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The higher condensation theory is a mathematical theory of condensation in (potentially

anomalous) topological orders and SPT/SET/SSB orders that preserve the symmetry, and also

a theory of the gauging of categorical symmetries in gapped/gapless QFTs.

Take home message

1. The topological defects in an n+1D topological order form a fusion n-category C.

2. A codimension-k condensable topological defect is a condensable Ek-algebra in Ωk−1C.

3. A codimension-k condensation of A ∈ AlgcEk
(Ωk−1C) can be reduced to a codimension-1

condensation of Σk−1A ∈ AlgcE1
(C).

4. A symmetry on an n+1D topological order is a monoidal n-functor ϕ : T → C from the

symmetry n-category T to the fusion n-category C of topological defects. Gauging this

symmetry is the same as first choosing a condensable algebra A ∈ T and then condensing

ϕ(A) ∈ C.
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Category of topological defects



Topological order and topological defect

Topological orders are the simplest quantum phases or quantum field theories. They have no

symmetry and are gapped, so the correlation functions exponentially decay. In the long wave

length limit, there is no observable.

In the spirit of category theory, we should not study a single topological order, but the relationip

between topological orders. An obvious relationship between topological orders is given by the

domain walls, including boundary topological orders, junctions between domain walls, . . .
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A topological defect in a topological order C is a lower-dimensional topological order

embedded into C. More generally, we may also talk about topological defects in a general

quantum field theory.
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Mathematical structure of topological defects

The topological defects in an n+1D topological order naturally form a monoidal n-category:

• The 0-morphisms (objects) are codimension-1 topological defects.

• The 1-morphisms are codimension-2 topological defects.

• . . .

• The k-morphisms are codimension-(k + 1) topological defects.

• The composition of morphisms, incuding the tensor product of objects, is given by the

fusion of topological defects.
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Mathematical structure of topological defects

The category of topological defects is not arbitrary. For example, it should satisfy the

Condensation Completion Principle [Carqueville-Runkel: 1210.6363, Douglas-Reutter: 1812.11933,

Gaiotto-Johnson-Freyd:1905.09566, Johnson-Freyd: 2003.06663, Kong-Lan-Wen-Z.-Zheng: 2003.08898]. This principle

says that the category of topological defects is closed under condensation. I will explain the

precise meaning of “condensation” later.

Mathematically, this principle motivates the definition of multi-fusion n-category [Douglas-Reutter:

1812.11933, Johnson-Freyd: 2003.06663, Kong-Zheng: 2011.02859]. Briefly speaking, a multi-fusion n-category

is a monoidal n-category satisfying some properties, in which the most important one is

condensation completeness.

The topological defects in an n+1D topological order C form a fusion n-category, denoted by C.
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Looping construction

The looping of C is the hom (n − 1)-category on the tensor unit: ΩC := HomC(1,1). Its
physical meaning is the (n − 1)-category topological defects of codimension 2 and higher.

The codimension-2 topological defects can be fused in two directions. By Eckmann-Hilton

argument, these two fusions are the same, and their compatibility data is equivalent to a

braiding structure. Therefore, ΩC is a braided fusion (n − 1)-category, also called a E2-fusion

(n − 1)-category.

C
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Similarly, the topological defects of codimension k can be fused in k directions, so they form

the Ek -fusion (n − k + 1)-category Ωk−1C.
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Delooping construction

Given a E2-fusion (n − 1)-category B, there is a monoidal n-category BB with only one object

• and the hom space Hom(•, •) = B. The condensation completion of BB, denoted by ΣB, is

a fusion n-category, called the delooping of B. We always have ΩΣB ≃ B.

For a fusion n-category C, there is an embedding ΣΩC → C. It is an equivalence iff C is

connected: Hom(x , y) ̸= 0 for any x , y ∈ C (so that they can condense to each other).

Theorem [Johnson-Freyd: 2003,06663]

A fusion n-category C with trivial center is connected.

