Symmetry constraints on defect RG flows

Christian Copetti (Oxford)

Generalized symmetries in HEP and CMP \mathbf{PKU}

Science and Technology Facilities Council

Why Defects?

Defects and their RG flows are ubiquitous in Physics:

- HEP-TH Wilson lines and 't Hooft operators in gauge theories[Polchinski,Sully '11] [Aharony,Cuomo,Komargodski,Mezei,Raviv-Moshe'23] .
 - o Pinning field defects in O(N) CFT[Cuomo,Komargodski,Mezei '21 + Raviv-Moshe '22] [Raviv-Moshe, Zhong '23] [Giombi,Liu '23] .
 - Domain walls in SSB scenarios.
 - Monodromy defects for free theories[Bianchi,Chalabi,Prochazka,Robinson,Sisti '21] [Giombi,Helfenberger,Ji,Khanchandani '21] [Herzog,Shresta '22] .
- $\textcolor{blue}{\textbf{COND-MAT}} \ \circ \ \textbf{Lattice impurities (Kondo problem)} \\ \textcolor{blue}{\textbf{[Anderson'70,Wilson'75,Affleck,Ludwig'90...]}}$
 - Disclocations and Disclination [Barkeshli, Fechisin, Komargodski, Zhong '25] .
 - $\circ\,$ Pinning defects in ferromagnets [Assaad,Herbut '13] [Parisen,Assaad,Wessell '16] .
 - GEN-SYM Topological defects describe Generalized Symmetries [Gaiotto, Kapustin, Seiberg, Willet'14] ...

The List goes on...

Window into strongly coupled dynamics (e.g. confinement).

Bulk-defect systems are inherently strongly coupled \rightarrow few analytic results.

How defects are defined

[Electric]:
$$S_{\text{bulk}} = \int d^{d}\mathbf{x} \, \mathcal{L}_{\text{bulk}}(\Phi) \qquad \int d^{p}x \, (\mathcal{L}(\varphi) + F(\Phi, \varphi))$$

Ex. Wilson lines $\mathscr{D} = P \exp(i \int A)$, O(N) defect $\mathscr{D} = \exp(n_i \int \phi^i)$...

Ex. 't Hooft (disorder) operators $\frac{1}{2\pi} \int_{S^2} F = 1$.

Ex. Kondo problem.

Defect RG flows

We will focus on the IR fate \mathcal{D}_{IR} of a UV defect/impurity.

The following are common scenarios:

Screening Bulk and defect decouple completely $\mathcal{D}_{IR} = \mathbb{1}_p$.

Conformal \mathcal{D}_{IR} preserves $SO(2,p) \times SO(d-p)$ conformal group with a single vacuum.

[Billó,Gonçalves,Lauria,Meineri '16]

Topological \mathcal{D}_{IR} is a nontrivial topological defect in the theory.

This Talk: If the bulk has a symmetry C, does it constrain \mathcal{D}_{IR} ?

 \triangle Common setup: bulk CFT fixed \rightarrow **Defect RG flow**. Our results hold regardless of this assumption, provided we assume that \mathcal{C} acts **faithfully** along the RG.

Symmetry & Defects I: Symmetric defects

Consider a bulk system with symmetry G. For concreteness G = U(1).

In the presence of a defect \mathscr{D} the Ward identities for the G current are modified: [Padayasi,Krishnan,Metlitski,Gruzberg,Meineri '21] [Drukker,Kong,Sakkas '22] [Herzog,Schaub '23] [CC,DiPietro,Ji,Komatsu '23] [Cuomo,Zhang '23] :

$$\partial_{\mu}J^{\mu}(\mathbf{x}) = t(x)\,\delta(\Sigma_{\mathscr{D}})\,,$$

a nontrivial **tilt operator** t(x) signals symmetry breaking by the defect.

In order for \mathcal{D} to preserve the symmetry we will need the tilt to trivialize:

$$t(x) = \partial_a j^a(x)$$
, for some defect current j^a .

In this case we'll say that \mathcal{D} is **symmetric** wrt G.

A symmetric defects allows for an improvement of the symmetry generator $U_{\alpha}(Y) = \exp(i\alpha \int_{Y} \star J)$:

$$U_{\alpha}(Y) \longrightarrow U_{\alpha}(Y) \exp\left(-i\alpha \int_{Y \cap \Sigma_p} \star j\right)$$

Such that $U_{\alpha}(Y)$ remains topological in the presence of \mathscr{D} . In other words:

$$U_{\alpha} \mathscr{D} = \mathscr{D} U_{\alpha}$$

We can then carry out many of the familiar hep-th procedures, such as turning on gauge fields for the defect symmetry G.

