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Statistics of particles and extended excitations

Statistics of quasiparticles ( ): crucial properties of phases of matter; topological order, spin liquids

[Levin-Gu, Wen, Wang-Senthil,...]

Nontrivial statistics often implies nontrivial low-energy spectrum, as only bosons can condense.

Typically associated with of higher-form symmetries.

Dynamical constraints e.g. forbids confined phases

Anyons can be non-invertible, but in this talk we are mostly interested in invertible excitations and symmetries.



Microscopic definition of statistics

Gapped local Hamiltonian system: How to define statistics of quasiparticles in microscopic lattice models?

T-junction: [Levin-Wen]
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This process indeed does half-braiding of two identical particles:
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To be qualified as invariants, we further need to check the stability against perturbations.




Microscopic definition of statistics

Gapped local Hamiltonian system: How to define statistics of quasiparticles in microscopic lattice models?

T-junction: [Levin=Wen]
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v' Invariant under redefinitions of unitary by phases
v' Invariant under perturbations nearby the ends of unitaries

v’ Invariant under choices of initial excitation configurations

Question: Spins of Abelian anyons should be quantized. Is this T junction a invariant?



Quantization of T-junction

T junction is a invariant. Let’s see this explicitly for Abelian anyons with Z2 fusion rule.
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Key observation is that the triple commutator of operators with no common overlap must vanish:
(follows from assumption that unitaries are finite depth local circuit.)

For instance,

7, (U{)g, A) + 0 (U()z, A) + 6 (Uog,l, A)
<A) [[Uo2, Uos], Ur2] | &> =1 — +9(U0317 A) +9(U02= A) +9(Uo3, A,)
+9(U0‘21, A) +9(U0—31, A) — 0 (mod 2r)

12



Quantization of T-junction

( ) for Z, Abelian anyons is the combination of triple commutators:

exp|4i (9(%‘1% A) +0(Uen, A) +0(vz, A) = ([[Uo2, U], Urz]) % ([[Uox, Uoz], Urs]) x ([[Uoz, Un1], Uas])
+6(Uo, A)+6(vits A)+6(Ues, A))l x ([[Uo2", Upg'], Unal) x {[[Un1", Ugs'], Uss]) X ([[Ups", Ugy'], Uzs))
x ([[Uos, Una], Uas])’ x {[[Un2, Uoal, Usa]) x ([[Uo1, Unsl, Ursl)

=1

This shows that the spin of Z, Abelian anyons through T-junction must be as 0, 1/4,1/2,3/4 (Z, statistics).
Zy Abelian anyons = Zgcq(2,n)xn Statistics

We will see that such mechanism for quantization is observed in a very general setup.



Generalized statistics: loop excitation in (3+1)D

Such invariants can be defined in generic space dimensions, with generic invertible extended excitations.

Example: Z2 1-form symmetry in (3+1)D. 24 step unitaries:
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“Fermionic loops”

Ryan Thorngren (2014):
ws-obstruction

Theo Johnson-Freyd (2021):
Klein bottle invariant of fusion 2-categories

Chen-Hsin (2023):
Lattice wows (4+1)D TQFT

Fidkowski-Haah-Hastings (2023):
Loop-flipping process

We will give the framework for such invariants with generic dimensionality, and discuss physical consequences.



Generalized statistics: particle fusion in (1+1)D

1) 2)

FIG. 4. The two processes that are compared in the microscopic
definition of the F'-symbol.

Kawagoe-Levin (2020)

For Z, particle s, the “statistics” is equal to:
Z3 =F(s,s,5)F(s,1,s).
We can further simplify this expression into hopping
operators:
Z3 = [Uglr Ui, ]
where [4,B] = ABA™1B 1 and Uij is the hopping

operator that moves particle from i to j.

Therefore, in (1+1)D, bosons and fermions have trivial
statistics, while semions exhibit nontrivial statistics.
This is why higher gauging of fermions is possible

within a (1+1)D subspace.



Framework for Generalized statistics

Setup: ¢ Local gapped lattice system, with tensor product Hilbert space

* Finite invertible p-form symmetry with fusion group G, generated by a

(G can be non-abelian when p=0)

End of symmetry operators correspond to the extended excitations.

