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Why Defects?

Defects and their RG flows are ubiquitous in Physics:

HEP-TH ◦ Wilson lines and ’t Hooft operators in gauge theories[Polchinski,Sully ’11]

[Aharony,Cuomo,Komargodski,Mezei,Raviv-Moshe’23] .
◦ Pinning field defects in O(N) CFT[Cuomo,Komargodski,Mezei ’21 +

Raviv-Moshe ’22] [Raviv-Moshe, Zhong ´23] [Giombi,Liu ’23] .
◦ Domain walls in SSB scenarios.
◦ Monodromy defects for free theories[Bianchi,Chalabi,Prochazka,Robinson,Sisti

’21] [Giombi,Helfenberger,Ji,Khanchandani ’21] [Herzog,Shresta ’22] .

COND-MAT ◦ Lattice impurities (Kondo problem)[Anderson’70,Wilson’75,Affleck,Ludwig’90...]

◦ Disclocations and Disclination [Barkeshli,Fechisin,Komargodski,Zhong ’25] .
◦ Pinning defects in ferromagnets [Assaad,Herbut ’13] [Parisen,Assaad,Wessell ’16] .

GEN-SYM ◦ Topological defects describe Generalized Symmetries
[Gaiotto,Kapustin,Seiberg,Willet’14] ...

The List goes on...

Window into strongly coupled dynamics (e.g. confinement).

Bulk-defect systems are inherently strongly coupled → few analytic results.

https://arxiv.org/pdf/1104.5077
https://arxiv.org/pdf/2310.00045
https://arxiv.org/pdf/2112.10634
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https://arxiv.org/pdf/2202.09180
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How defects are defined

[Electric]:

D

∫
dpx (L (φ) + F (Φ, φ))Sbulk =

∫
ddxLbulk(Φ)

Ex. Wilson lines D = P exp
(
i
∫
A
)
, O(N) defect D = exp

(
ni
∫
ϕi
)
...

[Magnetic]:

D

Sd−p−1

Φ = Φ|defect

Ex. ’t Hooft (disorder) operators 1
2π

∫
S2 F = 1.

[Impurities]:
H = H0 +Himpurity

Ex. Kondo problem.



Defect RG flows

We will focus on the IR fate DIR of a UV defect/impurity.

The following are common scenarios:

Screening Bulk and defect decouple completely DIR = 1p.

Conformal DIR preserves SO(2, p)× SO(d− p) conformal group with a single vacuum.
[Billó,Gonçalves,Lauria,Meineri ’16]

Topological DIR is a nontrivial topological defect in the theory.

This Talk: If the bulk has a symmetry C, does it constrain DIR?

!△Common setup: bulk CFT fixed → Defect RG flow. Our results hold regardless of
this assumption, provided we assume that C acts faithfully along the RG.

https://arxiv.org/pdf/1601.02883


Symmetry & Defects I: Symmetric defects

Consider a bulk system with symmetry G. For concreteness G = U(1).

In the presence of a defect D the Ward identities for the G current are modified:
[Padayasi,Krishnan,Metlitski,Gruzberg,Meineri ’21] [Drukker,Kong,Sakkas ’22] [Herzog,Schaub ’23]

[CC,DiPietro,Ji,Komatsu ’23] [Cuomo,Zhang ’23] :

∂µJ
µ(x) = t(x) δ(ΣD) ,

a nontrivial tilt operator t(x) signals symmetry breaking by the defect.

In order for D to preserve the symmetry we will need the tilt to trivialize:

t(x) = ∂a j
a(x) , for some defect current ja .

In this case we’ll say that D is symmetric wrt G.

https://arxiv.org/pdf/2111.03071
https://arxiv.org/pdf/2203.17157
https://arxiv.org/pdf/2301.10789
https://arxiv.org/pdf/2312.09277
https://arxiv.org/pdf/2306.00085


A symmetric defects allows for an improvement of the symmetry generator
Uα(Y ) = exp

(
iα
∫
Y
⋆J
)
:

Uα(Y ) −→ Uα(Y ) exp

(
−iα

∫
Y ∩Σp

⋆j

)

Such that Uα(Y ) remains topological in the presence of D . In other words:

Uα D = D Uα

D
U

U D

=

D U

We can then carry out many of the familiar hep-th procedures, such as turning on gauge
fields for the defect symmetry G.



A defect D being symmetric does not itself give strong constraints on defect RG.