A defect ${\mathcal D}$ being **symmetric** does not itself give strong constraints on defect RG.

This follows from the fact that the identity $\mathbb{1}_p$ itself is a symmetric defect:

 $\mathbb{1}_p U = U \mathbb{1}_p$.

Symmetry & Defects II: Symmetry-Reflecting defects

A natural generalization of this concept is what we call symmetry reflecting defects:¹

$$U \mathcal{D} = \mathcal{D} U = \langle U \rangle \mathcal{D}$$
.

The symmetry defects are **absorbed** by \mathcal{D} . For concreteness we focus on p = d - 1. In terms of the current J it means that, on the defect's worldvolume:

$$J_{\perp}(x) = \partial_a \, \eta^a(x) \, .$$

Alternatively, the topological operator U can terminate **topologically** on \mathcal{D} .

¹A similar concept for boundary conditions appeared in [Choi,Rayhaun,Sanghavi,Shao '23]

A symmetry reflecting interface preserves the G symmetry **independently** on the two sides. The total symmetry in this case is **at least** $G_L \times G_R$.

All of the symmetry charge scattering on $\mathcal D$ is thus reflected back. $\mathcal D$ acts as an **hard wall** for charged objects.

Similar ideas can be formulated using the Defect OPE of charged bulk fields.

Consequences

A symmetry reflecting defect cannot be screened in the IR.

The IR fixed point can either be:

- A nontrivial symmetry reflecting conformal defect.
- A nontrivial (and non-invertible) topological defect.
- A theory of Defect Goldstone modes.

Example: Deforming Topological defects

A wide class of conformal defects are obtained by the "pinning field" construction:

$$\mathscr{D} = \left\{ \begin{array}{l} + \lambda \int d^p x \, \sigma_{\text{pin}} \,, \quad \Delta(\sigma_{\text{pin}})$$

These defects are symmetric if $U \stackrel{\sigma_{\text{pin}}}{\cdot} = \stackrel{\sigma_{\text{pin}}}{\cdot}$.

A symmetry reflecting defect can be constructed in a similar manner by deforming a topological defect \mathcal{N} (related ideas [Kormos,Runkel,Watts '09] [Makabe, Watts '17]):

$$\mathscr{D} = \left[\begin{array}{c} \mathcal{L} \, \mathscr{N} = \mathscr{N} \, \mathcal{L} = d_{\mathcal{L}} \, \mathscr{N} \\ + \lambda \int d^p x \, \mu_{\text{pin}} \, , & \mathcal{L} \, \stackrel{\mu_{\text{pin}}}{=} \, \stackrel{\mu_{\text{pin}}}{=} \, . & \forall \, \mathcal{L} \in \mathcal{C} \, . \end{array} \right]$$

Interestingly, μ_{pin} can be a **nonlocal (twisted)** operator living at the end of an \mathcal{L} line.

Example:

(1+1)d Ising CFT,
$$G = \mathbb{Z}_2$$
: $\mathscr{D} = + \lambda \int dx \, \mu_{\frac{1}{16}, \frac{1}{16}}$.

The flow can be "bootstrapped" exactly:

$$\underset{\text{KW duality}}{\mathcal{N}} \times \mathscr{D} = \left(\begin{array}{c} \vdots \\ \vdots \\ \vdots \\ 1_p \end{array} + \lambda \int dx \ \sigma_{\frac{1}{16}, \frac{1}{16}} \ \oplus \ \begin{array}{c} \vdots \\ \vdots \\ 1_p \end{array} \right) - \lambda \int dx \ \sigma_{\frac{1}{16}, \frac{1}{16}} \\ \times \mathcal{N} \ .$$

The term in () brackets flows to $|+\rangle\langle+|\oplus|-\rangle\langle-|$ where $\{|+\rangle, |-\rangle, |f\rangle\}$ are the Cardy states for Ising. Using $\mathcal{N}|\pm\rangle = |f\rangle$, $\mathcal{N}|f\rangle = |+\rangle + |-\rangle$, we conclude that:

$$\mathcal{D}_{IR} = |f\rangle\langle f|$$
.

Symmetry and defects III: Folding and Phantom Symmetry

Breaking of vanilla G symmetry bestows several properties on $\mathcal{M}_{\mathscr{D}}$:

(a) $\mathcal{M}_{\mathscr{D}} \simeq G/H$ is an homogeneous space. (Every point on $\mathcal{M}_{\mathscr{D}}$ is equivalent).

