Granging Non-invertible Symmetries in 2+1d

Generalized Symmetries in HEP and CMP

KITS and Peking University

29 - 07 - 2025

Rajath Radhakrishnan

ICTP

Based on 2507.01142 with

Mahesh Balasubramanian (QMUL)

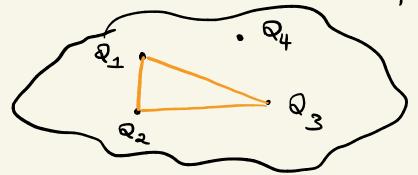
Matthew Buican (RMUL)

Clement Delcamp (IHES)

* Constructing new QFTs by gauging a symmetry of another QFT has played a pivotal role in high-energy physica.

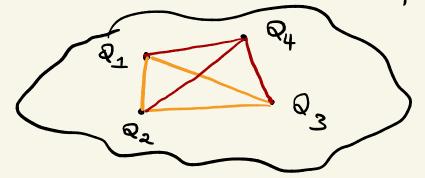
* Constructing new QFTs by gauging a symmetry of another QFT has played a pivotal role in high-energy physics.

* Gauging allows us to move around the space of QFTs.

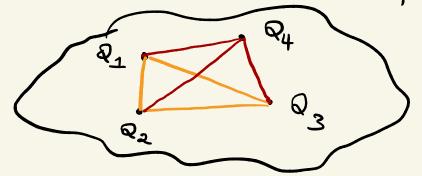


* Constructing new QFTs by gauging a symmetry of another QFT has played a pivotal role in high-energy physics.

* Gauging allows us to move around the space of QFTs.



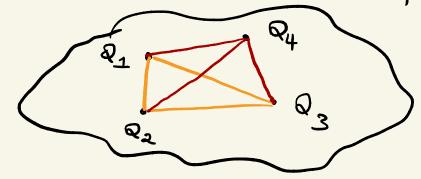
- * Constructing new QFTs by gauging a symmetry of another QFT has played a pivotal role in high-energy physics.
- * Gauging allows us to move around the space of QFTs.



 \star Gauging invertible symmetries (an be used to prepare non-abelian anyons from abelian anyons. Eq. $D(S_3)$ anyons from $D(Z_3)$ anyons.

[Lyons, Bowen Lo, Tantivasadakarn, Vishwanath, Verresen 2024]

- * Constructing new QFTs by gauging a symmetry of another QFT has played a pivotal role in high-energy physics.
- * Gauging allows us to move around the space of QFTs.



- \star Gauging invertible symmetries (an be used to prepare non-abelian anyons from abelian anyons. Eq. $D(S_3)$ anyons from $D(Z_3)$ anyons. [Lyons, Bowen Lo, Tantivasadakarn, Vishwanath, Verresen 2024]
- * What about gauging non-invertible symmetries?

Content

* Topological lines are described by fusion categories and in 1+1d gauging them is described by morita theory.

(See Hao Zhang's talk)

Content

* Topological lines are described by fusion categories and in 1+1d gauging them is described by morita theory.

(See Hao Zhang's talk)

* In 2+1d gauging top-logical lines is again well understood.

[Bais, Slingerland, 2008] [Kong 2013]

Content

- * Topological lines are described by fusion categories and in 1+1d gauging them is described by morita theory.

 (See Hao Zhang's talk)
- * In 2+1d gausing top-logical lines is again well understood.

 [Bais, Slingerland, 2008][Kong 2013]
- * In 2+1d, there are various approaches to gauging surface operators.
 - 1) Higher condensation theory. [Graiotto, Johnson-Freyd, 2019]

 [Kong, Zhang, Zhao, Zheng 2024]

 (See Zhihao Zhang's talk)
 - 2) Morita theory of fusion 2-categories. [Décoppet 2022]
 - 3) Orbifold data in 2+11 TQFTs. [Carqueville, Runkel, Schaumann, 2018]
- This talk: Take the intuition from orbifolding in 1+1d CFTs and run with it.

Gauging in 1+1d

The QFT Q/G Obtained from gauging G have G-invariant local operators.

5 is a local operator in Q/G if

Gauging in 1+1d

The QFT Q/G Obtained from gauging G have Gi-invariant local operators.