This follows from the fact that the identity 1p itself is a symmetric defect:

1p U = U 1p .



Symmetry & Defects II: Symmetry-Reflecting defects

A natural generalization of this concept is what we call symmetry reflecting defects:1

U D = D U = ⟨U⟩D .

The symmetry defects are absorbed by D . For concreteness we focus on p = d− 1. In
terms of the current J it means that, on the defect’s worldvolume:

J⊥(x) = ∂a η
a(x) .

Alternatively, the topological operator U can terminate topologically on D .

D
U

U D

= ⟨U⟩

D

1A similar concept for boundary conditions appeared in [Choi,Rayhaun,Sanghavi,Shao ’23]

https://arxiv.org/pdf/2305.09713


A symmetry reflecting interface preserves the G symmetry independently on the two
sides. The total symmetry in this case is at least GL ×GR.

DUα

= exp

(
2πα

∑
i

qi

)

D

=⇒
∑
i

qi = 0 .



All of the symmetry charge scattering on D is thus reflected back. D acts as an hard wall
for charged objects.

D

Similar ideas can be formulated using the Defect OPE of charged bulk fields.



Consequences

A symmetry reflecting defect cannot be screened in the IR.

D
U

RG

⇝
U

The IR fixed point can either be:

◦ A nontrivial symmetry reflecting conformal defect.

◦ A nontrivial (and non-invertible) topological defect.

◦ A theory of Defect Goldstone modes.



Example: Deforming Topological defects

A wide class of conformal defects are obtained by the “pinning field” construction:

D =

1p

+ λ

∫
dpx σpin , ∆(σpin) < p .

These defects are symmetric if U
σpin

=
σpin

.

A symmetry reflecting defect can be constructed in a similar manner by deforming a
topological defect N (related ideas [Kormos,Runkel,Watts ’09] [Makabe, Watts ’17] ):

D =

N

+ λ

∫
dpxµpin ,

LN = N L = dL N

L
µpin

=
µpin

. ∀ L ∈ C .

Interestingly, µpin can be a nonlocal (twisted) operator living at the end of an L line.

https://arxiv.org/pdf/0907.1497
https://arxiv.org/pdf/1703.09148


Example:

(1+1)d Ising CFT , G = Z2 : D =

1 + η

+ λ

∫
dxµ 1

16 ,
1
16
.

The flow can be “bootstrapped” exactly:

N
KW duality

× D =


1p

+ λ

∫
dx σ 1

16 ,
1
16

⊕

1p

− λ

∫
dx σ 1

16 ,
1
16

×N .

The term in () brackets flows to |+⟩⟨+| ⊕ |−⟩⟨−| where {|+⟩, |−⟩, |f⟩} are the Cardy
states for Ising. Using N|±⟩ = |f⟩ , N|f⟩ = |+⟩+ |−⟩ , we conclude that:

DIR = |f⟩⟨f | .



Symmetry and defects III: Folding and Phantom Symmetry

Breaking of vanilla G symmetry bestows several properties on MD :

(a) MD ≃ G/H is an homogeneous space. (Every point on MD is equivalent).

(b) The defect free energy g = ⟨D⟩ remains constant on MD . (J0|0⟩ = 0)

(c) The reflection coefficient [Quella,Runkel,Watts ’06] RD ∼ 1
c (1− ⟨TL TR⟩D) is also

constant on MD . (The symmetry commutes with the stress tensor).



A mysterious case

Conformal defects classified in a single instance: the (1+1)d Ising CFT [Affleck,Oshikawa ’96] .

They come in two continuous families:

{
(D+, θ) , θ ∈ [0, π]

}
,

{
(N+, θ′) , θ′ ∈ [0, π/2]

}
.

(1) The interval S1/ZC2 is not homogeneous.

(2) Topological lines of Ising are 1 = (D+, π/4) , η = (D+, 3π/4), N = (N+, π/4).

(3) g(D+,θ) = 1, g(N+,θ′) =
√
2, but R(D+,θ) = cos2(2θ), R(N+,θ′) = cos2(2θ′).



These families do form defect conformal manifolds.

However:

(a) The Ising CFT has no continuous symmetry which can be broken.

(b) (1) and (3) are not allowed by the symmetry breaking physics.

Question:

(1) Is there any mechanism guaranteeing these defect conformal manifolds?

(2) Are these cases common or fine tuning?