• fusion (tensor unit is simple) = stable = no local ground state degeneracy

• trivial center = bulk is trivial = anomaly-free, by the boundary-bulk relation [Kong-Wen-Zheng:

1502.01690, 1702.00673]

• connected = C ≃ ΣΩC = the topological order can be equivalently described by the

braided fusion (n − 1)-category ΩC of codimension-2 topological defects
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Example: 2+1D toric code model

It is well-known that there are 4 simple anyons 1, e,m, f in the 2+1D toric code model. They

form a braided fusion category (indeed, modular tensor category) TC ≃ Z1(Rep(Z2)). All

topological defects in the 2+1D toric code model form a fusion 2-category equivalent to ΣTC.

There are 6 simple objects in ΣTC: 2 invertible 1+1D domain walls, including the trivial

domain wall and the e-m-exchange domain wall, and 4 non-invertible domain walls obtained by

composing two gapped boundaries. [Lan-Wang-Wen: 1408.6514, Kong-Zhang: 2205,05565]

⊗ unit dual ss sr rs rr

unit unit dual ss sr rs rr

dual dual unit rs rr ss sr

ss ss sr 2ss 2sr ss sr

sr sr ss ss sr 2ss 2sr

rs rs rr 2rs 2rr rs rr
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Higher condensation theory



Condensation and condensable algebra

Now we explain the meaning of condensation. Suppose there are two n+1D topological orders

C,D and a condensation process from C to D. If we only do the condensation in a half of a

plane, then we obtain an nD domain wall M between C and D.

Assumption: M is also a topological order.

C

↩→

C D

M

We denote this domain wall equipped with two orientations by f : C → D and g : D → C,

respectively. By composing the domain walls we obtain two codimension-1 topological defects

f ◦ g ∈ D and A := g ◦ f ∈ C.
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Condensation and condensable algebra

The same condensation process produces a one-dimension-lower condensation process from

f ◦ g ∈ D to the trivial domain wall 1D ∈ D.

D C

g f

↩→

D

1D

This motivates the following definition of condensation in higher categories.

Definition [Gaiotto-Johnson-Freyd: 1905.09566]

For two objects x , y in an n-category, an n-condensation x ↩→ y consists of two 1-morphisms

f : x → y , g : y → x and an (n− 1)-condensation f ◦ g ↩→ 1y . A 0-condensation is an equality.
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Condensation and condensable algebra

The same condensation process also produces a condensation from A ◦ A = g ◦ f ◦ g ◦ f to

A = g ◦ f = g ◦ 1D ◦ f .

C C CD D

f g f g

↩→

C CD

f g1D

This condensation produces two lower-dimensional topological defects (morphisms)

µ : A⊗ A → A and δ : A → A⊗ A in C:

C D C D

and obviously they satisfy the associativity and Frobenius condition. So A ∈ C is an algebra.
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Condensation and condensable algebra

Moreover, there is a condensation µ ◦ δ ↩→ 1A:

C D

↩→

C D

This means that A ∈ C is a separable algebra, also called a condensable algebra.

Similarly, one can show that the domain walls between C and D are A-modules.

Zhi-Hao Zhang (BIMSA) Higher condensation theory and gauging of symmetries 11 / 36



Condensation and condensable algebra

The physical intuition of the condensation C ↩→ D:

1. Proliferate many condensable algebra (defect) A in the topological order C.

2. Use the condensation A⊗ A ↩→ A to condense (or project) these condensable defects.

C

⇝

C

⇝

D
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Delooping construction, revisit

Let B be a braided fusion (n− 1)-category, viewed as the category of codimension-2 topological

defects in an n+1D topological order. Recall that ΣB is the condensation completion of BB.

The objects in ΣB are codimension-1 topological defects that can be condensed from the

trivial domain wall. Therefore, every condensable algebra in ΩΣB = B labels an object in ΣB.

This idea leads to two ‘models’ or ‘coordinate systems’ of ΣB.

• MorcE1
(B): the objects are condensable algebras in B, the 1-morphisms are bimodules, the

2-morphisms are bimodule 1-morphisms, . . . the tensor product is the tensor of B.

• RModB(nVec): the objects are right B-module (n − 1)-categories, the 1-morphisms are

right B-module functors, the 2-morphisms are right B-module natural transformations,

. . . the tensor product is the relative tensor ⊠B.

