Topological Responses of the Standard Model Gauge Group

Zheyan Wan

arXiv: 2412.21196 with Juven Wang and Yi-Zhuang You

@Generalized Symmetries in HEP and CMP on July 29, 2025

Introduction

Well-known: The Lie algebra of the Standard Model gauge group is

$$\mathcal{G}_{\mathrm{SM}} \equiv su(3) \times su(2) \times u(1)_{\tilde{Y}},$$
 (1)

Unknown: There are 4 possible versions of the Standard Model gauge group:

$$G_{\mathrm{SM}_{\mathrm{q}}} \equiv \frac{\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{\tilde{Y}}}{\mathbb{Z}_{\mathrm{q}}}, \quad \text{with } \mathrm{q} = 1, 2, 3, 6.$$
 (2)

Goal: Discern the Standard Model gauge group via measurable fractional topological responses akin to the Hall conductance. Motivated by [Hsin-Gomis, arXiv:2411.18160].

Major difference between our work and [Hsin-Gomis, arXiv:2411.18160]

• [Hsin-Gomis] only considers $U(1)_{B-L}$ (baryon minus lepton symmetry), while our work considers $U(1)_{X_n}$ where

$$X_n \equiv n(\mathbf{B} - \mathbf{L}) + (1 - \frac{n}{3})\tilde{Y}.$$

Thanks to Yunqin Zheng's insight.

• [Hsin-Gomis] considers $\mathrm{Spin} \times \mathrm{U}(1)_{B-L}$ (spin) as the 0-form symmetry of the gauged SM, however, it should be $\mathrm{Spin} \times_{\mathbb{Z}_2^F} \mathrm{U}(1)_{B-L}$, and their topological response result differs from our result. We consider instead

$$\left\{ \begin{array}{l} \operatorname{Spin} \times_{\mathbb{Z}_2^{\operatorname{F}}} \frac{\operatorname{U}(1) \chi_n}{\mathbb{Z}_n} = \operatorname{Spin}^{\operatorname{c}} \text{ (non-spin)}, \quad n \in \mathbb{Z} \text{ odd} \\ \operatorname{Spin} \times \frac{\operatorname{U}(1) \chi_n}{\mathbb{Z}_n} = \operatorname{Spin} \times \operatorname{U}(1), \quad n \in \mathbb{Z} \text{ even} \end{array} \right.$$

as the 0-form symmetry of the gauged SM.

SM data

	$\bar{d}_R = d_L$	I _L	qL	$\bar{u}_R = u_L$	$ar{e}_R = e_L^+$	$\bar{\nu}_R = \nu_L$	ϕ H
SU(3)	3	1	3	3	1	1	1
SU(2)	1	2	2	1	1	1	2
$\mathrm{U}(1)_Y$	1/3	-1/2	1/6	-2/3	1	0	1/2
$\mathrm{U}(1)_{ ilde{Y}}$	2	-3	1	-4	6	0	3
$\mathrm{U}(1)_{B-L}$	-1/3	-1	1/3	-1/3	1	1	0
$\mathrm{U}(1)_{\mathbf{Q}-N_c\mathbf{L}}$	-1	-3	1	-1	3	3	0
$\mathrm{U}(1)_X$	-3	-3	1	1	1	5	-2
$\mathrm{U}(1)_{X_n}$	2 – n	-3	1	-4 + n	6 – n	n	3 – <i>n</i>

$$X_{n} \equiv \frac{n}{N_{c}}(\mathbf{Q} - N_{c}\mathbf{L}) + (1 - \frac{n}{N_{c}})\tilde{Y}$$

$$\equiv n(\mathbf{B} - \mathbf{L}) + (1 - \frac{n}{3})\tilde{Y}, \tag{3}$$

New global symmetry X_n

$$X_{n=3}=N_c(\mathbf{B}-\mathbf{L})=\mathbf{Q}-N_c\mathbf{L}$$
 symmetry, $X=X_{n=5}=5(\mathbf{B}-\mathbf{L})-\frac{2}{3}\tilde{Y}\equiv\frac{5}{3}(\mathbf{Q}-N_c\mathbf{L})-\frac{2}{3}\tilde{Y}$ is Wilczek-Zee's symmetry, $X_{n=1}=\mathbf{B}-\mathbf{L}+\frac{2}{3}\tilde{Y}$ is a symmetry for the flipped $u(5)$ model.

