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Topological Holographic Princirf\é” /

d-QFT /

Topological Holographic Principle states that a symmetric d-dimensional QFT can be expressed
as a d+1 dimensional TQFT

path-integral over a “sandwich” Sandwich and SymTFT:
Kong, Zheng 2019;
, _ , o Ji, Wen 2019;
One boundary is painted a topological boundary condition Gaiotto, Kulp 2020:

Apruzzi, Bonetti, Garcia Etxebarria, Hosseini,
Schafer-Nameki 2021;
Freed, Moore, Teleman 2022;

The other is a “dynamical boundary condition”

The bulk gauges the global symmetries and impose them explicitly, and it is usually called the
SymTFT/SymTO.

Topological defects in the d-QFT corresponds to topological excitations (e.g. anyon lines) in the
SymTO.

e.g. Verlinde lines in 2D CFT —— Wilson lines/anyon lines in a corresponding 3D Chern-Simons
theory.



Integrable Lattice Models and
Strange Correlators



Path-integral
of a 3-ball with a two dimensional
surface

RSOS integrable models and Minimal
models and Levin Wen models

Verstraete et al 2017; Aasen, Fendley, Mong 2016, 2020;

« PEPS representation of Levin-Wen models/Turaev-Viro
ground state [¥"")

Gu, Levin, Swingle, Wen PRB 2009; Buershaper, Aguado, Vidal PRB 2009; (IY" ~ { a b c ] ~ 141«‘””-")1
y : Ty z Vded, ¥ 77
* Then pick some mysterious state {I~n| and take the
overlap with ") i.e {2~ |¥;"). (Onlis chosen such that N A
the overlap matches exactly the partition function of well
known families of integrable models — this is a X AX | X
realisation of the sandwich. A1 X X L




Path-integral
of a 3-ball with a two dimensional
surface

RSOS integrable models and Minimal
models and Levin Wen models Y

Verstraete et al 2017; Aasen, Fendley, Mong 2016, 2020;

r is related to the temperature in the classical Ising spin model:

r=e 2P

e = e~ 2P

\( _ { a b c ] _ 1 (F:,[,.,-)(,kw
° > T Y 2 (](.([: Yy 2
B. =1/21In(1+ v?2) y |

)

The critical temperature is known for many years. Now expressed as
the boundary condition of the Levin-Wen model.




Path-integral
of a 3-ball with a two dimensional
surface

RSOS integrable models and Minimal
models and Levin Wen models Y

Verstraete et al 2017; Aasen, Fendley, Mong 2016, 2020; Chen et al 2022;

More general there is the A series integrable models with the
same ansatz :

Expressed in this form, the well known critical coupling is

located at : . K . . 1
\’/ _ [ u. b ¢ ] N (F!‘/"’ \
y* ‘T Ly d.d.
re = /2cos(2r/(k +2)) + 1/(2cos(m/(k + 2) + 1) (.
What is this”? Does the Levin Wen/TV model knew about these numbers?
i A
o (Gl
(O + (1]




Generalised Symmetry Preserving RG and Their Fixed Point

A lattice integrable model can also be written in this form: RG of topological order
R. Vanhove, M. Bal, D. J. Williamson, N. Bultinck, J. Haegeman, and 2 g Chen, Gu, Wen 2010;
F. Verstraete; 2’ [ \o . b/-\a‘ . and others..
D. Aasen, P. Fendley, and R. S. K. Mong he f WK = Z de f 4 he—e 9K
L \/ J ¢ d e “ d e 4

v o

QL) =

<QN‘FF“I’IS;/V> — <QN—1|‘I’£;/V> ﬂsymmetric topological phase\ Gong Cheng, Lin Chen,

. . Zh -Ch G
= topological eigenstate of RG 23191'1_?8002"9 .

operator from Frobenius Phys.Rev.X 15 (2025) 1, 0110
\/§A<Q| —A <Q‘ U algebra. 73
- symmetric CFT is an infinite Lin Chen, Kaixin Ji,

bond dimension eigenstate of Haochen Zhang, Ce Shen,
the RG operator from Ruoshui Wang
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2D CFT Factor: an ansatz of unit cell,
and competing anyon condensation



Ansatz of Unit cell

Module and Frobenius algebra

Example: In the Ising example, we notice that at small beta and large beta, the
red edges are coloured by one of the two Frobenius algebra of the Ising model
respectively. One can check that in this case they are closely related to
topological boundary condition of the 3D TV model.