There are equivalences of fusion n-categories ΣB ≃ MorcE1
(B) ≃ RModB(nVec).
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Delooping construction, revisit

The physical realization of the equivalences ΣB ≃ MorcE1
(B) ≃ RModB((n − 1)Vec):

• The equivalence MorcE1
(B) → ΣB maps a condensable algebra A to the codimension-1

domain wall obtained by condensing A.

• The equivalence ΣB → RModB(nVec) maps a codimension-1 domain wall X to the

(n− 1)-category of topological defects living on the codimension-2 domain wall between X

and the trivial domain wall.

B

X

Let X be a codimension-1 domain wall X obtained by condensing a condensable algebra A ∈ B.

In the coordinate system ΣB ≃ RModB(nVec) it is LModA(B). The fusion (n − 1)-category of

defects on X is HomΣB(X,X) = HomRModB(nVec)(LModA(B), LModA(B)) = BModA|A(B).
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Condensation of higher-codimensional defects

Theorem [Kong-Z.-Zheng-Zhao:2403.07813]: Condensing a codimension-k topological defect A in an

n+1D topological order C amounts to a k-step process.

(0) A ∈ Ωk−1C is a condensable Ek -algebra, that is, a condensable algebra equipped with

compatible multiplications in k directions.

(1) In the first step, we condense A along one transversal direction. This condensation process

produces a codimenion-(k − 1) topological defects ΣA ∈ ΣΩk−1C ⊆ Ωk−2C.

Mathematically, ΣA is RModA(Ω
k−1C).

C A

A

A

A

A

↩→

C

ΣA
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Condensation of higher-codimensional defects

(2) There is a natural condensable Ek−1-algebra structure on ΣA ∈ Ωk−2C. So the second

step is to condense ΣA along another transversal direction. Then we obtain a codimension

(k − 2) topological defects Σ2A := RModΣA(Ω
k−2C) ∈ ΣΩk−2C ⊆ Ωk−3C.

C ΣA

ΣA

ΣA

ΣA

ΣA

↩→

C

Σ2A

(3) In the k-th step, we condense the codimension-1 topological defect Σk−1A, which is a

condensable E1-algebra in C. The topological defects in the condensed phase D form the

fusion n-category D := ModE1

A (C) := BModΣk−1A|Σk−1A(C). The domain walls between C

and D form the n-category RModΣk−1A(C), and the domain wall produced by this

condensation is exactly Σk−1A itself.

A condensable Ek -algebra is called Lagrangian if the condensed phase D is trivial.
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Example: codimension-2 condensation in 2+1D toric code model

1. Am := 1 ⊕m is a Lagrangian condensable E2-algebra in TC. Condensing Am along a line

produces the codimension-1 domain wall ss ∈ ΣTC. Then by condensing ss we obtain the

trivial topological order and the smooth boundary.

TC Am

Am

Am

Am

Am

↩→

TC

s s

2. Ae := 1 ⊕ e is a Lagrangian condensable E2-algebra in TC. Condensing Am along a line

produces the codimension-1 domain wall rr ∈ ΣTC. Then by condensing rr we obtain the

trivial topological order and the rough boundary.

Zhi-Hao Zhang (BIMSA) Higher condensation theory and gauging of symmetries 17 / 36



Example: anyon condensation in 2+1D

Recall the mathematical theory of anyon condensation in 2+1D topological orders [Moore-Seiberg:

1988–1989, Bais-Slingerland: 2002–2008, Kapustin-Saulina: 1008.0654, Levin: 1301.7355, Barkeshli-Jian-Qi: 1305.7203, ...,

Böckenhauer-Evans-Kawahigashi: math/9904109, 0002154, Kirillov-Ostrik: math/0101219, Frölich-Fuchs-Runkel-Schweigert:

math/0309465, Kong: 1307.8244]

Let B be the E2-fusion category (modular tensor category) of anyons in a 2+1D topological

order and A ∈ C be a condensable E2-algebra.

(1) The anyons in the condensed phase (de-confined anyons) form the E2-fusion category

ModE2

A (B) of local A-modules in C.

(2) The anyons on the domain wall (confined anyons) produced by this condensation form the

E1-fusion category RModA(B) of right A-modules in B.
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Example: anyon condensation in 2+1D

On the other hand, we know that condensing A along a line produces a codimension-1 domain

wall LModA(B) ∈ RModB(2Vec) ≃ ΣB, which should be a condensable E1-algebra.

