

Generalized symmetries in HEP and CMP

Low Entanglement Excitations in Invertible phases

Wenjie Ji

July 2025

arXiv:2506.11288 with

David Stephen
University of Colorado, Boulder
→ Quantinuum

Michael Levin
University of Chicago

Xie Chen
Caltech

Domain wall in Ising Ferromagetic phase

Flux loop in deconfined phase of G gauge theories (G topological order)

Flux loop in G gauge theories

• How to generate? 1. Modify the Hamiltonian, 2. A unitary operator on the ground state

Flux loop in G gauge theories

- How to generate? 1. Modify the Hamiltonian, 2. A unitary operator on the ground state
- Not necessarily the energy eigenstate

Flux loop in G gauge theories

- How to generate? 1. Modify the Hamiltonian, 2. A unitary operator on the ground state
- Not necessarily the energy eigenstate
- Good enough if maintaining its form for an amount of time

Flux loop in G gauge theories

- How to generate? 1. Modify the Hamiltonian, 2. A unitary operator on the ground state
- Not necessarily the energy eigenstate
- Good enough if maintaining its form for an amount of time
- Low entanglement (area law since modified Hamiltonian has a gap)

Flux loop in G gauge theories

e-m exchange defect in toric code

- How to generate? 1. Modify the Hamiltonian, 2. A unitary operator on the ground state
- Not necessarily the energy eigenstate
- Good enough if maintaining its form for an amount of time
- Low entanglement (area law since modified Hamiltonian has a gap)

 Defects can share many of these properties

Flux loop in G gauge theories

e-m exchange defect in toric code

- How to generate? 1. Modify the Hamiltonian, 2. A unitary operator on the ground state
- Not necessarily the energy eigenstate
- Good enough if maintaining its form for an amount of time
- Low entanglement (area law since modified Hamiltonian has a gap)

 Defects can share many of these properties

A unified definition for excitations/defects? Especially, those with low entanglement.

Use quantum circuits to create/define k-dimentional excitations

Use quantum circuits to create/define k-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation

• Gapped ground state of the Hamitonian modified only along the excitation

Use quantum circuits to create/define k-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation

- Gapped ground state of the Hamitonian modified only along the excitation
- Equivalence condition?

Use quantum circuits to create/define k-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation

- Gapped ground state of the Hamitonian modified only along the excitation
- Equivalence condition?

Chen-Gu-Wen

Use **quantum circuits** to create/define *k*-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation

- Gapped ground state of the Hamitonian modified only along the excitation
- Two are **equivalent** if related by a **k-dim** (symmetric) **FDQC**.

state A in k-dim

Finite depth quantum circuit in k-dim

Single phase in k-dim

Chen-Gu-Wen

Use **quantum circuits** to create/define *k*-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation

- Gapped ground state of the Hamitonian modified only along the excitation
- Two are equivalent if related by a k-dim (symmetric) FDQC.
- Trivial types are created from bulk ground state by a k-dim (symmetric) FDQC.

Chen-Gu-Wen

Use **quantum circuits** to create/define *k*-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation

- Gapped ground state of the Hamitonian modified only along the excitation
- Two are equivalent if related by a k-dim (symmetric) FDQC.
- Trivial types are created from bulk ground state by a k-dim (symmetric) FDQC.
- Non-trivial ones?

Use **quantum circuits** to create/define *k*-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation

- Gapped ground state of the Hamitonian modified only along the excitation
- Two are equivalent if related by a k-dim (symmetric) FDQC.
- Trivial types are created from bulk ground state by a k-dim (symmetric) FDQC.
- Non-trivial ones?
- i. k+1 dim circuit
- ii. Linear depth circuit

Schon-Solano-Verstraete-Cirac-Wolf, 2005; Ho-Hsieh, 2019

Use **quantum circuits** to create/define *k*-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation

- Gapped ground state of the Hamitonian modified only along the excitation
- Two are equivalent if related by a k-dim (symmetric) FDQC.
- Trivial types are created from bulk ground state by a k-dim (symmetric) FDQC.
- Non-trivial ones?
- i. k+1 dim circuit
- ii. Linear depth circuit

finite depth quantum circuit

linear depth sequential circuit

Schon-Solano-Verstraete-Cirac-Wolf, 2005; Ho-Hsieh, 2019

Chen-Dua-Hermele-Stephen-Tantivasadakarn-Vanhove-Zhao, 2023

Use **quantum circuits** to create/define *k*-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation

- Gapped ground state of the Hamitonian modified only along the excitation
- Two are equivalent if related by a k-dim (symmetric) FDQC.
- Trivial types are created from bulk ground state by a k-dim (symmetric) FDQC.
- Non-trivial types cannot be created by a k-dim (symmetric) FDQC; can be created with a (k+1)-dim (symmetric) quantum circuit, or a k-dim (symmetric) linear depth squential circuit.

1d excitations Hamiltonian modified along a loop 2d FDLU

Line excitations created by 2d FDQC

1d excitations
Hamiltonian modified
along a loop
2d FDLU

1d excitations
Hamiltonian modified
along a loop
2d FDLU

Line defect exchanging anyons

e-m exchange defect in toric code

1D linear depth sequential circuit

$$U_f = \underbrace{\begin{array}{ccc} f & X & B_f = \begin{bmatrix} Z & Z \\ Z & f \end{bmatrix}}_{Z}$$

2D FDLU ("pump" unitary)

Line defect in a trivial product state

1D sequential circuit

Classifying Low entanglement excitations?

1d GHZ state (SSB)

2d symmetric state

All excitations in a 2d trivial product state

Ground state		2d \mathbb{Z}_2 paramagnet	
Excitations	0d	\mathbb{Z}_2 charge (1d FDLU)	
	1d	SSB state (1d SQC)	

What about an entangled ground state?

LEE in an Invertible phase

Claim: Low entanglement excitations in an invertible phase and those in a product state have a one-to-one correspondence.

LEE in an Invertible phase

Claim: Low entanglement excitations in an invertible phase and those in a product state have a one-to-one correspondence.

Ground state		2d \mathbb{Z}_2 paramagnet	2d \mathbb{Z}_2 SPT
Excitations	0d	\mathbb{Z}_2 charge 1d FDLU	\mathbb{Z}_2 charge 1d FDLU
	1d	$\begin{array}{c} \operatorname{1d}\mathbb{Z}_2\operatorname{SSB} \\ \operatorname{1d}\operatorname{SQC} \end{array}$	$\begin{array}{c} \operatorname{1d} \mathbb{Z}_2\operatorname{SSB} \\ \operatorname{1d}\operatorname{SQC} \end{array}$

Claim: Low entanglement excitations in an invertible phase and those in a product state have a one-to-one correspondence.

For many examples, already easy to show.

Example SPT phases

• Symmetric operators have one-to-one correspondence, including LEE

Claim: Low entanglement excitations in an invertible phase and those in a product state have a one-to-one correspondence.

For many examples, already easy to show.

Example 1d Kitaev chain (fermion parity symmetry)

Locality preserving unitary (Quantum cellular automaton)

translate majorana fermions by one site

• Symmetric operators have one-to-one correspondence, including LEE

Claim: Low entanglement excitations in an invertible phase and those in a product state have a one-to-one correspondence.

For many examples, already easy to show.

Example 1d Kitaev chain (fermion parity symmetry)

Locality preserving unitary (Quantum cellular automaton)

translate majorana fermions by one site

• Symmetric operators have one-to-one correspondence, including LEE

SPT entangler approach does not apply to examples such as p + ip superconductor

Claim: Low entanglement excitations in an invertible phase and those in a product state have a one-to-one correspondence.