Input: * Possible configurations of excitations A (on a simplicial complex embedded in space): finite group

e Set of S : symmetry generators creating excitation configurations

Example... T junction

A=G3
« A :G (=ZN) anyon configurations on a triangulation of 2d sphere: (anyons on four vertices
fuse to vacuum)

« S :setof anyon string operators on edges. Six generators of G® (Hofedges) 9:S — A



Framework for Generalized statistics

Invariant is a sequence of unitaries acting on a state, getting back to the original one
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In general, it is sum of the phases (s, a) seS,ae A

U(s) la) = exp(i0(s,a)) |a + Os)

It is convenient to introduce a formal sum of the objects F = @ 70(s,a)
s€S.,acA

The invariant is formulated as a specific subgroup F;,v C F

( Let us restrict ourselves to the Abelian fusion group G in this talk. Can be safely generalized to non-Abelian groups. )



Group of invariants: Ej,, C E

The condition for being an invariant: Linear constraints on integer coefficients €(s,a) of
e = D q €(s,0)0(s,0) € E= P 76(s,0)
s€S,acA

1. The invariant corresponds to sequence of unitaries, with same initial and final state (Berry phase).

Ze(s,a)—Ze(s,a—@s):O, forany a € A .

seS seS
2. The invariant has to be stable against of the unitary operators.
Ze(sja):(], for any s € S .
ac A
3. Theinvariant has to be stable against nearby the boundaries of unitary operators.

( Stability against perturbations within a j-simplex 0 )
Z €(s,a) =0, 0j €supp(s) !
acA ( uses exponentially decaying correlation length = gapped )

a|0j :ag:'l)

The three types of linear constraints together define FEiny C F



Trivial invariants from locality: Fiq C Einy

Some invariants e € Ej,, correspond to the trivial invariants (identity).

Trivial invariants originate from

(al [[[U(s1),U(s2)],--- ], Ulsn)] |a) =1 supp(s1) N - - Nsupp(sp) = &

Let Eiq C Einv be the group of higher commutators. Then define generalized statistics as

T = EinV/Eid

Though Ejny is an infinite group (direct sum of integers), the genuine invariant T is a finite Abelian group.

Invariants are torsions, and



Quantization of Generalized statistics

Let’s explicitly show that the invariant  T' = Fjy,/FEiq is a finite group (torsion).

First, one can show that the equivalence class [€] € Finv/Eid doesn’t depend on initial state, i.e., the ratio

(ao| TTU (55)* |ao)
(ap| TTU (55)* |ag)

c Fig for any pair of initial states.

Ul(s;)*
In other words, it is equal to product of , and actually <a0‘ — (SJ) ‘ao) =1

(ag| ITU (s5)* [ag)

Then, sum up the phase over all choices of initial states:

|Alle] = Z Z e(s,a)0(s,a + ag)

ao€A (s,a) [e] has finite order,

= Z Z e(s,a —ap)d(s,a) = Z (Z E(Saa(J)) 0(s,a) = :> Showing T is a

ap€A (s,a) (s,a) \ap€A



Computation of invariants: Smith normal form

One can systematically compute 1" = Einv/Eid based on a simple algorithm.

The idea is to first list all possible

0 (Uos, A) +0 (Voo, A) +0 (055, A)
+0 (Uss', A)+6 (Uo2, A)+(Uos, A)
+9(U0‘21, A) +9(U0‘31, A) — 0 (mod 2n)

and many other <[U,[U,U]]> =1 type equations and many equations Z E(S, 03)9(8, CL) =0

5,4

<&} [[Uo2, Uos], Ui2] | A> =1 —>

Then, some linear combinations of higher commutators happen to have overall integer N factor:

<[U,[U,UTI> x <[V [ U1 X .. —> N €(s,a)(s,a) =0

This implies the existence of invariant quantized in Zy: Z e’(,s, aj)e(sj a) € Finy

s,a



Computation of invariants: Smith normal form

The combination of higher commutators with overall integer factor can be obtained by

01 4+ 202 + 303 =0 (mod 2m) ,
491 + 592 + 693 =0 (mod 271') )

Let’s say we have higher commutators
701 + 805 + 965 =0 (mod 271')

