \theta\left(U_{03}, \bigtriangleup\right) + \theta\left(U_{02}, \bigtriangleup\right) + \theta\left(U_{03}, \bigtriangleup\right) + \theta\left(U_{03}, \bigtriangleup\right) + \theta\left(U_{02}^{-1}, \bigtriangleup\right) + \theta\left(U_{03}^{-1}, \bigtriangleup\right) = 0 \pmod{2\pi}$$
 and many equations
$$\sum \epsilon(s, a)\theta(s, a) = 0$$

Then, some linear combinations of higher commutators happen to have overall integer N factor:

<[U,[U,U]]> x <[U',[U',U']]> x ...
$$\qquad \qquad \Longrightarrow \qquad N \sum_{s,a} \epsilon'(s,a) \theta(s,a) = 0$$

This implies the existence of invariant quantized in \mathbb{Z}_N : $\sum_{s,a} \epsilon'(s,a) \theta(s,a) \in E_{\mathrm{inv}}$

Computation of invariants: Smith normal form

The combination of higher commutators with overall integer factor can be obtained by Smith normal form

Let's say we have higher commutators

$$\theta_1 + 2\theta_2 + 3\theta_3 = 0 \pmod{2\pi}$$
,
 $4\theta_1 + 5\theta_2 + 6\theta_3 = 0 \pmod{2\pi}$,
 $7\theta_1 + 8\theta_2 + 9\theta_3 = 0 \pmod{2\pi}$

Then make an integer matrix

$$M = \begin{pmatrix} \theta_1 & \theta_2 & \theta_3 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

 $1\theta_1'=0, \quad 3\theta_2'=0 \; , \quad 0\theta_3'=0 \quad \text{correspond to quantized invariants (single nontrivial one is Z3)}$

Computation of invariants: Smith normal form

Summarizing, the algorithm for computing the statistics is as follows:

- 1. First fix the simplicial complex and fusion group G, the configurations of excitations A, and unitaries S
- 2. Enumerate all possible higher commutators of unitaries which evaluates trivially

$$\theta_1 + 2\theta_2 + 3\theta_3 = 0 \pmod{2\pi}$$
,
 $4\theta_1 + 5\theta_2 + 6\theta_3 = 0 \pmod{2\pi}$,
 $7\theta_1 + 8\theta_2 + 9\theta_3 = 0 \pmod{2\pi}$

- 3. Put the higher commutators into a matrix, and compute its Smith normal form
- 4. Invariants are classified by the entries of Smith normal form: $T=E_{\mathrm{inv}}/E_{\mathrm{id}}=\bigoplus_{a_{ii}
 eq 0,1} \mathbb{Z}_{a_{ii}}$

Conjecture: Generalized Statistics = Group Cohomology

Take a triangulation on a sphere embedded in d dimensional space.

p-dimensional excitation ((d-p-1)-form symmetry) with fusion group G.

Then, computation results imply the correspondence with the group cohomology:

$$T = H^{d+2}(B^{d-p}G, U(1))$$

	G-particles with $G = \prod_i \mathbb{Z}_{N_i}$	G-loops with $G = \prod_i \mathbb{Z}_{N_i}$	G-membranes with $G = \prod_i \mathbb{Z}_{N_i}$
(1+1)D	$H^{3}(BG, U(1))$ $= \prod_{i} \mathbb{Z}_{N_{i}} \prod_{i < j} \mathbb{Z}_{(N_{i}, N_{j})}$ $\prod_{i < j < k} \mathbb{Z}_{(N_{i}, N_{j}, N_{k})}$		
(2+1)D	$H^{4}(B^{2}G, U(1))$ $= \prod_{i} \mathbb{Z}_{(N_{i}, 2) \times N_{i}} \prod_{i < j} \mathbb{Z}_{(N_{i}, N_{j})}$	$ H^{4}(BG, U(1)) = \prod_{i < j} \mathbb{Z}^{2}_{(N_{i}, N_{j})} \prod_{i < j < k} \mathbb{Z}^{2}_{(N_{i}, N_{j}, N_{k})} $ $\prod_{i < j < k < l} \mathbb{Z}_{(N_{i}, N_{j}, N_{k}, N_{l})} $	
(3+1)D	$H^{5}(B^{3}G, U(1))$ $= \prod_{i} \mathbb{Z}_{(N_{i}, 2)}$	$H^{5}(B^{2}G, U(1))$ $= \prod_{i} \mathbb{Z}_{(N_{i}, 2)} \prod_{i < j} \mathbb{Z}_{(N_{i}, N_{j})}$	$H^{5}(BG, U(1))$ $= \prod_{i} \mathbb{Z}_{N_{i}} \prod_{i < j} \mathbb{Z}^{2}_{(N_{i}, N_{j})}$ $\prod_{i < j < k} \mathbb{Z}^{4}_{(N_{i}, N_{j}, N_{k})}$ $\prod_{i < j < k < l} \mathbb{Z}^{3}_{(N_{i}, N_{j}, N_{k}, N_{l})}$ $\prod_{i < j < k < l < m} \mathbb{Z}_{(N_{i}, N_{j}, N_{k}, N_{l}, N_{m})}$

Verified for small groups G.