5 is a local operator in Q/G if

y g ∈ G

Moreover

On gauging

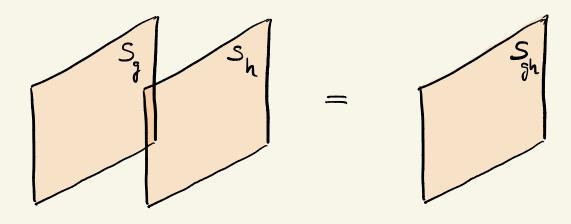
(a)

Non-genuine local operator

Grenuine local operator

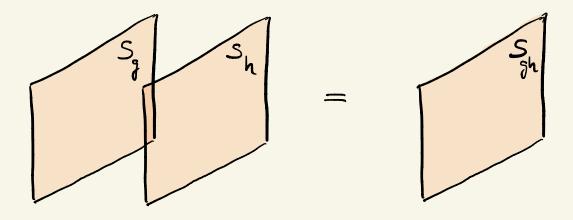
Gauging in 2+1d

* In 2+1d QFTs, consider a symmetry implemented by topological surface operators Sg, g & G.

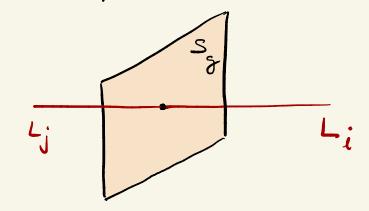


Gauging in 2+1d

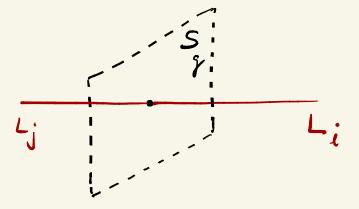
* In 2+1d QFTs, consider a symmetry implemented by topological surface operators S_g , $g \in G$.

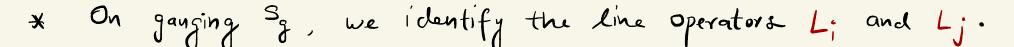


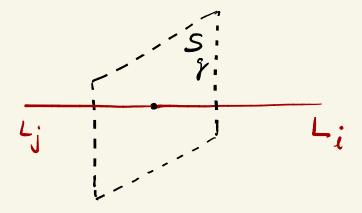
* The action on line operators is



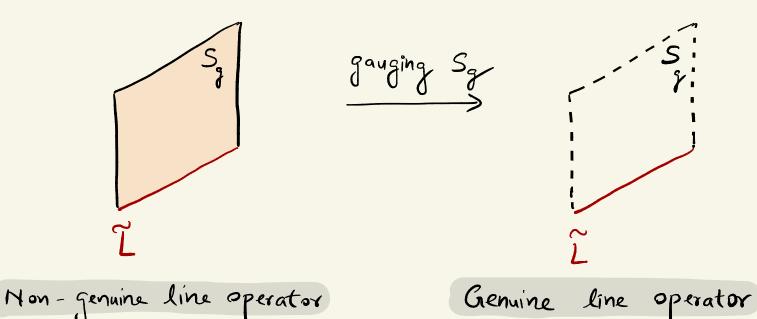
* On gauging Sg, we identify the line operators L; and Lj.





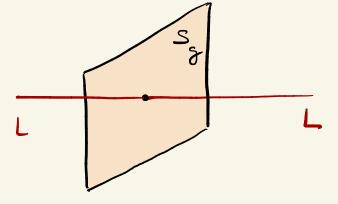


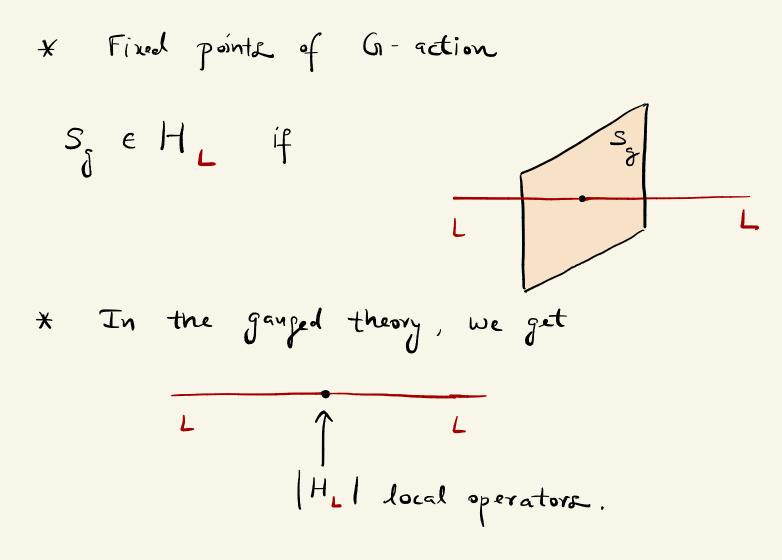
* Genuine line operators from twisted sector.