Theorem [Brochier-Jordan-Synder: 1804.07538, Décoppet: 2107.11037, 2208.08722]

The condensable E1-algebras in ΣB ≃ RModB(2Vec) are multi-fusion categories P equipped

with a braided functor B → Z1(P). Moreover, we have

RModP(ΣB) ≃ ΣP, BModP|P(ΣB) ≃ ΣZ2(B → Z1(P)).

When P ≃ LModA(B), there is an equivalence [Davydov-Müger-Nikshych-Ostrik: 1009.2117]

Z2(B → Z1(P)) ≃ ModE2

A (B).

So the result of the codimension-1 condensation agrees with the anyon condensation theory.
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Example: 2+1D double Ising topological order and toric code model

Let Is be the Ising modular tensor category. It has 3 simple objects 1, ψ, σ and the fusion rules

ψ ⊗ ψ = 1, σ ⊗ σ = 1 ⊕ ψ, ψ ⊗ σ = σ ⊗ ψ = σ.

The codimension-2 topological defects in the 2+1D double Ising topological order form the

E2-fusion category Z1(Is) ≃ Is⊠ Is. It is well-known that A := 1⊠ 1 ⊕ ψ ⊠ ψ ∈ Is⊠ Is is a

condensable E2-algebra, and condensing A leads to the toric code [Bais-Slingerland: 0808.0627]:

ModE2

A (Is⊠ Is) ≃ TC.

There are 6 simple topological defects living on the domain wall produced by this condensation:

1, e,m, f , χ+, χ− ∈ RModA(Is⊠ Is).
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Example: 2+1D double Ising topological order and toric code model

There is no anyon condensation process from the toric code model to the double Ising

topological order. However, there is a codimension-1 condensation from toric code to the

double Ising topological order. The condensable E1-algebra in ΣTC is obtained by composing

two domain walls.

TC

In the coordinate system ΣTC ≃ RModTC(2Vec), this condensable E1-algebra is the category

RModA(Is⊠ Is) of topological defects living on the domain wall. We can check that

ModE1

RModA(Is⊠Is)
(ΣTC) ≃ Σ(Is⊠ Is).
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Example: condense a modular tensor category

Theorem [Davydov-Nikshych: 2006.08022]

Every modular tensor category B is a Lagrangian condensable E2-algebra in 2Vec.

• 2Vec is the E2-fusion 2-category of codimension-2 topological defects in the trivial 3+1D

topological order.

• An anomaly-free 2+1D topological order M can be viewed as a boundary of the trivial

3+1D topological order. Let B be the modular tensor category of anyons in M.

• This boundary can be produced by a codimension-2 condensation. The condensable

E2-algebra can be obtained by rolling up M to a string. This string is exactly B ∈ 2Vec.

M
rolling up−−−−−→
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Gauging the symmetries in

topological orders



SET orders and gauging

A topological order with a symmetry is usually called a symmetry enriched topological (SET)

order. Here we focus on finite onsite symmetries. An n+1D SET orders could be described by

a linear monoidal n-functor ϕ : T → C. [Lan-Yue-Wang: 2312.15958, preceded by

Frölich-Fuchs-Runkel-Schweigert: cond-mat/0404051, hep-th/0607247, 0909.5013, Davydov-Kong-Runkel: 1107.0495,

Bhardwaj-Tachikawa: 1704.02330, Chang-Lin-Shao-Wang-Yin: 1802.04445, Thorngren-Wang: 1912.02817, . . . ]

• T is an abstract fusion n-category describing the symmetry:

• T = nVecG for a finite group G symmetry;

• T = nVecG for a higher form symmetry described by an n-group G;

• T is a general fusion n-category for non-invertible symmetries;

• C is the fusion n-category of topological defects without the symmetry.

To gauge the symmetry, first we need to choose a condensable algebra A ∈ T (or equivalently,

a T-module). Then gauging the symmetry is the same as condensing the algebra ϕ(A) ∈ C.

