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« How to generate? 1. Modify the Hamiltonian, 2. A unitary operator on the ground state
« Not necessarily the energy eigenstate
« Good enough if maintaining its form for an amount of time

- Low entanglement (area law since modified Hamiltonian has a gap)
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e-m exchange defect
in toric code

« How to generate? 1. Modify the Hamiltonian, 2. A unitary operator on the ground state

» Not necessarily the energy eigenstate

« Good enough if maintaining its form for an amount of time

- Low entanglement (area law since modified Hamiltonian has a gap)

Defects can share many of these properties



Higher dimensional excitations/defects
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Domain wall Flux loop in G gauge theories e-m exchange defect

in Ising Ferromagetic phase in toric code

« How to generate? 1. Modify the Hamiltonian, 2. A unitary operator on the ground state
« Not necessarily the energy eigenstate
« Good enough if maintaining its form for an amount of time

- Low entanglement (area law since modified Hamiltonian has a gap)

Defects can share many of these properties

A unified definition for excitations/defects ? Especially, those with low entanglement.
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In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation
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Low entanglement excitations

Use quantum circuits to create/define k-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation t 44414144411
 Gapped ground state of the Hamitonian modified only along the excitation 1 1 1 1 1
« Two are equivalent if related by a k-dim (symmetric) FDQC. t 1 + 44
» Trivial types are created from bulk ground state by a k-dim (symmetric) FDQC. 1 1 e 1 1 1

e Non-trivial ones?
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Low entanglement excitations

Use quantum circuits to create/define k-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation O O O O
« Gapped ground state of the Hamitonian modified only along the excitation 1 1 1 1 1
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» Trivial types are created from bulk ground state by a k-dim (symmetric) FDQC. 1 1 Ppt g 1 1 1
e Non-trivial ones? i. k+1 dim circuit  ii. Linear depth circuit

finite depth quantum circuit linear depth sequential circuit

]

[—1 1 1 [ LT

m s | s | s T

s Y s s —

® 6 6 ¢ ¢ ¢ o o ® 6 06 ¢ ¢ ¢ o o

Schon-Solano-Verstraete-Cirac-Wolf, 2005; Ho-Hsieh, 2019
Chen-Dua-Hermele-Stephen-Tantivasadakarn-Vanhove-Zhao, 2023



Low entanglement excitations

Use quantum circuits to create/define k-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation O O O O
« Gapped ground state of the Hamitonian modified only along the excitation 1 1 1 1 1
. Two are equivalent if related by a k-dim (symmetric) FDQC. tt ttt
» Trivial types are created from bulk ground state by a k-dim (symmetric) FDQC. 1 1 Ppt g 1 1 1
e Non-trivial ones? i. k+1 dim circuit  ii. Linear depth circuit

finite depth quantum circuit linear depth sequential circuit
E i coe
i Y e s il
m s I s s Y T
® 6 6 6 6 0 o o ® 06,0 0,06 ¢ o o

Schon-Solano-Verstraete-Cirac-Wolf, 2005; Ho-Hsieh, 2019
Chen-Dua-Hermele-Stephen-Tantivasadakarn-Vanhove-Zhao, 2023



Low entanglement excitations

Use quantum circuits to create/define k-dimentional excitations

In the ground state of a gapped Hamiltonian in d dimensions, a k-dim. excitation + 444444442
» Gapped ground state of the Hamitonian modified only along the excitation 1 1 1 1 1
 Two are equivalent if related by a k-dim (symmetric) FDQC. 4 4 t 44
o Trivial types are created from bulk ground state by a k-dim (symmetric) FDQC. 1 1 44t s 1 1 1

 Non-trivial types cannot be created by a k-dim (symmetric) FDQC; o
1d excitations

Hamiltonian modihed

along a loop
2d FDLU

can be created with a (k+1)-dim (symmetric) quantum circuit,
or a k-dim (symmetric) linear depth squential circuit.
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Low entanglement excitations

Line excitations created by 2d FDQC
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Low entanglement excitations

Line defect exchanging anyons

e-m exchange defect in toric code 2D FDLU ("pump" unitary)
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Low entanglement excitations

Line defect in a trivial product state

1D sequential circuit

1d GHZ state (SSB) R(O) = ¢~50
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Chen-Dua-Hermele-Stephen-Tantivasadakarn-Vanhove-Zhao, 2023



Classifying Low entanglement excitations?



Low entanglement excitations

R(KX)

1d GHZ state (SSB)

2d symmetric state

All excitations in a 2d trivial product state

Ground state 2d Z, paramagnet

m Z 5 charge (1d FDLU)
Excitations
SSB state (1d SQC)

What about an entangled ground state?
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Claim: Low entanglement excitations in an invertible phase and those in a product state
have a one-to-one correspondence.



LEE in an Invertible phase

Claim: Low entanglement excitations in an invertible phase and those in a product state
have a one-to-one correspondence.

