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•How to generate?  1. Modify the Hamiltonian, 2. A unitary operator on the ground state
• Not necessarily the energy eigenstate 
• Good enough if maintaining its form for an amount of time 

Defects can share many of these properties
• Low entanglement (area law since modified Hamiltonian has a gap)

A unified definition for excitations/defects ? Especially, those with low entanglement. 
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1d excitations 
Hamiltonian modified  

along a loop 
2d FDLU

Low entanglement excitations
Line excitations created by 2d FDQC



e

m

2D FDLU ("pump" unitary) 

...

e

e
0

R(XeZe0)

Step 1 Step 2
e

e
0

R(YeYe0)

Step 3
e

e
0

R(XeZe0)

R(O) = e
�i

⇡
4O

e

m
1D linear depth sequential circuit 

Tantivasadakarn-Chen, 2023 Barkarshli et al, 2023

1 N· · · f · · ·

QN�1
f=1 R(Bf+1)R(Uf)

Xf Bf = Z ZUf =

Z

f
Z

Z

e-m exchange defect in toric code

Line defect exchanging anyons

2d toric code

Low entanglement excitations



Low entanglement excitations

Chen-Dua-Hermele-Stephen-Tantivasadakarn-Vanhove-Zhao, 2023

2d symmetric state

1d GHZ state (SSB) R(O) = e−i π
4 O

|⋯000⋯⟩ + |⋯111⋯⟩

Line defect in a trivial product state

| + ⟩⊗N

Schon-Solano-Verstraete-Cirac-Wolf, 2005; Ho-Hsieh, 2019

ZiZi+1 → Xi

Xi → Zi−1Zi

1D sequential circuit 



Classifying Low entanglement excitations?



Low entanglement excitations

2d  paramagnetℤ2Ground state 

Excitations
0d

1d

 charge (1d FDLU) ℤ2

SSB state (1d SQC)

2d symmetric state

1d GHZ state (SSB) 

R(O) = e−i π
4 O

What about an entangled ground state? 

All excitations in a 2d trivial product state
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2d  paramagnetℤ2

 chargeℤ2

1d  SSBℤ2
1d SQC

2d  SPTℤ2

 chargeℤ2

1d  SSBℤ2
1d SQC

1d FDLU 1d FDLU

Ground state
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O(Ωk) UO(Ωk)U−1 = O′￼(Ω′￼k)

• Symmetric operators have one-to-one correspondence, including LEE

Else-Nayak, 2016
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Example   1d Kitaev chain (fermion parity symmetry)

translate majorana fermions 
by one site

Locality preserving unitary 
(Quantum cellular automaton)

• Symmetric operators have one-to-one correspondence, including LEE

χ χ′￼ χ χ′￼ χ χ′￼ χ χ′￼ χ χ′￼ χ χ′￼ χ χ′￼ χ χ′￼

SPT entangler approach does not apply to examples such as  superconductorp + ip

Bulk excitations in an Invertible phase



Arguement using "Symmetry TO/TFT"
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Claim: Low entanglement excitations in an invertible phase and those in a product state 
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Step 1: Compare Boundaries of topological orders 

Step 2: An invertible phase using "sandwich construction"  

FDLU  
Topological order 

A boundary A "twisted" boundary 

Topological order 

Topological order 

A boundary A "twisted" boundary 

Topological order 

B boundary B boundary 

a trivial state a non-trivial invertible state
Step 3: Compare excitations

Arguement using "Symmetry TO/TFT"
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m m

Toric code

Emergent symmetry in toric code bulk:
anyon exchange symmetry  e ↔ m

...

e

e
0

R(XeZe0)

Step 1 Step 2
e

e
0

R(YeYe0)

Step 3
e

e
0

R(XeZe0)

R(O) = e
�i

⇡
4O

e

m

Barkeshili et al, 2022



U: Sweeping the e-m exchange defect  
2d FDQC

2d Toric Code 2d Toric Code

 Topological order with a boundary
 condensede  condensedm

Barkeshili et al, 2022

U generates an  emergent symmetry 
only modify the boundary terms non-trivially

ℤ2

...

e

e
0

R(XeZe0)

Step 1 Step 2
e

e
0

R(YeYe0)

Step 3
e

e
0

R(XeZe0)

R(O) = e
�i

⇡
4O

e

m
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 Topological order with a boundary

 condensede  condensedm

2d Toric Code

Non-trivial domain wall: no local unitary can remove it 

 string operatore

 string  
operator
m

There is a logical qubit. 

Relative distinction



 Topological order with a boundary

 condensedm

Sweep invertible line defect  emergent symmetry of the bulk  change boundary types ⟶ ⟶
generated by FDQC only relatively distinguishable

Boundaries related by bulk FDQC are "twins". 

 condensede

Toric Code Toric Code
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Example II
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(3d FDQC) 

Barkeshli-Chen-Hsin-Kobayashi, 2022;  
WJ-Tantivasadakarn-Xu, 2023

3d Toric Code 3d Toric Code

 Topological order with a boundary
Example II

Sweep the "gauged  SPT" defect ℤ2Emergent  symmetry:ℤ2

 in ground state subspace[U, Htc] = 0



- flux condensedm twisted - flux condensedm

3d Toric Code

No absolute distinction

 Topological order with a boundary

3d FDQC 
Sweep the "gauged  SPT" defect ℤ2

O(Ωk)