* Fixed points of Graction

S_s e H_L if





L splits into |H_ | line operators in the gauged theory.

(Mathematically, add twisted sector lines to the category of lines C, to form a G-crossed braided category CG and then equivariantize the G-action.

[Barkeshli, Bonderson, Cheng, Wang, 2014])

Symmetries of D(Z2)

$$exe = m \times m = 1$$
.
 $Y = e \times m$.

Braiding

Symmetries of D(Z2)

$$exe = mxm = 1.$$

 $Y = exm.$

Braiding

$$S_{ab} = a \qquad b = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}.$$

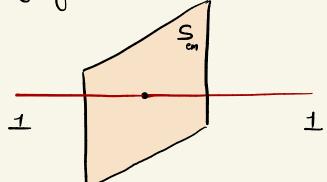
mmetry

em - symmetry

$$S_{em}(1) = 1$$
 $S_{em}(4) = 4$ $S_{em}(e) = m$ $S_{em}(m) = e$

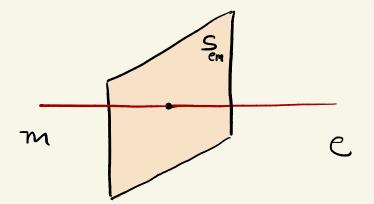
Sem can be gauged.

Gauging Sem



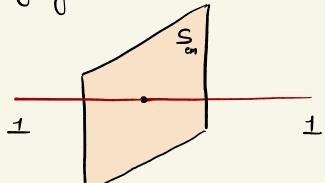
$$H_{1} = H_{\gamma} = \{1, S_{em}\} \cong \mathbb{Z}_{2}$$

[Barkeshli, Bonderson, Cheng, Wang 2014]



$$H_e = H_m = \left\{ 1 \right\} \cong \mathbb{Z}_1$$

Gausing Sem

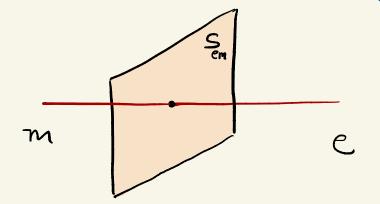


$$H_{1} = H_{\gamma} = \{1, S_{em}\} \cong \mathbb{Z}_{2}$$

After ganging,

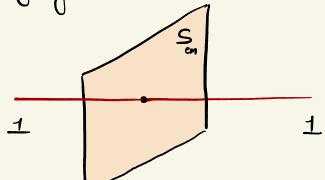
$$1 \rightarrow 1_1, 1_2, \gamma \rightarrow \gamma_+, \gamma_-, [e, m]$$

[Barkeshli, Bonderson, Cheng, Wang 2014]



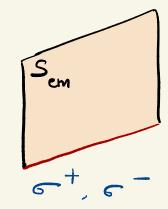
$$H_e = H_m = \left\{ 1 \right\} \cong \mathbb{Z}_1$$

Gausing Sem

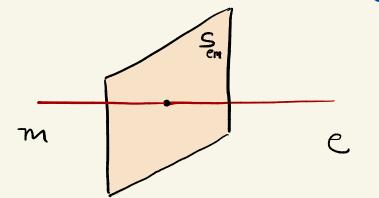


$$H_{1} = H_{\gamma} = \{1, S_{em}\} \cong \mathbb{Z}_{2}$$

After gauging

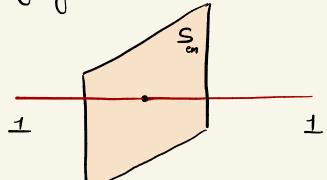


$$H_{\sigma} = \{1, S_{em}\}$$



$$H_e = H_m = \left\{ 1 \right\} \cong \mathbb{Z}_1$$

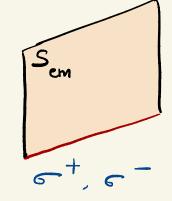
Gauging Sem



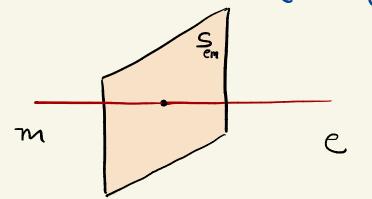
$$H_{1} = H_{2} = \left\{ 1, S_{em} \right\} \cong \mathbb{Z}_{2}$$