Ground state 2d Z, paramagnet 2d Z, SPT
0d Z, charge Z, charge
Fxcifati id FDLU id FDLU
A y 1d Z, SSB 1d Z, SSB
1d SQC 1d SQC




Bulk excitations in an Invertible phase

Claim: Low entanglement excitations in an invertible phase and those in a product state
have a one-to-one correspondence.

For many examples, already easy to show.

"SPT entangler” U ----
Ao -

Example SPT phases

trivial product state

that commutes with

I e
e [ ]
Else-Nayak, 2016
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« Symmetric operators have one-to-one correspondence, including LEE
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Bulk excitations in an Invertible phase

Claim: Low entanglement excitations in an invertible phase and those in a product state
have a one-to-one correspondence.

For many examples, already easy to show.

Example 1d Kitaev chain (fermion parity symmetry)

Locality preserving unitary
(Quantum cellular automaton)

—

XXX XX X)X X translate majorana fermions
by one site

« Symmetric operators have one-to-one correspondence, including LEE

SPT entangler approach does not apply to examples such as p + ip superconductor



Bulk excitations in an Invertible phase

Claim: Low entanglement excitations in an invertible phase and those in a product state
have a one-to-one correspondence.

Arguement using "Symmetry TO/TFT"



Arguement using "Symmetry TO/TFT"

Step 1: Compare Boundaries of topological orders

A boundary A "twisted" boundary

Topological order Topological order

Step 2: An invertible phase using "sandwich construction"

A boundary A "twisted" boundary
Topological order Topological order
B boundary B boundary
¥ v
1 trivial state a non-trivial invertible state

Step 3: Compare excitations



Topological order with a boundary
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Topological order with a boundary
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Toric code Toric code

Emergent symmetry in toric code bulk:

anyon exchange symmetry e < m oL L
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Topological order with a boundary

e condensed m condensed
2d Toric Code 2d Toric Code
€
T T U generates an Z, emergent symmetry
} 4 } TTT7 } T only modify the boundary terms non-trivially

R(X.Z.) R(Y.Ye) R(X.Z) Barkeshili et al, 2022



Topological order with a boundary
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Topological order with a boundary

Relative distinction

Non-trivial domain wall: no local unitary can remove it

e condensed K m condensed .
e —HHGS. e string operator
m string
2d Toric Code operator

There is a logical qubit.



Topological order with a boundary

e condensed m condensed

Toric Code Toric Code

Sweep invertible line defect —> emergent symmetry of the bulk — change boundary types

generated by FDQC only relatively distinguishable

Boundaries related by bulk FDQC are "twins'".
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Topological order with a boundary

Example 11

m-flux condensed twisted m-flux condensed

3d Toric Code 3d Toric Code

Barkeshli-Chen-Hsin-Kobayashi, 2022;
WJ-Tantivasadakarn-Xu, 2023




Topological order with a boundary

Example 11

m-flux condensed twisted m-flux condensed

3d Toric Code 3d Toric Code

Emergent Z, symmetry: Sweep the "gauged Z, SPT" defect (3d FDQC)
U, Hi:] = 0 1n ground state subspace

Barkeshli-Chen-Hsin-Kobayashi, 2022;
WJ-Tantivasadakarn-Xu, 2023



Topological order with a boundary

No absolute distinction

m- flux condensed twisted m- flux condensed

O(Q2%) Uo@QHU! = 0'(Q%

3d Toric Code 3d Toric Code



Relative distinction



Topological order with a boundary

Example 111
m- flux condensed

fermionic Toric Code

(fermionic gauge charge, flux loop)



Topological order with a boundary

Example 111
m- flux condensed twisted m- flux condensed

fermionic Toric Code fermionic Toric Code

Sweep the "p+1p" defect

Hastings-Fidkowski, 2023



Topological order with a boundary

Example 111
m- flux condensed twisted m- flux condensed

fermionic Toric Code fermionic Toric Code
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3d FDQLU preserving (— 1)

Hastings-Fidkowski, 2023



Topological order with a boundary

Example 111

No absolute distinction

m- tlux condensed twisted m- flux condensed

fermionic Toric Code fermionic Toric Code

Sweep the "p+1p" defect

3d FDQLU preserving (— 1)

Hastings-Fidkowski, 2023



Relative distinction hiral mai
chiral majorana mode p + ip defect (coupled to bulk gauge field)



A boundary

Topological order

Relatively

distinct
—ey

A "twisted" boundary

Topological order
FDQC

generate emergent symmetry
in the bulk



Arguement using "Symmetry TO/TFT"

Step 1:

A boundary A "twisted" boundary

Relatively

Topological order distinct

Topological order
-—

Step 2: An invertible phase using "Symmetry TO/TFT" and compare excitations



Invertible phases from symmetry TO/TFT construction

topological holography,
topological symmetry,
"sandwich construction"
quasi-local operator

top: ¢ condensed

2d Toric Code

Topological order

any dynamics of anyons

l "squash"

Boundary: symmetric sector of 1d system with Z, symmetry
d-1 dimensional system
with a global symmetry

WJ-Wen, 2019; Lichtman, et al, 2020; Kong, et al, 2020; Kulp, 2020; Freed-Moore-Teleman, 2021; Apruzzi, et al, 2021 ...