61 605 05
Then make an integer matrix 123
M=14 5 6
7 8 9
0y 0y b5
1 2 3 1 2 3 1 0 0 0, = 601 + 2605 + 303 |,
45 6 —> 0 -3 —6 —> 0 3 0| 6h=6+2;,
78 9 Linear combination 0 0 Redefiniton of theta 000 O3 =0s -
of egs (row) by linear combinations
(column)

107 =0, 30,=0, 003=0 correspond to (single nontrivial one is Z3)



Computation of invariants: Smith normal form

Summarizing, the algorithm for computing the statistics is as follows:

1. First fix the and fusion group G, the configurations of excitations A, and unitaries S

01+ 205 + 305 =0 (IIlOd 271') ,
401 4+ 502 + 603 =0 (mod 27) ,
701 + 865 + 965 =0 (mod 271')

2. Enumerate all possible of unitaries which evaluates trivially
3. Put the higher commutators into a matrix, and compute its Smith normal form

4. Invariants are classified by the entries of Smith normal form: 1 = Ein/Eiq = @ Loa;,
ai; 70,1



Conjecture: Generalized Statistics = Group Cohomology 2d . 3d

3 4
Take a triangulation on a sphere embedded in d dimensional space. | . 1@/‘3
: D2

p-dimensional excitation ((d-p-1)-form symmetry) with fusion group G.

Then, computation results imply the correspondence with the T = Hd+2(Bd_pG, U(l))
G-particles with G =[], Zn; G-loops with G =[], Zn; G-membranes with G =[], Zn,
H*(BG,U(1))
(40D :Hi LN, Hi<j Z(Ni:Nj)

Hi<j<k’ Z(Niij7Nk)

FEE ) HY(BG,U(1))

_ 2 2 o fe
L ] T L, i i =Iic; Zin,vy) Micjcr Ziving, v Verified for
7 ER) 1 1 Gtvg
Iicjcnat BN, N, NN : small groups G.
H*(BG,U(1))
) =11 %, T .+ Ziss. 5.
H*(B*G,U(1)) H(B*G,U(1)) Ut ot
(3+1)D ' ILi; kZ?N' Nj,Ny)
:HiZ(Ni,Q) :Hz’Z(Ni,Q) Hi<j Z(Ni:Nj) . ; il
Hi<j<k<lZ(Niijkale)
Hz‘<j<k<l<m Z(N'iijaNkath)
Forinstance,d = 2,p =0, G = Zy (anyons): T =7Zon even N Spin quantization rule of anyons;

T =7Zn odd N Checked up to N = 10 on laptop.



Examples of invariants

e 1+1D: O-form ZN Symmetry Z3 (g) = [U(g)(l)%l, U(g)gg] !‘ [.’ ?
* 2+1D: O0-form ZN x ZN symmetry ;. b == U(a)s+c) ™ (U(@pie U(@)s, [U(a)A,U(b)A+B+c+D]])N,

24 (a,) = U®)p+0) ™ (UG 10 UG8, [0 6)4,U@asnro+n]] ) -

* 3+1D: 1-form ZN symmetry
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“Fermionic loops” for N = 2

O-form ZN symmetry

Z5(g) == (U(9)0234U(9)0124)_N (U(9)0234[U(9)0134a U(Q)(])\izza]_1U(9)0124[U(9)0134, U(Q)é\iz?)])N



Generalized statistics as anomalies: obstruction to gauging

The nontrivial invariant is directly regarded as the symmetry.

A take is that the product of unitaries {ao| U(sn—1)= ... U(s;)*...U(s0)* |ao) is the product of

GAa)=1, U@s)=]]Gc@)
A€Es
Gauss law operator on local simplex A, and the unitary is product of Gauss laws

It means that the invariant obstructs commuting Gauss laws within the initial symmetric state.