After gauging,

$$1 \rightarrow 1_1, 1_2, \gamma \rightarrow \gamma_+, \gamma_-, [e, m]$$



[Barkeshli, Bonderson, Cheng, Wang 2014]



$$H_e = H_m = \left\{ 1 \right\} \cong \mathbb{Z}_1$$

A non-invertible symmetry of $D(\mathbb{Z}_2)$

$$S_{e}(\underline{1}) = S_{e}(\underline{e}) = \underline{1} + \underline{e}$$
 $S_{e}(\underline{m}) = S_{e}(\underline{\Psi}) = 0$.

$$S_{e}(m) = S_{e}(\Psi) = 0$$

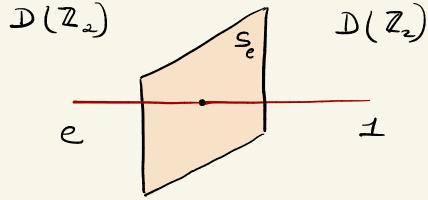
[Roumpedakis, Seifnashri, Shao 2022]

$$D(Z_2)$$
 S_e
 $D(Z_2)$
 E

A non-invertible symmetry of $D(\mathbb{Z}_2)$

$$S_{e}(m) = S_{e}(Y) = 0$$

[Roumpedakis, Seifnashri, Shao 2022]



On gausing

and m, & are confined.

A non-invertible symmetry of $D(\mathbb{Z}_2)$

$$S_{e}(\underline{1}) = S_{e}(\underline{e}) = 1 + \underline{e}$$

$$S_{e}(m) = S_{e}(\Psi) = 0.$$

[Roumpedakis, Seifnashri, Shao 2022]

$$D(Z_2)$$
 S_e
 $D(Z_2)$
 S_e
 1

On gausing Se

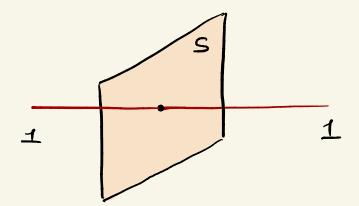
1 -> 1, e -> 1 and m, & are confined.

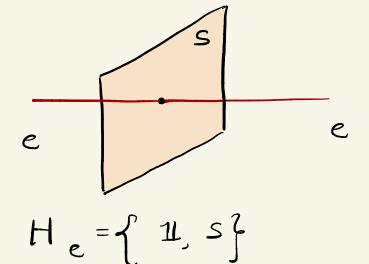
Gauging the 1-form symmetry e = gauge e on a 2-manifold to get Se + gauge Se in full spacetime

(Se is an Fa algebra. See Zhihao Zhang's talk.)

Gauging S = 11 + Se

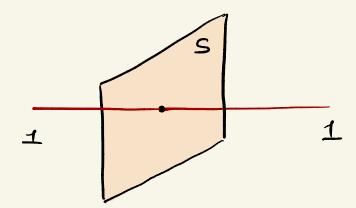
Consider action on 1, e



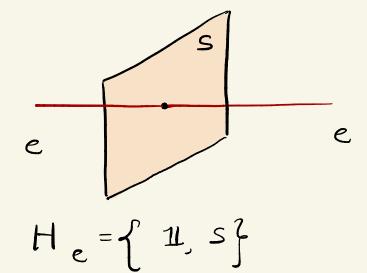


Gauging S = 11 + Se

Consider action on 1, e



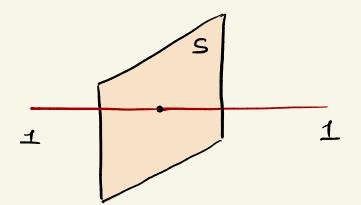
On gauging S, $1 \longrightarrow 1_{\underline{1}} + 1_{\underline{2}}$