$$q_{X_n} = q_{\tilde{Y}} \mod n \tag{4}$$

 \Rightarrow There is a shared common subgroup \mathbb{Z}_n between $\mathrm{U}(1)_{X_n}$ and $\mathrm{U}(1)_{\widetilde{Y}}$. The shared common subgroup \mathbb{Z}_n is generated by

$$\psi \mapsto \exp(i\frac{2\pi}{n}q)\psi.$$

Spacetime-internal symmetries of SM

Ungauged:

$$G_{\mathrm{SM}_{\mathrm{q}}}^{\mathrm{U}(1)_{X_{n}}} \equiv \mathrm{Spin} \times_{\mathbb{Z}_{2}^{\mathrm{F}}} \left(\frac{\mathrm{U}(1)_{X_{n}} \times G_{\mathrm{SM}_{\mathrm{q}}}}{\mathbb{Z}_{n}} \right) \text{ for odd } n,$$

$$G_{\mathrm{SM}_{\mathrm{q}}}^{\mathrm{U}(1)_{X_{n}}} \equiv \mathrm{Spin} \times \left(\frac{\mathrm{U}(1)_{X_{n}} \times G_{\mathrm{SM}_{\mathrm{q}}}}{\mathbb{Z}_{n}} \right) \text{ for even } n. \tag{5}$$

For odd n, there is a shared common subgroup \mathbb{Z}_2^F between Spin and $\mathrm{U}(1)_{X_n}$.

For even n, there is no shared common subgroup \mathbb{Z}_2^F between Spin and $\mathrm{U}(1)_{X_n}$.

Therefore, this spacetime-internal symmetry (5) is faithful.

Higher form symmetries and higher classifying spaces

In general, for an n-dimensional theory, there is an n-group \mathbb{G} of invertible defects in this theory whose objects are a single object, and k-morphisms are codimension k invertible defects.

Here,

 $\{ \text{codimension } k \text{ invertible defects} \} = (k-1) \text{-form symmetry for } k=1,2,\ldots,n.$

A p-form symmetry G on a manifold M is characterized by a map $M \to \operatorname{B}^{p+1}G$. Throughout this talk, all fields of a p-form symmetry G (defined as a differential form or a cohomology class) are pulled back to M via the classifying map $M \to \operatorname{B}^{p+1}G$.

For a topological group G, recursively define higher classifying spaces:

$$B^nG = B(B^{n-1}G), \quad B^0G = G.$$

 B^nG corresponds to the *n*-fold iterated classifying space of G.

Spacetime-internal symmetries of SM

For a pure G gauge theory, electric 1-form symmetry = Z(G) (the center of G), magnetic 1-form symmetry $= \operatorname{Hom}(\pi_1(G), \operatorname{U}(1))$ (characters of $\pi_1(G)$).

	$Z(G_{\rm SM_q})$	$\pi_1(G_{\mathrm{SM}_{\mathrm{q}}})^{v}$	1-form e sym $G_{[1]}^e$	1-form m sym $G_{[1]}^m$
$G_{\mathrm{SM}_{\mathrm{q}}} \equiv rac{\mathrm{SU}(3) imes \mathrm{SU}(2) imes \mathrm{U}(1)_{\tilde{Y}}}{\mathbb{Z}_{\mathrm{q}}}$	$\mathbb{Z}_{6/\mathrm{q}} \times \mathrm{U}(1)$	U(1)	$\mathbb{Z}^e_{6/ ext{q,[1]}}$	$\mathrm{U}(1)_{[1]}^{m}$

q = 1, 2, 3, 6.