Arguement using "Symmetry TO/TFT"

Arguement using "Symmetry TO/TFT"

Step 1: Compare Boundaries of topological orders

Emergent symmetry in toric code bulk: anyon exchange symmetry $e \leftrightarrow m$

e condensed

2d Toric Code

m condensed

2d Toric Code

U: Sweeping the e-m exchange defect 2d FDQC

U generates an \mathbb{Z}_2 emergent symmetry only modify the boundary terms non-trivially

No experiments near the boundary can pin down the boundary type.

e condensed

 $O(\Omega^k)$

Toric Code

m condensed

$$UO(\Omega^k)U^{-1} = O'(\Omega^{'k})$$

Toric Code

U: sweeping the e-m exchange defect 2d FDQC

No absolute distinction

No experiments near the boundary can pin down the boundary type.

e condensed

 $O(\Omega^k)$

Toric Code

m condensed

$$UO(\Omega^k)U^{-1} = O'(\Omega^{'k})$$

Toric Code

U: sweeping the e-m exchange defect 2d FDQC

Relative distinction

Sweep invertible line defect \longrightarrow emergent symmetry of the bulk \longrightarrow change boundary types generated by **FDQC** only relatively distinguishable

Boundaries related by bulk FDQC are "twins".

Example II

m- flux condensed

3d Toric Code

Example II

m-flux condensed twisted m-flux condensed

3d Toric Code

3d Toric Code

Example II

m-flux condensed twisted m-flux condensed

3d Toric Code

3d Toric Code

Emergent \mathbb{Z}_2 symmetry: Sweep the "gauged \mathbb{Z}_2 SPT" defect (3d FDQC) $[U, H_{tc}] = 0$ in ground state subspace

Barkeshli-Chen-Hsin-Kobayashi, 2022; WJ-Tantivasadakarn-Xu, 2023

No absolute distinction

m- flux condensed

 $O(\Omega^k)$

3d Toric Code

twisted *m*- flux condensed

 $UO(\Omega^k)U^{-1} = O'(\Omega^{'k})$

3d Toric Code

3d FDQCSweep the "gauged \mathbb{Z}_2 SPT" defect

Relative distinction

$$\theta = -1$$

Example III

m- flux condensed

fermionic Toric Code

(fermionic gauge charge, flux loop)

Example III

m- flux condensed

fermionic Toric Code

twisted *m*- flux condensed

fermionic Toric Code

Sweep the "p+ip" defect

Example III

m- flux condensed

fermionic Toric Code

twisted *m*- flux condensed

fermionic Toric Code

Sweep the "p+ip" defect

3d FDQLU preserving $(-1)^F$

Hastings-Fidkowski, 2023

Example III

No absolute distinction

m- flux condensed

fermionic Toric Code

twisted *m*- flux condensed

fermionic Toric Code

Sweep the "p+ip" defect

3d FDQLU preserving $(-1)^F$

A boundary

Topological order

Relatively distinct

A "twisted" boundary

Topological order

FDQC

generate emergent symmetry in the bulk

Arguement using "Symmetry TO/TFT"

Step 1:

Boundary: symmetric sector of d-1 dimensional system with a global symmetry

topological holography,

topological symmetry,

WJ-Wen, 2019; Lichtman, et al, 2020; Kong, et al, 2020; Kulp, 2020; Freed-Moore-Teleman, 2021; Apruzzi, et al, 2021 ...

quasi-local operator e top: e condensed e 2d Toric Code e any dynamics of anyons e "squash"

1d system with \mathbb{Z}_2 symmetry

WJ-Wen, 2019; Lichtman, et al, 2020; Kong, et al, 2020; Kulp, 2020; Freed-Moore-Teleman, 2021; Apruzzi, et al, 2021 ...

top: e condensed

2d Toric Code

bottom: e condensed

1d system with \mathbb{Z}_2 symmetry

symmetry breaking

WJ-Wen, 2019; Lichtman, et al, 2020; Kong, et al, 2020; Kulp, 2020; Freed-Moore-Teleman, 2021; Apruzzi, et al, 2021 ...