There are 2 Frobenius algebra:

How to connect the two things? There
are many ways . See Wan et al. But

AO p— O Electric condensate: equivalent to Lagrangian condensate = 1 @ € bottom line is to use the Ribbon

operator for the Levin Wen model.
Low temperature Z2 spontaneously sym breaking

Al — O @ 1 Magnetic condensate: equivalent to Lagrangian condensate = 1 B m

High temperature dual Z2 spontaneously sym breaking



Ansatz of Unit cell

Module and Frobenius algebra Fuchs, Runkel, Schweigert 2000s ; Hu, Wan, Wu 1706.00650;

* A Frobenius algebra satisfies the following conditions:

— E ffb /\
! a,bijc € L 4 /( ‘(7\ { {
(a) (b)
A
| L = dg 4 { - ~
{ v
(c) (d)

Each Frobenius algebra describes a Lagrangian algebra which is a maximal set of anyons that condense.
When a maximal set of anyons are condensed — this produces a trivial state. Each such trivial state is a topological
boundary condition of the 3D TQFT.



Ansatz of Unit cell

Module and Frobenius algebra

Consider a octagon-square lattice. (Inspired by the Ising model)

We consider a unit cell in this lattice as highlighted above. We want to define a state

corresponding to pouring the condensate into this cell, while it is well “isolated” from the

other cells.

This is given by:

L=y 2 (R

acL g :1:,y,u,’UELMJ:l

Here, M is a module of A. It satisfies:

Y

v

M

M

(M ]2y ([P0 )

Yyi
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Ansatz of Unit cell

Module and Frobenius algebra

 Normalising a Frobenius algebra

2 _
N(A’L)M.AZ) - A A =




Ansatz of Unit cell

Module and Frobenius algebra

Here, we require that Al and Aj share the
module objects in M, even if the module
function may not be the same.

This is crucial to preserving the isolation of
the condensate between unit cells in the full
lattice.

Interpolating between condensates:

<I(Ai’]wfli)’(ﬂja]wflj)Icritical = <‘Ai|Mﬂi + <‘Aj|MAj




Example:

Ansatz of Unit cell Goma book to

Module and Frobenius algebra the A-series

Interpolating between condensates:

<I(Ai’]wﬂi)’(ﬂjaw[ﬂj)Icritical = <‘Ai‘MAi + <‘A.’i|MAj . <§|

. <O|+7‘<1|
(2]
T _ For all kK we have the following Frobenius algebra:
<‘A2|M.A - N '
("AiaMle') 1
Ao =0 M =
Al=0@1 2

re =+/2cos(2m/(k +2)) 4+ 1/(2cos(n/(k +2) + 1)



Why does it work? — why is it a second order phase transition?

Key: cut down on degrees of freedom in RG space

» For chosen M such that it is shared by all the interpolating algebras (for simplicity,
including module function), the RG attraction basins would be reduced to these

algebras.
number of sharing A= TLM\f

* This happens where .. C A, C .Aj C Ag

Number of couplings in a unit cell: This is a sufficient but not

necessary condition!
Dunit("'C'AiCAj C.Ak) :Nﬂk. D, =Dgyt — 1

All phase transitions in a phase diagram are forced to be second order if

n, > D l.e. all directions correspond to moving towards an incompatible phase.
M ce No directions describe degeneracy between two phases.



Why does it work? — why is it a second order phase transition?

Key: cut down on degrees of freedom in RG space

(- )
This expression reproduces the correct phase transition points in all the infinite

<I(Ai,MAi)a(-AjaA/IAj) Icritical = <‘Ai|Mﬂi + <'Aj|Mﬂj set of examples below.
— _J

e Ak series examples NM = 2, Dc =1 Ny > DC° The entire series is second order phase transitions !

- N-state Potts model (4 =0 An=0&---N-1 M=06---N—-1)
* N=2 nM=2,Dc=1 =>2nd order = Ising
* N=3nM =2, Dc =2 =>2nd order = 3 state Potts — seems to be an

accident?
* N=5nM =2, Dc=4 => (weak first order

Beyond N>5 well known that they are all first order transitions.



Phase Diagrams and Phase
Boundaries




3 phase competition: Ashkin-Teller model from A5
phase boundaries and tri-critical point

e The module: M:]_ AQ:OCA1:O@4CA3:O@4@2

Note that this choice of module kills A2 =0® 2

nM = 3, Dc = 2 => All phase transitions are
second ordetr.



phase boul

e The module
Note that this

nM = 3, Dc =
second order.
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3 phase competition: Ashkin-Teller model from A5
phase boundaries and tri-critical point

Phase boundaries:

Central Charge 1

(Cijl = 5 (Al + (A;)

9

R, R

o o (AulBy)

N (Cij(p)| = (Cij| +p ((Akl <B..‘BZ.J.> (Bij
4-state potts 1X; 17 |1+

¥ How do we understand which CFT would §
§ show up here? Particularly they seem to ,‘
preserve different amount of (non)- 3
y invertible symmetries. How do we ,
& determine what is the minimal amount of |

symmetries preserved?