Gauged:

$$G_{\mathrm{SM}_{\mathbf{q}}}^{\prime\mathrm{U}(1)\chi_{n}} \equiv \mathrm{Spin} \times_{\mathbb{Z}_{2}^{\mathrm{F}}} \frac{\mathrm{U}(1)\chi_{n}}{\mathbb{Z}_{n}} \times \mathbb{Z}_{6/\mathbf{q},[1]}^{e} \times \mathrm{U}(1)_{[1]}^{m} \text{ for odd } n,$$

$$G_{\mathrm{SM}_{\mathbf{q}}}^{\prime\mathrm{U}(1)\chi_{n}} \equiv \mathrm{Spin} \times \frac{\mathrm{U}(1)\chi_{n}}{\mathbb{Z}_{n}} \times \mathbb{Z}_{6/\mathbf{q},[1]}^{e} \times \mathrm{U}(1)_{[1]}^{m} \text{ for even } n. \tag{7}$$

0-symmetry and 1-symmetry of the SM

The 0-symmetry and 1-symmetry of the SM are given by

$$(G_{[0]}, G_{[1]}) = (G_{[0]}, G_{[1]}^e \times G_{[1]}^m)$$

$$= \left(\begin{cases} \operatorname{Spin} \times_{\mathbb{Z}_{1}^{F}} \frac{\operatorname{U}(1)_{X_{n}}}{\mathbb{Z}_{n}} = \operatorname{Spin}^{c}, & n \in \mathbb{Z} \text{ odd} \\ \operatorname{Spin} \times \frac{\operatorname{U}(1)_{X_{n}}}{\mathbb{Z}_{n}} = \operatorname{Spin} \times \operatorname{U}(1), & n \in \mathbb{Z} \text{ even} \end{cases},$$

$$\mathbb{Z}_{6/q,[1]}^e \times \operatorname{U}(1)_{[1]}^m \right). \tag{8}$$

Topological response of the SM

We shall focus on the topological response in the form

$$\int_{M^4} \frac{\sigma_n}{2\pi} B_m \, \mathrm{d}A_{X_n} \tag{9}$$

and the fractional $\sigma_n(\mathbf{q},k)$ with (\mathbf{q},k) -dependence of the SM gauge group. Here, M^4 is a closed 4-manifold, $A_{X_n}\in\Omega^1(\mathrm{B}(\frac{\mathrm{U}(1)_{X_n}}{\mathbb{Z}_{\mathrm{lcm}(2,n)}}),\mathbb{R})$ is the background gauge field of the $\frac{\mathrm{U}(1)_{X_n}}{\mathbb{Z}_{\mathrm{lcm}(2,n)}}$ symmetry, $B_m\in\Omega^2(\mathrm{B}^2\mathrm{U}(1),\mathbb{R})$ is the background gauge field of the magnetic 1-form $\mathrm{U}(1)_{[1]}^m$ symmetry of the SM, and $k=k^e\in\mathbb{Z}_{6/\mathrm{q}}$ is the **symmetry fractionalization class** of the 0-form symmetry $G_{[0]}$ and the electric 1-form symmetry $G_{[1]}^e$.

Topological response of the SM-1st contribution

The 1st contribution $\frac{q(1-n)\gcd(2,n)}{2n}$ of the SM's σ_n response is obtained from $\int_{M^4} B_m F$ where F is the fractional part of

$$\star J_m^{(2)} = q \frac{\mathrm{d}a_{\tilde{Y}}}{2\pi} \tag{10}$$

[Gaiotto-Kapustin-Seiberg-Willett, arXiv: 1412.5148] due to the coupling $\int_{M^4} B_m \star J_m^{(2)}$ where $J_m^{(2)}$ is the 2-form current of the magnetic 1-form symmetry $\mathrm{U}(1)_{[1]}^m$ without turning on the background gauge field B_e of the electric 1-form symmetry $\mathbb{Z}_{6/\mathrm{q},[1]}^e$.

Here, $a_{\tilde{Y}}$ is the dynamical gauge field of the $\mathrm{U}(1)_{\tilde{Y}}$ symmetry.

Topological response of the SM-1st contribution

Here, we have used the gauge bundle constraint of the ungauged SM (5):

$$\frac{\mathrm{d}a_{\tilde{Y}}}{2\pi} = \frac{1}{\mathsf{lcm}(2,n)} \frac{\mathrm{d}A_{X_n}}{2\pi} - \frac{\mathsf{gcd}(2,n)}{2} w_2(TM) + \frac{1}{\mathsf{q}} w_2^{(\mathsf{q})} \mod 1 \qquad (11)$$

and the gauge bundle constraint of the gauged SM for odd n (7):

$$w_2(TM) = \frac{\mathrm{d}A_{X_n}}{2\pi} \mod 2. \tag{12}$$

Here, $w_2(TM)$ is the second Stiefel-Whitney class of the tangent bundle which is the obstruction class to lifting a $\frac{\mathrm{Spin}}{\mathbb{Z}_2^{\mathrm{F}}}$ bundle to a Spin bundle, and $w_2^{(q)}$ is the obstruction class to lifting a $\frac{\mathrm{SU}(3)\times\mathrm{SU}(2)}{\mathbb{Z}_q}$ bundle to a $\mathrm{SU}(3)\times\mathrm{SU}(2)$ bundle.