top: f condensed

2d Toric Code

	Z		Z					
Z	P_f^{γ}	Z		X_eS_e			G_f	
	Z		Z		Z			
		P_f^{γ}		Z		Z		
					Z			

$$P_f^{\gamma} = -i\gamma_f \gamma_f'$$
 $S_e = i\gamma_{e_L}' \gamma_{e_R}$ $G_f = X \begin{bmatrix} X & Y & f \ Y & Y \end{bmatrix} Z$

top: f condensed

2d Toric Code

e condensed

"squash"

1d system with \mathbb{Z}_2^f symmetry

symmetric

(i) trivial superconductor (ii) Kitaev chain

	Z		Z					
Z	P_f^{γ}	Z		X_eS_e			G_f	
	Z		Z		Z			
	Z	P_f^{γ}		Z		Z		
Z		Z			Z		P_f^{γ}	

	Z		\overline{Z}					
Z	P_f^{γ}	Z		X_eS_e			G_f	
	Z		Z		Z			
		P_f^{γ}		Z		Z		
X					Z		P_f^{γ}	

(i) trivial superconductor (ii) Kitaev chain

- (i) trivial superconductor (ii) Kitaev chain
- Symmetric operators have one-to-one correspondence
- Low entanglement excitations of the two have one-to-one correspondence
- Only using Hamiltonians, and symmetric operators, one cannot distinguish two phases.

top: e condensed

3d Toric Codes

flux loop condensed

l "squash"

2d system with \mathbb{Z}_2 symmetry symmetric phase

top: e condensed

3d Toric Codes

flux loop condensed

l "squash"

2d system with \mathbb{Z}_2 symmetry symmetric phase

top: e condensed

3d Toric Codes

"gauged \mathbb{Z}_2 SPT defect

twisted flux loop condensed

l "squash"

2d system with \mathbb{Z}_2 symmetry SPT phase

- Symmetric operators have one-to-one correspondence
- Low entanglement excitations of the two have one-to-one correspondence
- Only using Hamiltonians, and symmetric operators, one cannot distinguish two phases.

"Sandwiches" with fermionic Toric Code

top: fermion condensed

3d fermionic Toric Code

m- flux condensed

squash"

2d phase with fermion parity symmetry

trivial superconductor

top: fermion condensed

3d fermionic Toric Code

p + ip defect

twisted *m*- flux condensed

"squash"

2d phase with fermion parity symmetry

p + ip superconductor

		2d trivial superconductor	p + ip superconductor
non-trivial	0d	single fermion 1d QC	single fermion 1d QC
defect/excitation	1d	a Kitaev chain defect 1d SQC	fermion parity twist line 1d SQC

		2d \mathbb{Z}_2 paramagnet	2d \mathbb{Z}_2 SPT
non-trivial	0d	\mathbb{Z}_2 charge 1d FDLU	\mathbb{Z}_2 charge 1d FDLU
defect/excitation	1d	$\begin{array}{c} \operatorname{1d} \mathbb{Z}_2 \operatorname{SSB} \\ \operatorname{1d} \operatorname{SQC} \end{array}$	$\begin{array}{c} \operatorname{1d} \mathbb{Z}_2\operatorname{SSB} \\ \operatorname{1d}\operatorname{SQC} \end{array}$

Conclusion & Further questions

Low entanglement excitations in an invertible phase and those in a product state have a one-to-one correspondence

SPTs, Kitaev chain, p + ip superconductor

- Higher form SPTs
- Integer quantum Hall
- Non-invertible defects
- Implications for dynamics

• • •

Conclusion & Further questions

Low entanglement excitations in an invertible phase and those in a product state have a one-to-one correspondence

SPTs, Kitaev chain, p + ip superconductor

- Higher form SPTs
- Integer quantum Hall
- Non-invertible defects
- Implications for dynamics

• • •

Thank you!

f condensed	f condensed*	f condensed	f condensed
S	S'	S'	S
flux loop condensed	twisted loop condensed	twisted loop condensed	twisted loop condensed
(a)	(b)	(c)	(d)