Invertible phases from symmetry TO/TFT construction

quasi-local operator

top: € condensed

Z
2d Toric Code
A
any dynamics of anyons -
Z X
l "squash" | X |7 X Z
¢ J ko k+1
1d system with Z, symmetry v ! !
cZi . QXJ ° ° Lk Zi 1ol

WJ-Wen, 2019; Lichtman, et al, 2020; Kong, et al, 2020; Kulp, 2020; Freed-Moore-Teleman, 2021; Apruzzi, et al, 2021 ...



Invertible phases from symmetry TO/TFT construction

top: e condensed

A
2d Toric Code
A
bottom: e condensed
A X
l "squash" | X |7 X Z
L J k k+1
1d system with Z, symmetry v ! !
QZi * OXJ . ° Zk Zk 1ol

symmetry breaking

WJ-Wen, 2019; Lichtman, et al, 2020; Kong, et al, 2020; Kulp, 2020; Freed-Moore-Teleman, 2021; Apruzzi, et al, 2021 ...



Invertible phases from symmetry TO/TFT construction

top: f condensed P P
2\ P} |z X.S e’
7 7
. 7
2d Toric Code
P} 7 7
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Invertible phases from symmetry TO/TFT construction

f top: f condensed

| | |
f-condensed boundary
2d Toric Code

/ any dynamics of anyons P

X
l "squash" z z

i i77§' )‘;’ ink%+@ (“7} )‘/f) (in}+@ Xf+§;) K1),
1d system with Z; symmetry R T A EA AL



Invertible phases from symmetry TFT construction
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Invertible phases from symmetry TFT construction

top: f condensed top: f condensed
2d Toric Code 2d Toric Code
e condensed m condensed
l "squash” l "squash”
1d system with Zf; symmetry 1d system with Zf; symmetry

(1) trivial superconductor (1) Kitaev chain



Invertible phases from symmetry TFT construction

Z Z Z Z
Z| P} ||z X.S Gy Z| P} |z XS Gy
Z Z Z Z
Z Z
P; Z Z P; Z Z
Z
Z Z
Z Z P} X P

(1) trivial superconductor (1) Kitaev chain



Invertible phases from symmetry TFT construction

top: f condensed top: f condensed
2d Toric Code 2d Toric Code
e condensed m condensed
l "squash” l "squash”
1d system with Zf; symmetry 1d system with Z]; symmetry

(1) trivial superconductor (1) Kitaev chain
« Symmetric operators have one-to-one correspondence

e Low entanglement excitations of the two have one-to-one correspondence

» Only using Hamiltonians, and symmetric operators, one cannot distinguish two phases.



Invertible phases from symmetry TFT construction
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3d Toric Codes

flux loop condensed
l "squash”

2d system with Z, symmetry

symmetric phase
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Invertible phases from symmetry TFT construction

top: e condensed top: e condensed
Sl euClales 3d Toric Codes
flux loop condensed twisted flux loop condensed
l "squash" l "squash”
2d system with Z, symmetry 2d system with Z, symmetry
symmetric phase SPT phase

« Symmetric operators have one-to-one correspondence

e Low entanglement excitations of the two have one-to-one correspondence

» Only using Hamiltonians, and symmetric operators, one cannot distinguish two phases.



"Sandwiches' with fermionic Toric Code

top: fermion condensed
3d fermionic Toric Code

m- flux condensed

l "squash"

2d phase with fermion parity symmetry

trivial superconductor

top: fermion condensed
3d fermionic Toric Code

twisted m- tflux condensed

l "squash"

2d phase with fermion parity symmetry

p + ip superconductor



2d trivial superconductor

p + ip superconductor

single fermion

single fermion

0d
non-trivial 1d QC 1d QC
detect/excitation 1d a Kitaev chain defect fermion parity twist line
1d SQC 1d SQC
2d Z, paramagnet 2d Z, SPT
0d Z, charge Z, charge
non_trivial ld FDLU ld FDLU
detect/excitation 1d Z, SSB 1d Z, SSB
ld 1d SQC 1d SQC




Conclusion & Further questions

Low entanglement excitations in an invertible phase and those in a product state
have a one-to-one correspondence

SPTs, Kitaev chain, p + ip superconductor

e Higher form SPTs

e Integer quantum Hall
e Non-invertible defects

e Implications for dynamics
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Low entanglement excitations in an invertible phase and those in a product state
have a one-to-one correspondence

SPTs, Kitaev chain, p + ip superconductor

e Higher form SPTs

e Integer quantum Hall
e Non-invertible defects

e Implications for dynamics

Thank you !



f condensed f condensed* f condensed f condensed
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flux loop condensed twisted loop condensed twisted loop condensed twisted loop condensed

() (b) (c) (d)