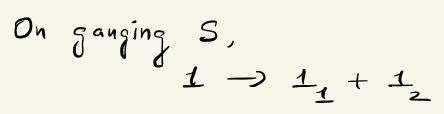


$$e \rightarrow e_{\underline{\iota}} + e_{\underline{\lambda}}$$

Gauging S = 11 + Se

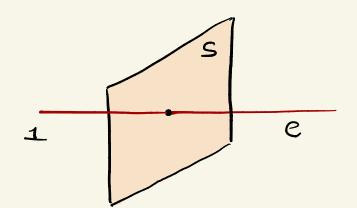
Consider action on 1, e





$$e \rightarrow e_{\underline{\iota}} + e_{\underline{\lambda}}$$

But,



$$e$$

$$H_{e} = \{11, 5\}$$

Some Line operators in $D(Z_2)/S$

In
$$D(Z_2)/S$$
, we get the line operators L_1 , C_1 , $[L_2, C_2]$

$$e_{1} \times e_{1} = 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

$$= 1$$

Some Line operators in $D(Z_2)/S$

In
$$D(Z_2)/S$$
, we get the line operators \pm_1 , e_1 , $[\pm_2, e_2]$

$$e_{1} \times e_{1} = 1_{\underline{1}} \qquad \left[1_{2}, e_{2}\right] \times \left[1_{2}, e_{2}\right]$$

$$= 1_{\underline{1}} + e_{\underline{1}} + \left[1_{2}, e_{2}\right].$$

$$D(\mathbb{Z}_{2})/S \qquad D(\mathbb{Z}_{2})$$

$$E_{1} \qquad D(\mathbb{Z}_{2})/S \qquad D(\mathbb{Z}_{2})$$

Some Line operators in $D(Z_2)/S$

In
$$D(\mathbb{Z}_2)/S$$
, we get the line operators \mathcal{L}_1 , \mathcal{C}_1 , \mathcal{L}_2 , \mathcal{C}_2

$$e_1 \times e_1 = 1$$
 $\left[1_2, e_2\right] \times \left[1_2, e_2\right]$

$$D(\mathbb{Z}_{2})/S \qquad D(\mathbb{Z}_{2})$$

$$[\underline{A}_{2}, e_{1}] \qquad D(\mathbb{Z}_{2})$$

$$[\underline{A}_{2}, e_{2}] \qquad D(\mathbb{Z}_{2})/S \qquad D(\mathbb{Z}_{2})$$

$$[\underline{A}_{2}, e_{2}] \qquad D(\mathbb{Z}_{2})/S \qquad D(\mathbb{Z}_{2})$$

$$S_{o}$$
, $\{ \pm_{1}, e_{1}, [\pm_{2}, e_{2}] \} \cong \mathbb{R}_{ep}(S_{3})$

I dentifying D(Z2)/S

$$F_1$$
 · Rep (S_3) \longrightarrow Rep (Z_2)

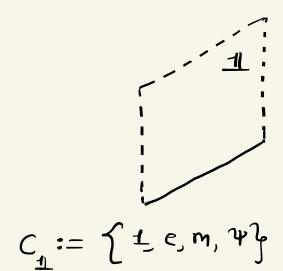
$$\begin{array}{ccc}
\mathbf{1}_{1} & \rightarrow & \mathbf{1} \\
\mathbf{e}_{1} & \rightarrow & \mathbf{e}
\end{array}$$

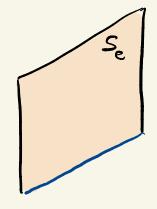
$$e_1 \rightarrow e$$

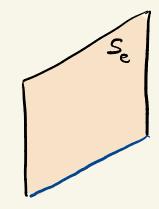
I dentifying D(Z2)/S

- * Rep (33) is a subcategory of D(Z2)15.
- * 3 a 1-form ganging A = 1, + [12, e2] such that
 - F_1 Rep (S_3) \longrightarrow Rep (\mathbb{Z}_2)
 - $1 \rightarrow 1$
 - e, > e
 - [1, e2] -> 1+e
 - F1 followed by condensing e gives the trivial theory.
 - => Rep(s_3) is a Lagrangian subcategory of $D(\mathbb{Z}_2)/S$.
 - \Rightarrow $\mathbb{D}(\mathbb{Z}_2)/S \cong \mathbb{D}(S_3)$