We can describe Ising defects as conformal boundaries in Ising2, via the folding trick:

CFTL CFTR

D

Folding

BD

CFTL

CFTR



It is well known that:

Ising2 c = 1on orbifold branch, Rorb =
√
2 .

This theory has a continuous, non-invertible cosine symmetry [Thorngren,Wang ’21]

L
(m)
θ = 2 cos

(
−2θ

∫
⋆dX

2π

)
, L

(w)
θ′ = 2 cos

(
2iθ′

∫
dX

2π

)
.

L
(m/w)
θ1

× L
(m/w)
θ2

= L
(m/w)
θ1+θ2

+ L
(m/w)
θ1−θ2 .

With this normalization θ ∈ [0, π], θ′ ∈ [0, π/2]: Ising defects’ families express the breaking
of the cosine symmetry!



An alternative perspective is useful. Primaries of the Ising CFT are:

H1 : 10,0 , ϵ 1
2 ,

1
2
, σ 1

16 ,
1
16

; Hη : φ 1
2 ,0

, φ̄0, 12
, µ 1

16 ,
1
16

The folded theory has non-local currents:

j = φL φR , j̄ = φ̄L φ̄R , j, j̄ ∈ HηLηR .

These define the cosine symmetry operators by dressing an ηLηR-invariant topological line:

Lθ = (1 + ηLηR) exp

(
iθ

∫
j

)
,

1 + ηLηR

j
ηLηR

We dub this a phantom symmetry, as it is not a symmetry of the single CFT.



Phantom symmetries are present in a variety of RCFTs:

c=1

R =
√
2n R =

√
2/n

(
1
2 ,

1
2

)
V±2n,0 V0,±n

(
1
2 , 0
)

Vn, 1
2n
, V−n,− 1

2n
V 1

n ,
n
2
, V− 1

n ,−
n
2

(
0, 12

)
V−n, 1

2n
, Vn,− 1

2n
V 1

n ,−
n
2
, V− 1

n ,
n
2

η
(
0, 1

2n

)
,
(
0, − 1

2n

) (
1
n , 0

)
,
(
− 1
n , 0

)
if n even(

1
n ,

1
2

)
,
(
− 1
n ,

1
2

)
if n odd



WZW

h = 1/2 SU(2)2, SU(4)1, Spin(n)1 ,

h = 1/4 SU(2)1,

h = 3/4 SU(2)3, SU(6)1, USp(6)1, Spin(12)1, (E7)1

Can extend to cosets. E.g. 3Potts/SU(3)1 have interfaces with su(2) phantom symmetry.



The reflection coefficient

A phantom symmetry j = ψLψR commutes only with the combination T = TL + TR.

On the other hand the (2,0) operators:

W+ ≃ cRTL − cLTR ∈ H1 , W− ≃ hR∂ψL ψR − hLψL ∂ψR ∈ Hη ,

form a doublet under the phantom symmetry:

[j0, W
+] = nW− , [j0, W

−] = −nW+ , n ∈ Z .



The reflection coefficient is computed by a 2pf of W+. Defining

⟨0|W±(z)W
±
(w̄)|B⟩ =

ω±
B

(z − w)4
.

we have R = (c2L + c2R + 2cLcRω
+
B)/(cL + cR)

2 and:

ω+
B(ε) = cos2(nε)ω+

B(0) + s sin2(nε)ω−
B(0) .



Choosing a “nice” reference B gives simple expressions.

(a) Transmissive |B⟩ = |L⟩:

R(ε) =
1 + sqLψL

qLψR

2
sin2(nε) .

(b) Reflective |B⟩ = |BL⟩|BR⟩:

R(ε) = 1− 2cLcR
(cL + cR)2

(
1∓ βLβR

k

)
sin2(nε) ,

⟨0|ψL/R(z)ψL/R(w)|B0⟩ = βL/R/(z − w)2hL/R .



Symmetry and Defects IV: Symmetry Breaking and Modulation

We now consider symmetry-breaking defects, in which case t(x) is nontrivial. See also
Shuhei’s talk

Breaking a continuous symmetry G defines a family of defect Dσ by the deformation:

i

∫
D

Trσ t(x) , g ∈ G = eiσ .

For boundary conditions B, if G suffers from an ’t Hooft anomaly (e.g. the SU(Nf )
symmetry of Nf Weyl fermions),

Z[A+ dAλ] = ei
∫
ω(A,λ)Z[A] ,

then B = Bσ must break the symmetry.