Topological response of the SM-2nd contribution

By turning on the background gauge field B_e for the electric 1-form $\mathbb{Z}^e_{6/\mathrm{q},[1]}$ symmetry, there is a mixed anomaly [Gaiotto-Kapustin-Seiberg-Willett, arXiv: 1412.5148]

$$\int_{M^5} -\frac{1}{2\pi} \tilde{B}_e \, \mathrm{d}B_m \tag{13}$$

of the electric $\mathbb{Z}^e_{6/q,[1]}$ 1-form symmetry and the magnetic $\mathrm{U}(1)^m_{[1]}$ 1-form symmetry of the Standard Model for q=1,2,3,6 where $\tilde{B}_e=\frac{2\pi}{6/q}B_e$ and M^4 is the boundary of the 5-manifold M^5 .

Topological response of the SM-2nd contribution

We will derive the constraint

$$f_k^* \tilde{\mathcal{B}}_e = \frac{k}{6/q} dA_{X_n} \tag{14}$$

for the symmetry fractionalization of the 0-form $G_{[0]}$ symmetry and the 1-form electric $G_{[1]}^e=\mathbb{Z}_{6/q,[1]}^e$ symmetry of the gauged Standard Model. Here, $k\in\mathbb{Z}_{6/q}=\mathsf{H}^2(\mathrm{B}G_{[0]},G_{[1]}^e)$ is represented by the map

 $f_k: \mathrm{B}G_{[0]} \to \mathrm{B}^2G_{[1]}^e.$

To cancel the anomaly $\int_{M^5} -\frac{1}{2\pi} \tilde{B}_e \, \mathrm{d}B_m$, we need to add $\int_{M^4} \frac{1}{2\pi} \frac{k}{6/\mathrm{q}} B_m \, \mathrm{d}A_{X_n}$ in the Standard Model Lagrangian. The total topological response is $\int_{M^4} \frac{\sigma_n}{2\pi} B_m \, \mathrm{d}A_{X_n}$ where

$$\sigma_n = \frac{\mathrm{q}(1-n)\mathrm{gcd}(2,n)}{2n} + \frac{k\mathrm{q}}{6} \mod 1. \tag{15}$$

For the 4d SM, there is a 2-group $\mathbb G$ of invertible defects whose objects are a single object, 1-morphisms are the 0-form symmetry, and 2-morphisms are the 1-form symmetry.

The 0-form symmetry $G_{[0]}$ of the 4d SM can be viewed as a 1-group whose objects are a single object, and 1-morphisms are the 0-form symmetry.

Symmetry fractionalization means that there is a homomorphism from $G_{[0]}$ to \mathbb{G} , or there is a map from $\mathrm{B}G_{[0]}$ to $\mathrm{B}\mathbb{G}$.

Thanks to Liang Kong and Zhi-Hao Zhang for their insightful discussions.

We consider the following symmetry extension of the 0-form symmetry $G_{[0]}$ by the 1-form symmetry $G_{[1]}$ in terms of $B\mathbb{G}$ fibration over $BG_{[0]}$ with fiber $B^2G_{[1]}$:

$$B^{2}G_{[1]} \xrightarrow{i} B\mathbb{G} \xrightarrow{p} BG_{[0]}$$
 (16)

where \mathbb{G} is the total symmetry.

In general, there is a homomorphism $\rho: \pi_1(\mathrm{B}G_{[0]}) \to \mathrm{Aut}(G_{[1]})$ as a twist. In our SM case, since $\pi_1(\mathrm{B}G_{[0]}) = \pi_0(G_{[0]}) = 0$, our specific $\rho: \pi_1(\mathrm{B}G_{[0]}) \to \mathrm{Aut}(G_{[1]})$ is trivial here. We may denote $\rho = 0$.