All line operators in $D(Z_2)/S$

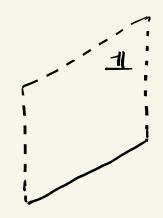


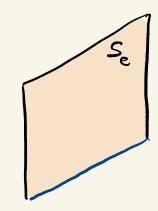




$$S_{e}(1) = S_{e}(e) = 1 + e$$
 $S_{e}(\Psi) = S_{e}(M) = b$

$$S_e(a) = a \cdot a$$



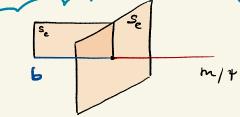


Full action of Se on C+ Cse

$$S_{e}(1) = S_{e}(e) = 1 + e$$
 $S_{e}(w) = S_{e}(m) = b$

$$S_e(b) = m + \Psi + b$$
 $S_e(a) = 2 \cdot a$

$$S_e(a) = 2 \cdot a$$



and b ∈ Se(b) for Ob to be well-defined.

For
$$S = 1L + S_e$$
 we have $S(1) = S(e) = 2.1 + e$ $S(m) = m + b$ $S(4) = 4 + b$ $S(b) = m + 4 + 2.6$ $S(a) = 3.a$

For
$$S = 1L + S_e$$
 we have
 $S(1) = S(e) = 2.1 + e$ $S(m) = m + b$ $S(\psi) = \psi + b$
 $S(b) = m + \psi + 2.b$ $S(a) = 3.a$

On gauging S, we get

$$1 \rightarrow 1$$
, 1_2 ; $e \rightarrow e_1$, e_2 ; $m \rightarrow m$; $\gamma \rightarrow \gamma$;

 $b \rightarrow b_1$, b_2 ; $a \rightarrow a_1, a_2, a_3$

All line operators in $\mathbb{D}(\mathbb{Z}_2)/S$

For
$$S = 1L + S_e$$
 we have
 $S(1) = S(e) = 2.1 + e$ $S(m) = m + b$ $S(\Psi) = \Psi + b$
 $S(b) = m + \Psi + 2.b$ $S(a) = 3.a$

On gauging S, we get

$$1 \rightarrow 1$$
, 1_2 ; $e \rightarrow e_1$, e_2 ; $m \rightarrow m$; $\gamma \rightarrow \gamma$;

 $b \rightarrow b_1$, b_2 ; $a \rightarrow q_1, q_2, q_3$

$\mathbb{D}(S_3)$

$$S_3 = \langle \gamma, s | \gamma^3 = s^2 = e ; srs = \gamma^{-1} \rangle$$

Conjugacy class [g]

[e]

$$[S] = \{ S, SY, SY^2 \}$$

$$[\gamma] = \{\gamma, \gamma^2\}$$

Cg

 S_3

$$C_s = \{e, s\}$$

$$C_{\gamma} = \{e, \gamma, \gamma^2\}$$

Irr(Cg)

11, T1, T2

11s, 6

 $\mathbf{1}_{\gamma}$, ω , ω^2

Simple line operators:

(E), 11) ([e], π_1)

 $(EJ, \Pi_2) \qquad (EJ, 1_s)$

(B) ~)

([r], 1]

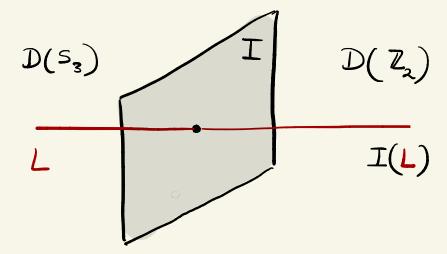
 $([n], \omega)$ $([n], \omega^2)$

$$D(S_3) \mid D(Z_2)$$
 $D(S_3) \mid D(Z_2)$
 $D(S_3) \mid D(Z_2)$
 $D(Z_2)$
 $D(Z_2)$

$$\mathcal{D}(S_3) \mid \mathcal{D}(Z_2)$$

[Bais, Slingerland, 2008]