3d Toric Code

UO(Ωk)U−1 = O′￼(Ω′￼k)



Relative distinction
θ = − 1
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Example III

No absolute distinction

- flux condensedm

fermionic Toric Code

twisted - flux condensedm

fermionic Toric Code

Sweep the "p+ip" defect 

Hastings-Fidkowski, 2023 

3d FDQLU preserving (−1)F



Relative distinction
 defect (coupled to bulk gauge field)p + ipchiral majorana mode



FDQC  Topological order 

A boundary A "twisted" boundary 

Topological order 
Relatively 
distinct

generate emergent symmetry 
in the bulk 



Step 1: 

Step 2: An invertible phase using "Symmetry TO/TFT" and compare excitations 

FDQC  

Topological order 

A boundary A "twisted" boundary 

Topological order 

Relatively 
distinct

Arguement using "Symmetry TO/TFT"



Invertible phases from symmetry TO/TFT construction

any dynamics of anyons

top: e condensed

2d Toric Code

1d system with  symmetryℤ2

"squash"

topological holography,  
topological symmetry,  

"sandwich construction" 
⋯

Topological order

Boundary: symmetric sector of  
d-1 dimensional system  
with a global symmetry 

e

e

quasi-local operator

WJ-Wen, 2019;  Freed-Moore-Teleman, 2021;  Kong, et al, 2020; Kulp, 2020; Apruzzi, et al, 2021 …Lichtman, et al, 2020;
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Invertible phases from symmetry TO/TFT construction

WJ-Wen, 2019;  Freed-Moore-Teleman, 2021;  Kong, et al, 2020; Kulp, 2020; Apruzzi, et al, 2021 …Lichtman, et al, 2020;

bottom:  condensede

top:  condensede

2d Toric Code

1d system with  symmetryℤ2

"squash"

symmetry breaking



Invertible phases from symmetry TO/TFT construction

top:  condensedf

2d Toric Code

P �
f

Z

Z Z

Z

XeSe

Z

Gf

Z

Z Z

Z

P �
f

Z

Pγ
f = − iγf γ′￼f Se = iγ′￼eL

γeR
X

X

Y
Y

Z

Zf

Gf =



Invertible phases from symmetry TO/TFT construction

any dynamics of anyons

top:  condensedf

2d Toric Code

1d system with  symmetryℤF
2

"squash"

f

f
Z

Z

Z

XeSe

XeSe

X

Z
�0
f+x̂i�0

f

ZXZ

# # #

-condensed boundaryf
XeSe

Z

Z

Z

#

i⌘0j�
0
j i⌘k⌘0k+x̂ (i⌘0f�

0
f )(i⌘

0
f+x̂�

0
f+x̂) i⌘h⌘0h
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e condensed

top: f condensed

2d Toric Code

1d system with  symmetryℤf
2

"squash"

m condensed

top: f condensed

2d Toric Code

1d system with  symmetryℤf
2

"squash"

em exchange defect  

• Only using Hamiltonians, and symmetric operators, one cannot distinguish two phases. 

• Symmetric operators have one-to-one correspondence

• Low entanglement excitations of the two have one-to-one correspondence

(i) trivial superconductor     (ii) Kitaev chain 
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top:  condensede

3d Toric Codes

2d system with  symmetryℤ2

"squash"

symmetric phase

twisted flux loop condensed

top:  condensede

3d Toric Codes
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SPT phase
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Invertible phases from symmetry TFT construction

flux loop condensed

top:  condensede

3d Toric Codes

2d system with  symmetryℤ2

"squash"

symmetric phase

twisted flux loop condensed

top:  condensede

3d Toric Codes

2d system with  symmetryℤ2

"squash"

SPT phase

"gauged  SPT defectℤ2

• Only using Hamiltonians, and symmetric operators, one cannot distinguish two phases. 

• Symmetric operators have one-to-one correspondence

• Low entanglement excitations of the two have one-to-one correspondence

twisted by FDQC  



- flux condensedm

top: fermion condensed

3d fermionic Toric Code

"Sandwiches" with fermionic Toric Code

2d phase with fermion parity symmetry

trivial superconductor

twisted - flux condensedm

top: fermion condensed

3d fermionic Toric Code

2d phase with fermion parity symmetry

 superconductorp + ip

 defectp + ip

"squash" "squash"



2d trivial superconductor  superconductorp + ip

non-trivial 
defect/excitation

0d

1d

single fermion

a Kitaev chain defect

single fermion

fermion parity twist line
1d SQC

1d QC 1d QC

1d SQC

non-trivial 
defect/excitation

0d

1d

2d  paramagnetℤ2

 chargeℤ2

1d  SSBℤ2
1d SQC

2d  SPTℤ2

 chargeℤ2

1d  SSBℤ2
1d SQC

1d FDLU 1d FDLU



SPTs, Kitaev chain,  superconductorp + ip

• Higher form SPTs

• Non-invertible defects

• Implications for dynamics
…

• Integer quantum Hall

Conclusion & Further questions
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Low entanglement excitations in an invertible phase and those in a product state 



SPTs, Kitaev chain,  superconductorp + ip

• Higher form SPTs

• Non-invertible defects

• Implications for dynamics
…

• Integer quantum Hall

Conclusion & Further questions

Thank you !

have a one-to-one correspondence   
Low entanglement excitations in an invertible phase and those in a product state 