Remark: The gauged theory has a dual symmetry described by the monoidal n-functor

ϕ : BModA|A(T) → BModϕ(A)|ϕ(A)(C).
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Example: G SPT orders

Let G be a finite group. An n+1D G SPT order is described by a monoidal n-functor

ϕ : nVecG → nVec. For n ≤ 3, such monoidal n-functors are classified by the group

cohomology Hn+1(G ;C×). For n ≥ 4, there may be more SPT orders. For simplicity, we

consider the trivial SPT order described by the trivial monoidal n-functor nVecG → nVec.

• The usual way of gauging the symmetry is the same as condensing (n − 1)VecG ∈ nVecG .

For n ≥ 2, the result is the G gauge theory:

BMod(n−1)VecG |(n−1)VecG (nVec) ≃ Z0(Σ(n − 1)VecG ) ≃ ΣZ1((n − 1)VecG ).

• The ‘twisted gauging’ is the same as condensing the algebra (n − 1)VecωG ∈ nVecG where

ω ∈ Hn+1(G ;C×). The condensed phase is the twisted G gauge theory.

• The partial gauging is the same as condensing the algebra (n − 1)VecH ∈ nVecG where H

is a subgroup of G .
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Example: 2+1D SET orders and G -crossed braided fusion category

Let B be the E2-fusion category (modular tensor category) of anyons in a 2+1D topological

order. A finite group G symmetry on this topological order can permute anyons, thus defines a

monoidal functor ρ : G → Autbr(B). Moreover, a symmetry enrichment on this topological

order is desribed by a G -crossed braided fusion category [Barkeshli-Bonderson-Cheng-Wang: 1410.4540]:

B×
G =

⊕
g∈G

Bg , Be = B,

where the category Bg consists of the g -defects living on the end of an invertible 1+1D

domain wall realizing the braided auto-equivalence ρg .

x ∈ B ρg (x)

y ∈ Bg
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Example: 2+1D SET orders and G -crossed braided fusion category

This G -crossed extension of B is equivalent to a 3-group homomorphism G → Pic(B)

[Etingof-Nikshych-Ostrik: 0909.3140], where Pic(B) is the 3-group of invertible B-modules. This

3-group homomorphism can be constructed layer by layer:

• The map g 7→ BG is a group homomorphism G → π1(Pic(B)).

• To lift it to a 2-group homomorphism, we need to specify the monoidal structure, which

defines the tensor product of B×
G :

Bg ⊠B Bh ≃ Bgh, ∀g , h ∈ G .

This lifting exists iff certain obstruction class O3 ∈ H3(G ;B×) vanishes.

• To lift it to a 3-group homomorphism, we need to specify some B-module natural

isomorphisms as the monoidal structure, which define the associator and G -crossed

braiding of B×
G . This lift exists iff certain obstruction class O4 ∈ H4(G ; k×) vanishes.
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Example: 2+1D SET orders and G -crossed braided fusion category

Remark: There is an equivalence of 2-groups Π2(Pic(B)) ≃ Autbr(B). So the first two layers

of this 3-group homomorphism is the monoidal functor ρ : G → Autbr(B).

By gauging the G -symmetry in this SET order, we obtain a 2+1D topological order. The

modular tensor category of codimension-2 topological defects in the gauged theory is the

equivariantization (B×
G )

G
[Barkeshli-Bonderson-Cheng-Wang: 1410.4540].

Example: There is an e-m-exchange Z2-symmetry on the 2+1D toric code model. It can lifts

to a 3-group homomorphism Z2 → Pic(TC), and the corresponding Z2-crossed extension of TC

is P := RModA(Is⊠ Is). By gauging this Z2-symmetry we obtain the double Ising topological

order:

PZ2 ≃ Is⊠ Is.
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Example: G -crossed braided fusion categories are condensable algebras

Since Pic(B) ≃ RModB(2Vec)
×, the 3-group homomorphism ϕ : G → Pic(B) is equivalent to

a linear monoidal 2-functor ϕ : 2VecG → ΣB.

This monoidal 2-functor ϕ : 2VecG → ΣB, it maps the condensable E1-algebra VecG ∈ 2VecG
to a condensable E1-algebra ϕ(VecG ) ∈ ΣB ≃ RModB(2Vec). What is this algebra?