For topological spaces X and Y, [X, Y] denotes the set of homotopy classes of maps from X to Y.

Since (16) is a fibration with cofiber $\mathrm{B}^3G_{[1]}$, it induces a long exact sequence of groups

$$\cdots \to [\mathrm{B}G_{[0]},\mathrm{B}^2G_{[1]}] \xrightarrow{i_*} [\mathrm{B}G_{[0]},\mathrm{B}\mathbb{G}] \xrightarrow{\rho_*} [\mathrm{B}G_{[0]},\mathrm{B}G_{[0]}] \xrightarrow{[\beta]_*} [\mathrm{B}G_{[0]},\mathrm{B}^3G_{[1]}] \xrightarrow{\rho_*} [\mathrm{B}G_{[0]},\mathrm{B}G_{[0]}] \xrightarrow{i_*} [\mathrm{B}G_{[0]},\mathrm{B}G_{[0]}] \xrightarrow{\rho_*} [\mathrm{B}G_{[0]},\mathrm{B}G_{[0]}$$

where $[\beta]$ is the Postnikov class classifying the symmetry extension (16). So the lifting (dashed arrow) in the following diagram

$$\begin{array}{ccc}
B^{2}G_{[1]} & \xrightarrow{i} & B\mathbb{G} \\
\downarrow & & \downarrow & \downarrow \\
BG_{[0]} & \xrightarrow{id} & BG_{[0]} & \xrightarrow{[\beta]} & B^{3}G_{[1]}
\end{array}$$
(18)

exists if and only if $[\beta] = 0$.

Two different liftings in the diagram (18) have the same image under p_* , so their difference belongs to the kernel of p_* , hence the image of i_* . Fix a lifting in the diagram (18), other liftings in the diagram (18) differ from the fixed lifting by $[BG_{[0]}, B^2G_{[1]}]$, so the set of liftings in the diagram (18) is a $[BG_{[0]}, B^2G_{[1]}]$ -torsor, namely, $[BG_{[0]}, B^2G_{[1]}]$ acts on the set of liftings in the diagram (18) simply transitively.

A **symmetry fractionalization** of the 0-form symmetry $G_{[0]}$ and the 1-form symmetry $G_{[1]}$ is a lifting in the diagram (18), and the symmetry fractionalization is classified by a homotopy class

$$k \in [BG_{[0]}, B^2G_{[1]}].$$
 (19)

The obstruction class to the symmetry fractionalization is

$$[\beta] \in [BG_{[0]}, B^3G_{[1]}].$$
 (20)

The 0-form symmetry and 1-form symmetry are classified by

$$f_{[0]}: M \to \mathcal{B}G_{[0]}$$
 (21)

and

$$f_{[1]}: M \to \mathrm{B}^2 G_{[1]}$$
 (22)

respectively. The symmetry fractionalization is a map

$$g: BG_{[0]} \to B^2G_{[1]}$$
 (23)

such that

$$g \circ f_{[0]} = f_{[1]}.$$
 (24)

The electric Postnikov class

$$[\beta^e] \in [BG_{[0]}, B^3G_{[1]}^e]_{\rho} = H_{\rho}^3(BG_{[0]}, G_{[1]}^e) = 0$$
 (25)

is trivial, namely $[\beta^e] = 0$. Because $[\beta^e] = 0$, we can define the symmetry fractionalization class k^e in the electric sector.

The magnetic Postnikov class

$$[\beta^m] \in [BG_{[0]}, B^3G_{[1]}^m]_{\rho} = H_{\rho}^4(BG_{[0]}, \mathbb{Z}) = \mathbb{Z}^2$$
 (26)

may be a nontrivial obstruction class. If $[\beta^m] \neq 0$ is nontrivial, we will not be able to define the symmetry fractionalization class k^m in the magnetic sector later.

Electric $k^e \in [\mathbf{B}G_{[0]}, \mathbf{B}^2G_{[1]}^e]_{\rho}$:

Thus, the symmetry fractionalization in the electric sector

$$k^e \in [BG_{[0]}, B^2G_{[1]}^e]_{\rho} = H_{\rho}^2(BG_{[0]}, G_{[1]}^e) = \mathbb{Z}_{6/q}$$
 (27)

can be defined, because the obstruction $[\beta^e] = 0$.