We call this breaking anomaly-enforced [CC ’25] , see also Shuhei’s talk

https://arxiv.org/pdf/2507.15466


A natural question is whether an anomaly-enforced breaking fundamentally differs from a
vanilla one.

To answer this we would like to couple the bulk + defect system to a gauge field A.

Naively this is not possible, as A→ A+ dAλ gives rise to a boundary term

i

∫
B

Trλ(x)t(x) .



This can be circumvented provided we consider coupling the defect to a modulated
coupling σ(x).

Dσ Dσ(x)

The bulk + boundary system can be made gauge invariant by a non-linear transformation
for σ:

A→ A+ dλ , σ → σ − λ .

The defect free-energy now depends on A, σ and the invariant combination
ωA = g−1(d+A)g .



For anomalous symmetries in the presence of a boundary, the Wess-Zumino consistency
condition is violated by a boundary term:

δλ1
ω(A, λ2)− δλ2

ω(A, λ1)− ω(A, [λ1, λ2]) = dβ(λ1, λ2, A) .

The presence of a boundary term forces the symmetry breaking [Jensen, Yarom ’19] .

However, for modulated defects, β can be cancelled by the modulated free energy FB:

β(λ1, λ2, A) = δλ1
FB(λ2, A)− δλ2

FB(λ1, A) .

This fixes universal, anomaly-induced terms in FB.



Boundary Transport and SPT pumping

Consider G = U(1) the anomalies:

ω(1+1) =
χ(1+1)

2π

∫
dλA , ω(3+1) =

χ(3+1)

24π2

∫
dλAdA ,

Fix:

FB,(1+1) =
χ(1+1)

2π

∫
σ(A+ dσ) + ... , FB,(3+1) =

χ(3+1)

24π2

∫
σ(A+ dσ)dA+ ...

Give rise to the following (Hall) boundary currents:

QB) = χ(1+1)
σ

2π
, J i

B = χ(3+1)
σ

8π2
ϵijk Fjk .



As we wind around the circle σ → σ + 2π charge is deposited on the boundary.

This is a Thouless-pump phenomenon and correspond to the stacking of U(1) SPTs

iχ(1+1)

∫
B

A , i
χ

4π

∫
B

AdA ,

Which describe Integer Quantum Hall states in (0+1) and (2+1) dimensions.

This shows a deep interplay between bulk ’t Hooft anomalies and the topology of families
of defects related by anomaly-enforced symmetry breaking.



Thank you!



◦ How do symmetry-refined versions of defect entropy interplay with the possible
representations of symmetry on D? ([Karch,Kusuki,Ooguri,Sun,Wang ’23] for recent
studies of defect entropy and [Choi, Rayhaun, Zheng ’24] [Heymann,Quella ’24]

[Kusuki,Murciano,Ooguri,Pal ’24] [Bastida,Das,Sierra,Molina-Vilaplana ’24] symmetry
resolved entropy)

◦ Does (generalized) symmetry allow to constrain/bootstrap defect fusion rules?
[Bachas,Brunner ’07] [Konechny ’15] [Soderberg ’21] [Diatlyk,Khanchandani,Popov,Wang

’24] [Kravchuck,Radcliffe,Sinha ’24] .

◦ “Anomalies in the space of couplings” [Cordova,Freed,Lam,Seiberg ’19] for defect
RG flows? Relation with [Debray,Devalapurkar,Krulewski,Liu,Pacheco-Tallaj,Thorngren

’23] ?

◦ Application to lattice impurities (generalized Kondo)? How is the
representation of symmetry on the defect encoded in the lattice formulation?

https://arxiv.org/pdf/2308.05436
https://arxiv.org/pdf/2409.02159
https://arxiv.org/pdf/2409.02315
https://arxiv.org/pdf/2411.09792
https://arxiv.org/pdf/2402.06322
https://arxiv.org/pdf/0712.0076
https://arxiv.org/pdf/1509.07787
https://arxiv.org/pdf/2102.00718
https://arxiv.org/pdf/2404.05815
https://arxiv.org/pdf/2404.05815
https://arxiv.org/pdf/2406.04561
https://arxiv.org/pdf/1905.09315
https://arxiv.org/pdf/2309.16749
https://arxiv.org/pdf/2309.16749