• The underlying object is

ϕ(VecG ) = ϕ
(⊕
g∈G

g
)
=

⊕
g∈G

ϕ(g) =
⊕
g∈G

Bg = B×
G .

• The multiplication is induced by the group multiplication of G and the monoidal structure

of ϕ:

Bg ⊠B Bh = ϕ(g)⊠B ϕ(h) → ϕ(gh) = Bgh, g , h ∈ G .

Therefore, ϕ(VecG ) is exactly the G -crossed braided fusion category B×
G .
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Example: Condense a G -crossed braided fusion category

Mathematicall, the algebra structure of B×
G ∈ RModB(2Vec) (i.e., the braided functor

B → Z1(B
×
G )) is induced by the G -crossed braiding. By condensing this algebra, the fusion

2-category of topological defects in the condensed phase is ΣZ2(B → Z1(B
×
G )).

This Müger centralizer can be computed as follows. Let M be the equivariantization of B×
G .

Then M contains a fusion subcategory Rep(G ) ⊂ M. Let A := Fun(G ) ∈ Rep(G ) ⊂ M. Then

B×
G ≃ RModA(M) is the de-equivariantization of M, and ModE2

A (M) is the trivial component

Be = B of B×
G [Kirillov: math/0110221, Müger: math/0209093]. Since M is nondegenerate or modular,

there is a braided equivalence Z1(B
×
G ) ≃ B⊠M. Thus Z2(B → Z1(B

×
G )) ≃ M.

Hence, condensing the algebra B×
G = ϕ(VecG ) ∈ RModB(2Vec) ≃ ΣB is the same as gauging

the G -symmetry:

BModB×
G |B×

G
(ΣB) ≃ Σ(B×

G )
G .
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Example: 2+1D SET orders and G -crossed braided fusion category

A 2+1D G SET order is described by the G -crossed braided fusion category B×
G of symmetry

defects, and the modular tensor category of anyons in the gauged theory is the

equivariantization (B×
G )

G
[Barkeshli-Bonderson-Cheng-Wang: 1410.4540].

This G -crossed extension of B is equivalent to a 3-group homomorphism G → Pic(B)

[Etingof-Nikshych-Ostrik: 0909.3140], which is the same as a monoidal 2-functor ϕ : 2VecG → ΣB.

One can verify that ϕ maps the condensable E1-algebra VecG ∈ 2VecG to

B×
G ∈ RModB(2Vec) ≃ ΣB, and condensing B×

G is the same as gauging the G symmtry:

BModB×
G |B×

G
(ΣB) ≃ Σ(B×

G )
G .
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Example: 1-form symmetry in 2+1D topological orders

Let A be a finite abelian group. Its delooping BA is a 2-group, describing a 1-form symmetry.

Let C be the modular tensor category of anyons in a 2+1D topological order. Then a 1-form

symmetry BA on this topological order is described by a monoidal 2-functor ϕ : BA → ΣC or

ϕ : 2VecBA ≃ 2Rep(Â) → ΣC. A monoidal 2-functor ϕ : BA → ΣC is the same as a braided

functor ϕ : A → C. Then ϕ(a) ∈ C is an abelian boson for all a ∈ A. So E :=
⊕

a∈A ϕ(a) ∈ C is

a condensable E2-algebra.

Gauging this 1-form symmetry is the same as condensing the algebra ϕ(VecBA) ∈ ΣC.

• VecBA is the condensation completion (or Karoubi completion) of Bk[A]. In other words,

VecBA can be obtained by condensing k[A] from the tensor unit Vec ∈ 2VecBA.

• Then ϕ(VecBA) ∈ ΣC can be obtained by condensing ϕ(k[A]) =
⊕

a∈A ϕ(a) = E from the

tensor unit of ΣC. In other words, ϕ(VecBA) = ΣE , which is the 1+1D domain wall

obtained by condensing the condensable E2-algebra E along a line.

Hence gauging this 1-form symmetry is the same as the codimension-2 condensation (anyon

condensation) of E .
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Example: anomalous 1-form symmetry in 2+1D topological orders

It is possible to find a subgroup A of abelian anyons in C, but they are not bosons. In literature

this case is also called a 1-form symmetry with ’t Hooft anomaly [Gaiotto-Kapustin-Seiberg-Willett:

1412.5148].