For instance, d=2, p=0, $G=\mathbb{Z}_N$ (anyons):

$$T = \mathbb{Z}_{2N}$$
 even N
 $T = \mathbb{Z}_N$ odd N

Spin quantization rule of anyons; Checked up to N = 10 on laptop.

Examples of invariants

1+1D: 0-form ZN symmetry

$$Z_3(g) := [U(g)_{01}^{|g|}, U(g)_{02}] \qquad \dots \quad \stackrel{1}{\overset{0}{\cdot}} \quad \stackrel{2}{\overset{\cdots}{\cdot}} \quad \dots$$

2+1D: 0-form ZN x ZN symmetry

$$Z_4^I(a,b) := (U(a)_{B+C})^{-N} \Big(U(a)_{B+C} [U(a)_B, [U(a)_A, U(b)_{A+B+C+D}]] \Big)^N,$$

$$Z_4^{II}(a,b) := (U(b)_{B+C})^{-N} \Big(U(b)_{B+C} [U(b)_B, [U(b)_A, U(a)_{A+B+C+D}]] \Big)^N.$$

3+1D: 1-form ZN symmetry

$$\mu_{24} := U_{014} U_{034} U_{023} U_{014}^{-1} U_{024}^{-1} U_{012} U_{023}^{-1} U_{013}^{-1} \times U_{024} U_{014} U_{013} U_{024}^{-1} U_{034}^{-1} U_{034} U_{023} U_{013}^{-1} U_{012}^{-1} \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{014}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1}$$

"Fermionic loops" for N = 2

0-form ZN symmetry

$$Z_5(g) := (U(g)_{0234}U(g)_{0124})^{-N} \left(U(g)_{0234}[U(g)_{0134}, U(g)_{0123}^N]^{-1} U(g)_{0124}[U(g)_{0134}, U(g)_{0123}^N] \right)^{N}$$

Generalized statistics as anomalies: obstruction to gauging

The nontrivial invariant is directly regarded as obstruction to gauging the symmetry.

A take is that the product of unitaries $\langle a_0 | U(s_{n-1})^{\pm} \dots U(s_j)^{\pm} \dots U(s_0)^{\pm} | a_0 \rangle$ is the product of Gauss law operators.

$$G(\Delta) = 1, \quad U(s) = \prod_{\Delta \in s} G(\Delta)$$

Gauss law operator on local simplex Δ , and the unitary is product of Gauss laws

It means that the invariant obstructs commuting Gauss laws within the initial symmetric state.

Obstruction to gauging the symmetry = Microscopic definition of 't Hooft anomalies

Generalized statistics as anomalies: dynamical consequences

Generalized statistics is understood as the 't Hooft anomaly.

Indeed, generalized statistics has a direct dynamical consequence (similar to Lieb-Schultz-Mattis):

Generalized statistics $T \neq 1$ on the symmetric state $|\psi\rangle$ implies that the state cannot be short-range entangled. (i.e., cannot be connected to tensor product state by finite depth circuit)

For instance, Z2 1-form symmetry in (3+1)D:

$$\mu_{24} := U_{014} U_{034} U_{023} U_{014}^{-1} U_{023}^{-1} U_{013}^{-1} U_{023}^{-1} U_{013}^{-1} \\ \times U_{024} U_{014} U_{013} U_{024}^{-1} U_{013}^{-1} U_{023}^{-1} U_{013}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013}^{-1} U_{013}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013}^{-1} U_{013}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013}^{-1} U_{023}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013}^{-1} U_{023}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} U_{023}^{-1} U_{023}^{-1} \\ \times U_{034} U_{024} U_{012} U_{034}^{-1} U_{013} U_{012}^{-1} U_{023}^{-1} U_{023}^{$$

Such result has been known for anyons in (2+1)D: T-junction must be trivial on SRE states [Bravyi-Hastings-Verstraete, Li-Lee-Yoshida]

Warm-up (review): Anyons imply long-range entanglement

Let us see how the anyon T-junction forbids the short-range entanglement.