I



$$I([e], \pi_1) = e$$

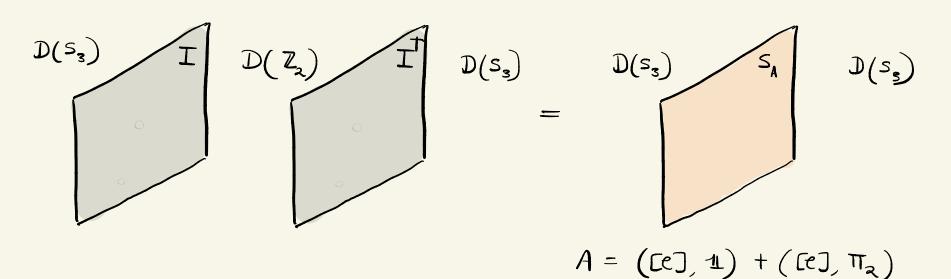
$$I(s) = \gamma + b$$

$I \times I^{\dagger}$ and $I^{\dagger} \times I$

$$D(S_3)$$

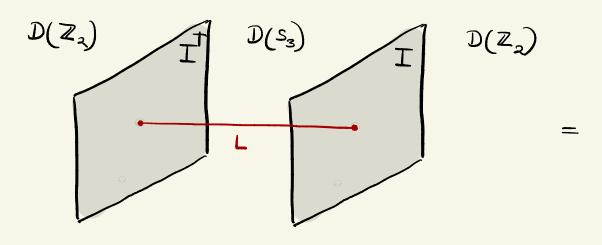
$$D$$

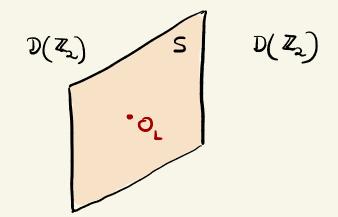
$I \times I^{\dagger}$ and $I^{\dagger} \times I$



[Buican, Radhakrishnan, 2023]

$T \times T^{+} = 1 + S_{e}$





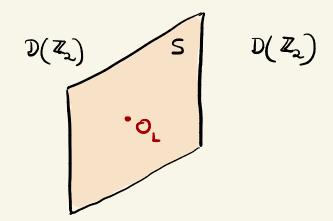
$$L = ([eJ, 1])$$
 or $([eJ, T_2)$

=> S is a non-simple surface operator.

$$D(\mathbb{Z}_2)$$

$$D(\mathbb{Z}_2)$$

$$=$$



$$L = ([eJ, 1]) \text{ or } ([eJ, \Pi_2)$$

=> S is a non-simple surface operator.

$$S(1) = I \times I^{+}(1) = I((EJ, 1) + (EJ, \Pi_{2}))$$

= 1+1+e.

$$\Rightarrow$$
 IXI⁺ = 11 + S_e

Granging general non-invertible symmetry $S = \sum S$.

 \Rightarrow $Z(c) \cong C_1/S \boxtimes C_1$.

where C is the fusion category of line operators on I.

Granging general non-invertible symmetry $S = \sum S$.

 \Rightarrow $Z(c) \cong C_1/S \boxtimes C_1$.

is the fusion category of line operators on I.

Also

$$C = \begin{cases} 1 & \\ C_{s_i} & \\ C_{s$$

Gauging General non-invertible symmetry $S = \sum S$. $C_{11}/S \boxtimes C_{11}$ $\Rightarrow C_{11}/S \boxtimes C_{11}$ $\Rightarrow Z(C) \cong C_{11}/S \boxtimes C_{11}$

where C is the fusion category of line operators on I.

Also

$$C = \begin{cases} \frac{1}{1} \\ \frac{1}{1}$$

Greneralized symmetry fractionalization: Choice of fusion rules on C.

Generalized discrete torsion: Choice of F symbols on C.

(Agrees with Morita theory of fusion 2-categories. [Décoppet 2023])

Conclusion

- * Ganging non-invertible symmetries can relate QFTs which are not related by ganging any invertible symmetry.
- * These allow us to write the (complicated) operator content of one QFT in terms of the simpler operator content of another QFT.
- * Non-invertible symmetries cannot be always gauged. This is a generalization of 't Hooft anomaly.
- * Preparing $D(s_3)$ anyons starting from $D(\mathbb{Z}_2)$ anyons and gauging.

Applications to topological quantum Computation?

Requires realizing $D(Z_2) \rightarrow D(S_3)$ on the lattice. (Ongoing work!)