Ising

S, e 5 . ; - - . g D o . . ; . o pa—— . - - .4 ~
A e = TS -~ . 8 " DAY e = A~ INEUR TS ST EINTETE 8 ", T DSy
- g . N > > (oS i . P . . 8 _>. Y vy . = bl N AP - . . - ", v a ¢ =F = . . T _ > NS vy =,



Symmetries preserved — refined
condensation tree



Refined condensation tree

Refining the Hasse diagram”

Chatterjee, Wen 22; Bhardwaj, Pajer, Schafer-Nemaki, Warman 24;

Each node corresponds to a topological order obtained from partial anyon
condensation of the parent phase - one draws a line connecting the child and

parent phase

From the perspective of the "input-category” C, each node correspond to a
sub-category K of C

Grow the tree from the top node corresponding to K = C (no condensation).
The bottom nodes of the diagram are maximal” condensation corresponding
to Lagrangian algebra L —now K becomes trivial with only 1 object, this

object being a Frobenius algebra A .



Refined condensation tree

« Several Frobenius algebra A corresponds to the same” L

 But these L are actually different microscopically ! Different A does
correspond to different boundary conditions. Two different A’'s correspond to
the 'same” L can have non-trivial phase transitions between them.

* Our tree contains all these different A's that may correspond to the same L.



 Examples: Ising

Refined condensation tree

j(: — ? — 443 N
identity = Ag =0
Z(Az) = Doubled Ising TO

Condense )

L
X = Vecf, = {0,2}
identity = Ag =0

Z(XK) = Z(£2) = toric code
Condense (oa,) = / \Iondense (co,1) =m
X = {0} =1, K ={0&2} =1,

identity = Ay identity = A,
L=11&vUvY & oa L=11% Yy & oa
electric condensate magnetic condensate

1l Ee 1$dm



Refined condensation tree

« Examples: A5
The minimal symmetry is determined by the first shared parent between to
competing Frobenius algebra. 4

. v, B.4 -
0.4 {0{254 2 4« {0#4,21,'2-3} {0 2,2#4}
‘ — I{(.'pt{ 3 = \"OL';‘:-),
Z(£3) Z(£2)

(D,0) (F.4) (B,3y” (D2 7o 2c2)| By (o)
{flu:O} {ﬂ2:0}4} M {.A.;:O"Ql ?22#4} {Jl1:0+2}

Lo L L Lg
A FaD A B®2F \@& Bdb 2C 1\ C oD



Novel Examples -
Haagerup TQFT




Haagerup Model

Cx, -, P ap, o p,
The fusion rules are
1 x o’ p ap a’p
a | o | 1 ap a’p p
| 02 1 [ a3 sz P p | dlzda dazzl’ dP=d0p=d¢12p_
P azp ap lepEBap@azp ag@p@apeazp a-ep@apEBazp
ap | p |afp| aGpBapEa’p | l&pSap&a’p | SpBapSa’p
o’ p apl p |PSpBapSa’p | adpBap&aip | 1GpSapda’p
Lo : Ap, A
L():l@ﬂ'l@zﬂ'g Ap =1 I Ao A
. AP | 2 | 24 3
Li=18m & 20, A =pRApRp=1GpBapBa’p Ter As Ae A
A2=1@a®az 2 - 4y VA5 VG

Ly=1&m & mp & 0.
2 1572 01 Az=pRA20p=(18pBapsa’p)® (18 ada’).

As =13 p D ap,
As=a@ AR a” =13 ap@ a’p,
Ag =’ QA1 0a=13 p& o’p.
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Haagerup MOdeI 1, (x, o, p, ap, a”p,

1 B M B O }i=123

VecZ; = {1, a, a*} VecZ; = {1, a, a*} {Ass56}
2(Zs) 2(Z3) Ly
1} lesada®} {pR11p} {p(1&ada®)® p)

L() Ll L(] L1



Haagerup Model

Central Charge

Central Charge




Haagerup Model

Central Charge

N



Haagerup Model - summary of results

Jat Hy
Ai Ao Ay Az A456
A; A Ay Asse | A2 | Aase As56 A(5.6),(4.6).(4,5)
M pdap®ap
D init 1 3 3 6 6 5 5
Type Second order First order
. | 3-Potts
CFT | c= 2.0" 08 | € ~ 1.3 —

* is possibly the CFT that has been observed in [20, 21]. See section 4 for details.



Haagerup Model - summary of results

Type Second order First order Second order

CFT |c=18 |ec~18 | e~ 2.1 —

- |lex=18 | c=x 2.1




Summary and Outlook

 We produce a systematic way of constructing critical lattice models based on the strange correlator

* This gives the Landau paradigm for generalised symmetries a more precise handle to construct effective field
theories — here, the order parameter is precisely the anyon creation operator defined on some choice of unit
cells

 We are at the same time constructing UV complete CFTs from these lattice models, providing an alternative
route to searching for CFTs using a different strategy from the bootstrap — we have in fact found several
candidate novel CFTs with Haagerup symmetries

 We combine loop TNR and this symTRG method to produce these precise phase diagrams - and find
confirmation of our prediction of location of critical points and phase boundaries over large swathes of the
phase diagram up to a small area close to high critical points

 How to enlarge the unit cell?
Change the shape of the lattice?
Connection to integrability?



Thank you!