Magnetic $k^m \in [BG_{[0]}, B^2G_{[1]}^m]_{\rho}$:

If $[\beta^m] \neq 0$ is nontrivial in eq. (26), the symmetry fractionalization is not defined.

If $[\beta^m]=0$ is trivial in eq. (26), the symmetry fractionalization in the magnetic sector $k^m\in[\mathrm{B} G_{[0]},\mathrm{B}^2 G_{[1]}^m]_{\rho}=\mathrm{H}^3_{\rho}(\mathrm{B} G_{[0]},\mathbb{Z})=0$ is trivial.

The symmetry fractionalization $k=k^e\in\mathbb{Z}_{6/\mathrm{q}}$ requires the following constraint between the background fields of electric 1-form symmetry $G^e_{[1]}=\mathbb{Z}^e_{6/\mathrm{q},[1]}$ and the 0-form symmetry $G_{[0]}$:

$$f_k^* \tilde{\mathcal{B}}_e = \frac{k}{6/q} dA_{X_n} \tag{28}$$

Here $\tilde{B}_e=\frac{2\pi}{6/q}B_e$, with $B_e\in H^2(B^2\mathbb{Z}_{\frac{6}{q}},\mathbb{Z}_{\frac{6}{q}})=\mathbb{Z}_{\frac{6}{q}}$ is the background gauge field of the electric 1-form $\mathbb{Z}_{6/q,[1]}^e$ symmetry of the SM, while $A_{X_n}\in\Omega^1(B(\frac{\mathrm{U}(1)x_n}{\mathbb{Z}_{\mathrm{lcm}(2,n)}}),\mathbb{R})$ is the background gauge field of the $\frac{\mathrm{U}(1)x_n}{\mathbb{Z}_{\mathrm{lcm}(2,n)}}$ symmetry, and $k\in\mathbb{Z}_{6/q}=H^2(BG_{[0]},G_{[1]}^e)$ is represented by the map $f_k:BG_{[0]}\to B^2G_{[1]}^e$.

Conclusion

Our topological response result of the SM is

$$\sigma_n = \sigma_n(\mathbf{q}, k) = \frac{\mathbf{q}(1 - n)\gcd(2, n)}{2n} + \frac{k\mathbf{q}}{6} \mod 1.$$
 (29)

For a fixed n specified by the X_n global symmetry, the $\sigma_n(\mathbf{q},k)$ can uniquely determine the SM gauge group for $\mathbf{q}=1,2,3,6$ and its fractionalization class k, if and only if

$$n \ge 7$$
 and $n \ne 10, 12, 15, 30$.

Moreover, by choosing a pair of n=2 and 3 together, then we can further uniquely discern $SM_{(q,k)}$ by measuring both of their σ_2 and σ_3 . Similarly, pairs of σ_{n_1} and σ_{n_2} with

$$(n_1, n_2) = (2,3), (2,5), (3,4), (3,5), (4,5), \ldots$$
, etc.,

all such pairs can discern $SM_{(q,k)}$.