These abelian anyons span a fusion subcategory of C. Its associator and braiding determine a

class π in the abelian cohomology (E2 Eilenberg-MacLane cohomology) H4
E2
(A;C×). On the

other hand, one can also twist 2VecBA by π ∈ H4(BA;C×) ≃ H4
E2
(A;C×). Then this

anomalous 1-form symmetry is a monoidal 2-functor ϕ : 2VecπBA ≃ ΣVecπA → ΣC.

When π is nontrivial, VecBA is not a condensable algebra in 2VecπBA because there is no fiber

2-functor 2VecπBA → 2Vec. So one can not gauge the BA-symmetry. We can say that the

nontrivial class π ∈ H4
E2
(A;C×) characterizes the ’t Hooft anomaly of this 1-form symmetry.
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Example: gauging a Z2-symmetry in the 3+1D toric code model

The codimension-2 topological defects in the 3+1D toric code model form a E2-fusion

2-category C := Z1(2Rep(Z2)) [Kong-Tian-Z.: 2009.06564]. Denote A := 2Rep(Z2). There is an

invertible domain wall in the 3+1D toric code model corresponding to the nontrivial 2+1D Z2

SPT order [Kong-Lan-Wen-Z.-Zheng: 2003.08898]. In the coordinate system ΣC ≃ BModA|A(3Vec),

this invertible domain wall is 2Rep(Z2, ω) = ΣVecωZ2
, where ω ∈ H3(Z2;C×) ≃ Z2 is the

nontrivial element.

We want to find a monoidal 3-functor ϕ : 3VecZ2 → ΣC which maps the nontrivial simple

object to the above invertible domain wall. In the coordinate system ΣC ≃ BModA|A(3Vec),

this is determined by the condensable algebra ϕ(2VecZ2) ∈ ΣC, which is a Z2-graded fusion

2-category

P = P0 ⊕ P1, P0 = A = 2Rep(Z2), P1 = 2Rep(Z2, ω).

Such P is unique. There is a 2-group G defined by π1(G) = π2(G) = Z2 and the Postnikov class

(associator) ω ∈ H3(Z2;Z2) ≃ H3(Z2;C×) ≃ Z2 such that P = 2Rep(G). The gauged theory

is BModP|P(ΣC) ≃ BModP|P(3Vec) ≃ ΣZ1(P), a 3+1D twisted Z2 × Z2 gauge theory.

Zhi-Hao Zhang (BIMSA) Higher condensation theory and gauging of symmetries 33 / 36



Remark: continuous group symmetry

This framework also works for continuous group G symmetry. It is hard to make sense of a

monoidal n-functor nVecG → C, but its invertible part G → C× could be understood as a

pointed continuous map BG → BC×, where B denotes the classifying space.

For example, consider the 2+1D trivial phase equipped with a compact group G symmetry.

The space of invertible topological defects in the 2+1D trivial phase is

C× ≃ B2C× ≃ B3Z = K (Z, 3). The set of homotopy classes of pointed maps

BG → BC× ≃ K (Z, 4) is H4(BG ,Z), which exactly classifies the 2+1D Chern-Simons

G -gauge theory [Dijkgraaf-Witten: 90]. In other words, the 2+1D SPT orders with a compact group

G symmetry should be classified by H4(BG ,Z), and their gauged theories are the

Chern-Simons theories.

However, a categorical description of the gauging (or condensation) process in this case is not

clear.
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Example: condensation as gauging a non-invertible symmetry

Let C be the fusion n-category of topological defects in an n+1D topological order. The

identity functor id : C → C defines a non-invertible symmetry on this topological order.

To gauge this symmetry, we need to choose a condensable algebra A ∈ C and then condense

id(A) = A. So we see that condensing A is the same as a gauging of this non-invertible

symmetry.
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Summary

1. The topological defects in an n+1D topological order form a fusion n-category C.

2. A codimension-k condensation means taking modules of a condensable Ek -algebra in

Ωk−1C.

3. A symmetry is a monoidal n-functor ϕ : T → C. The higher condensation theory unifies

the gauging of all finite type symmetries.
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Thanks for listening!
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