Suppose $|\psi\rangle$ is SRE state in 2d. i.e., $V\,|\psi\rangle=|0\rangle^n$ with a finite depth circuit V.

$$\langle \psi | U_{02} U_{03}^{-1} U_{01} U_{02}^{-1} U_{03} U_{01}^{-1} | \psi \rangle = \langle 0 |^n \tilde{U}_{02} \tilde{U}_{03}^{-1} \tilde{U}_{01} \tilde{U}_{02}^{-1} \tilde{U}_{03} \tilde{U}_{01}^{-1} | 0 \rangle^n \qquad \tilde{U} = V^{\dagger} U V$$

In this setup, each excited state $\left. \tilde{U} \left| 0 \right>^n \right.$ is trivial product state away from the excitation:

$$|jk\rangle := \tilde{U}_{jk} |0\rangle^n = |j\rangle |k\rangle \otimes |0\rangle_{\overline{j,k}}$$

So excitation is just a disentangled 0d state. This greatly constrains the property of Berry phase.

The action of U_{kl} is independent of the excitations away from k, l. This leads to cancellation of T-junction:

$$\Theta = \theta \Big(U_{02} U_{03}^{-1} U_{01} U_{02}^{-1} U_{03} U_{01}^{-1}, 12 \Big)$$

$$= -\theta (U_{01}, 02) + \theta (U_{03}, 02) - \theta (U_{02}, 03)$$

$$+ \theta (U_{01}, 03) - \theta (U_{03}, 01) + \theta (U_{02}, 01) = 0.$$

Fermionic loops imply long-range entanglement

Such argument can be generalized to extended excitations as well. Let's consider Z2 1-form symmetry in (3+1)D

Let's consider 3d SRE state $|\psi\rangle\,$ w/ Z2 1-form symmetry.

Then, each state $U\ket{\psi}$ can be taken to be a trivial product state away from excitations:

$$|\partial s\rangle:=U(s)\,|\psi\rangle=|a\rangle_{\partial s}\otimes|0\rangle_{\overline{\partial s}}$$
 (up to finite depth circuit)

Then, each excited state is essentially a 1d gapped state, which can be described by matrix product state (MPS).

Fermionic loops imply long-range entanglement

Each excited state in SRE is the 1d MPS state along excitations.

Let's consider a "patchwork" of MPS:

For instance,
$$|a\rangle = \text{Tr}\left[V^0 E^{01} V^1 E^{12} V^2 E^{23} V^3 E^{34} V^4 E^{40}\right]$$

MPS V only depends on excitation configuration near a vertex, and E only depends on those near an edge.

This patchwork representation allows us to construct a canonical choice of excited state $|a\rangle$ for generic configuration.

This specific structure of an excited state again greatly constrains the Berry phase $|U(s)|a\rangle = \exp(i\theta(s,a))|a+\partial s\rangle$

Fermionic loops imply long-range entanglement

The symmetry operator also decomposes into circuits near vertex, edge, bulk.

$$U_{jkl} = U_j^{(0)} U_k^{(0)} U_l^{(0)} U_{jk}^{(1)} U_{kl}^{(1)} U_{jl}^{(1)} U_{jkl}^{(2)}$$

Berry phase decomposes into smaller part, and each phase only depends on MPS on specific j-simplex:

$$\theta(U_{jkl}, a) = \theta(U_{j;jkl}^{(0)}, a) + \theta(U_{k;jkl}^{(0)}, a) + \theta(U_{l;jkl}^{(0)}, a) + \theta(U_{jk}^{(1)}, a) + \theta(U_{kl}^{(1)}, a) + \theta(U_{jl}^{(1)}, a) + \theta(U_{jkl}^{(1)}, a) + \theta$$

Then, invariance under local perturbations at j-simplex enforces the Berry phase on each j-simplex to cancel out.

One can then show $e \in E_{\mathrm{inv}}$ has trivial invariant on SRE.

Generalized statistics imply long-range entanglement

Such argument can be extended to generic setup: Need to assume tensor network representation of excited states.

Let's consider SRE state $|\psi
angle$ w/ G p-form symmetry in generic dimensions.

Then, each state $U\ket{\psi}$ can be taken to be a trivial product state away from excitations:

$$|\partial s\rangle:= \quad U(s)\,|\psi\rangle=|a\rangle_{\partial s}\otimes|0\rangle_{\overline{\partial s}}\qquad \text{(up to finite depth circuit)}$$
 Tensor network at the excitations

Then decompose the tensor network and operators into the ones localized nearby j-simplices.

We can use the conditions of $E_{
m inv}$ for the stability against perturbations at j-simplex, leads to cancellation of phases.

One can then show $e \in E_{\text{inv}}$ has trivial invariant on SRE.

Summary

- Universal microscopic descriptions for statistics of invertible deconfined excitations
- Generalized statistics is quantized, and systematically computed using Smith normal form
- Generalized statistics gives microscopic definition of anomalies, and constrains low-energy spectrum

Future directions

- Gapless systems? If the perturbation is always symmetric, the definition should also work for gapless systems.
- Non-invertible symmetries / non-Abelian anyons? Is there analogue of higher commutators of unitaries?
- Proof for the correspondence between generalized statistics and group cohomology?