I:> Obstruction to gauging the symmetry = Microscopic definition of ‘t Hooft anomalies



Generalized statistics as anomalies: dynamical consequences

Generalized statistics is understood as the 't Hooft anomaly.
Indeed, generalized statistics has a direct dynamical consequence (similar to Lieb-Schultz-Mattis):

Generalized statistics 7" 7 1 on the symmetric state W) implies that the state cannot be

(i.e., cannot be connected to tensor product state by finite depth circuit)

For instance, Z2 1-form symmetry in (3+1)D:
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Such result has been known for anyons in (2+1)D:  T-junction must be trivial on SRE states [Bravyi-Hastings-Verstraete,
Li-Lee-Yoshida]



Warm-up (review): Anyons imply long-range entanglement

Let us see how the anyon forbids the short-range entanglement.
Suppose |1} is SRE state in 2d. i.e., V' |¢)) = |0)" with a finite depth circuit V.
(| Un2Ugz Un1Upy UoaUgy ' 1) = (0" Un2Upz Uo1 U UoaUsy [0)™ U=Vvivv
In this setup, each excited state U |0)n is trivial product state away from the excitation:
7k == U |0)" = [4) |k) @ [0)5%
So excitation is just a . This greatly constrains the property of Berry phase.
The action of ﬁkl is independent of the excitations away from k, .  This leads to cancellation of T-junction:

O = Q(UOQU&,lUmUO_QongU&l, 12)

= — 9(U01,02) + B(Uog, 02) — Q(UOQ, 03)
+ 9(U01,03) — Q(Uog, 01) + Q(UQQ,Ol) =0.



Fermionic loops imply long-range entanglement

Such argument can be generalized to extended excitations as well. Let’s consider Z2 1-form symmetry in (3+1)D

pi2a = Uo1aU034U023U512Ug24U012U25U015
XU024U014U013U0_2£1U&>,£1U023U0_1§U0_1; — —1 :> LRE state

—> —> —> —> —> u\\ — \\ | 3 g 1 3
% % % /b ETARSTARS rARN XUo34U024U012U34U¢14U013U0515U03

Let’s consider 3d SRE state [10) w/ Z2 1-form symmetry.

Then, each state U |1p) can be taken to be a trivial product state away from excitations:

0s) = U(s) ) = |a)y, @ [0)55 (up to finite depth circuit)

Then, each excited state is essentially a 1d gapped state, which can be described by



Fermionic loops imply long-range entanglement

Each excited state in SRE is the 1d MPS state along excitations.

Let’s consider a “patchwork” of MPS:

For instance, la) =Tr [VIEUVIEVRV2EZRVIEHVAIEY]

MPS V only depends on excitation configuration near a vertex, and E only depends on those near an edge.

This patchwork representation allows us to construct a canonical choice of excited state \a) for generic configuration.

This specific structure of an excited state again greatly constrains the Berry phase U(s) |a) = exp(i0(s,a)) |a + Os)



Fermionic loops imply long-range entanglement

The symmetry operator also decomposes into circuits near vertex, edge, bulk.

0)77(0)77(0) 7 7(1) 77(1) 77(1) 77 (2
Ujkl :Uj( )Uk Ul Uj(k)Ukl Ujl Uj(kg L2 2

U(S2)

f’ 1 A .

-/
U(So(oo))

U(Si(01))
Berry phase decomposes into smaller part, and each phase only depends on MPS on specific j-simplex:

O(Ujki,a) = O(US 0y, @) + 0(Ug 0, a) + 0(U D a) + 0(US ) + 08Uy a) + 06U, a) + 0(US a)

Then, invariance under local perturbations at j-simplex enforces the Berry phase on each j-simplex to cancel out.

One can then show ¢ € Ej,, has trivial invariant on SRE.



Generalized statistics imply long-range entanglement
Such argument can be extended to generic setup: Need to assume representation of excited states.

Let’s consider SRE state \lb) w/ G p-form symmetry in generic dimensions.

Then, each state U [¢)) can be taken to be a trivial product state away from excitations:

0s) = U(s)|Y) = |a)y, ®1[0)57 (up to finite depth circuit)

\

Tensor network at the excitations
Then decompose the tensor network and operators into the ones

We can use the conditions of Finyv for the stability against perturbations at j-simplex, leads to cancellation of phases.

One can then show ¢ € Ej,, has trivial invariant on SRE.



Summary

* Universal microscopic descriptions for statistics of invertible deconfined excitations

* Generalized statistics is quantized, and systematically computed using Smith normal form

* Generalized statistics gives microscopic definition of anomalies, and constrains low-energy spectrum

Future directions

* Gapless systems? If the perturbation is always symmetric, the definition should also work for gapless systems.

* Non-invertible symmetries / non-Abelian anyons? Is there analogue of higher commutators of unitaries?

* Proof for the correspondence between generalized statistics and group cohomology?