Conclusion

$\sigma_n(\mathbf{q}, \mathbf{k} \in \mathbb{Z}_{6/\mathbf{q}})$	q = 1	q = 2	q = 3	q = 6	discernible
n = 1	$\left\{0,\frac{1}{6},\frac{1}{3},\frac{1}{2},\frac{2}{3},\frac{5}{6}\right\}$	$\left\{0, \frac{1}{3}, \frac{2}{3}\right\}$	$\{0, \frac{1}{2}\}$	{0}	No
n=2	$\left\{\frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 0, \frac{1}{6}, \frac{1}{3}\right\}$	$\left\{0, \frac{1}{3}, \frac{2}{3}\right\}$	$\{\frac{1}{2}, 0\}$	{0}	No
n = 3	$\left\{\frac{2}{3}, \frac{5}{6}, 0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}\right\}$	$\left\{\frac{1}{3}, \frac{2}{3}, 0\right\}$	$\{0, \frac{1}{2}\}$	{0}	No
n = 4	$\left\{\frac{1}{4}, \frac{5}{12}, \frac{7}{12}, \frac{3}{4}, \frac{11}{12}, \frac{1}{12}\right\}$	$\left\{\frac{1}{2}, \frac{5}{6}, \frac{1}{6}\right\}$	$\left\{ \frac{3}{4}, \frac{1}{4} \right\}$	$\left\{\frac{1}{2}\right\}$	No
n = 5	$\left\{ \frac{3}{5}, \frac{23}{30}, \frac{14}{15}, \frac{1}{10}, \frac{4}{15}, \frac{13}{30} \right\}$	$\left\{\frac{1}{5}, \frac{8}{15}, \frac{13}{15}\right\}$	$\left\{\frac{4}{5}, \frac{3}{10}\right\}$	$\left\{\frac{3}{5}\right\}$	No
n = 6	$\left\{\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 0\right\}$	$\left\{\frac{1}{3}, \frac{2}{3}, 0\right\}$	$\{\frac{1}{2},0\}$	{0}	No
n = 7	$\left\{\frac{4}{7}, \frac{31}{42}, \frac{19}{21}, \frac{1}{14}, \frac{5}{21}, \frac{17}{42}\right\}$	$\left\{\frac{1}{7}, \frac{10}{21}, \frac{17}{21}\right\}$	$\left\{\frac{5}{7}, \frac{3}{14}\right\}$	$\left\{\frac{3}{7}\right\}$	Yes
n = 8		$ \begin{cases} \frac{1}{7}, \frac{10}{21}, \frac{17}{21} \\ \frac{1}{4}, \frac{7}{12}, \frac{11}{12} \end{cases} $	$\{\frac{3}{8}, \frac{7}{8}\}$	$\left\{\frac{3}{4}\right\}$	Yes
n = 9	$\left\{\frac{5}{9}, \frac{13}{18}, \frac{8}{9}, \frac{1}{18}, \frac{2}{9}, \frac{7}{18}\right\}$	$\{\frac{1}{6}, \frac{4}{6}, \frac{7}{6}\}$	$\left\{\frac{2}{3}, \frac{1}{6}\right\}$	$\left\{\frac{1}{3}\right\}$	Yes
n = 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left\{\frac{1}{5}, \frac{8}{15}, \frac{13}{15}\right\}$	$\left\{\frac{3}{10}, \frac{4}{5}\right\}$	$\left\{\frac{3}{5}\right\}$	No
n = 11	$ \begin{cases} \frac{1}{8}, \frac{7}{24}, \frac{1}{24}, \frac{3}{8}, \frac{19}{24}, \frac{52}{24} \\ \frac{5}{9}, \frac{13}{18}, \frac{8}{9}, \frac{18}{18}, \frac{2}{18}, \frac{7}{18} \\ \frac{1}{10}, \frac{4}{15}, \frac{13}{30}, \frac{3}{5}, \frac{23}{30}, \frac{14}{15} \\ \frac{6}{11}, \frac{47}{66}, \frac{29}{33}, \frac{7}{22}, \frac{7}{33}, \frac{56}{66} \end{cases} $	$\left\{\frac{1}{11}, \frac{14}{33}, \frac{25}{33}\right\}$	$\left\{\frac{7}{11}, \frac{3}{22}\right\}$	$\left\{\frac{3}{11}\right\}$	Yes
n = 12	$\left\{\frac{1}{12}, \frac{1}{4}, \frac{5}{12}, \frac{7}{12}, \frac{3}{4}, \frac{11}{12}\right\}$	$\left\{\frac{1}{6}, \frac{1}{2}, \frac{5}{6}\right\}$	$\left\{\frac{1}{4}, \frac{3}{4}\right\}$	$\left\{\frac{1}{2}\right\}$	No

Summary and future directions

- Introduced a new integer series of global $U(1)_{X_n}$ symmetries of the SM.
- Considered the topological response of the SM involving the 0-form symmetry and the magnetic 1-form symmetry of the gauged SM. Two contributions: one from the gauge bundle constraints and another from the symmetry fractionalization of the 0-form symmetry and the electric 1-form symmetry.
- Explained the symmetry fractionalization.
- Discerned the SM gauge group via the topological responses.
- Investigate potential symmetry extensions.
- Consider baryon plus lepton and other discrete symmetries.
- Experimentally measure the topological responses.

Thank You!