(b) The defect free energy $g = \langle \mathcal{D} \rangle$ remains constant on $\mathcal{M}_{\mathcal{D}}$. $(J_0|0\rangle = 0)$

(c) The reflection coefficient [Quella,Runkel,Watts '06] $\mathcal{R}_{\mathscr{D}} \sim \frac{1}{c} (1 - \langle T_L T_R \rangle_{\mathscr{D}})$ is also constant on $\mathcal{M}_{\mathscr{D}}$. (The symmetry commutes with the stress tensor).

A mysterious case

Conformal defects classified in a single instance: the (1+1)d Ising CFT [Affleck,Oshikawa '96].

They come in two **continuous** families:

$$\left\{ \left(D^+,\theta\right),\quad \theta\in\left[0,\pi\right]\right\},\quad \left\{ \left(N^+,\theta'\right),\quad \theta'\in\left[0,\pi/2\right]\right\}.$$

- (1) The interval S^1/\mathbb{Z}_2^C is not homogeneous.
- (2) Topological lines of Ising are $\mathbb{1} = (D^+, \pi/4)$, $\eta = (D^+, 3\pi/4)$, $\mathcal{N} = (N^+, \pi/4)$.
- (3) $g_{(D^+,\theta)} = 1$, $g_{(N^+,\theta')} = \sqrt{2}$, but $\mathcal{R}_{(D^+,\theta)} = \cos^2(2\theta)$, $\mathcal{R}_{(N^+,\theta')} = \cos^2(2\theta')$.

These families do form defect conformal manifolds.

However:

- (a) The Ising CFT has **no continuous symmetry** which can be broken.
- (b) (1) and (3) are not allowed by the symmetry breaking physics.

Question:

- (1) Is there any mechanism guaranteeing these defect conformal manifolds?
- (2) Are these cases common or fine tuning?

We can describe Ising defects as conformal boundaries in Ising², via the folding trick:

It is well known that:

Ising²
$$c = 1$$
 on orbifold branch, $R_{\text{orb}} = \sqrt{2}$.

This theory has a continuous, non-invertible cosine symmetry [Thorngren, Wang '21]

$$L_{\theta}^{(m)} = 2\cos\left(-2\theta \int \frac{\star dX}{2\pi}\right), \quad L_{\theta'}^{(w)} = 2\cos\left(2i\theta' \int \frac{dX}{2\pi}\right).$$

$$L_{\theta_1}^{(m/w)} \times L_{\theta_2}^{(m/w)} = L_{\theta_1 + \theta_2}^{(m/w)} + L_{\theta_1 - \theta_2}^{(m/w)}.$$

With this normalization $\theta \in [0, \pi]$, $\theta' \in [0, \pi/2]$: Ising defects' families express the breaking of the cosine symmetry!

An alternative perspective is useful. Primaries of the Ising CFT are:

$$\mathcal{H}_{1}: \, \mathbb{1}_{0,0} \,, \quad \epsilon_{\frac{1}{2},\frac{1}{2}} \,, \quad \sigma_{\frac{1}{16},\frac{1}{16}} \,; \qquad \quad \mathcal{H}_{\eta}: \, \varphi_{\frac{1}{2},0} \,, \quad \bar{\varphi}_{0,\frac{1}{2}} \,, \quad \mu_{\frac{1}{16},\frac{1}{16}} \,$$

The folded theory has non-local currents:

$$j = \varphi_L \, \varphi_R \,, \quad \bar{j} = \bar{\varphi}_L \, \bar{\varphi}_R \,, \quad j, \, \bar{j} \in \mathcal{H}_{\eta_L \eta_R} \,.$$

These define the cosine symmetry operators by dressing an $\eta_L \eta_R$ -invariant topological line:

$$L_{\theta} = (1 + \eta_L \eta_R) \exp\left(i\theta \int j\right), \qquad j \bullet \stackrel{\eta_L \eta_R}{---}$$

$$1 + \eta_L \eta_R$$

We dub this a **phantom symmetry**, as it is not a symmetry of the single CFT.

Phantom symmetries are present in a variety of RCFTs:

c=1

	$R = \sqrt{2}n$	$R = \sqrt{2}/n$
$\left(\frac{1}{2},\frac{1}{2}\right)$	$V_{\pm 2n,0}$	$V_{0,\pm n}$
$\left(\frac{1}{2},0\right)$	$V_{n,\frac{1}{2n}}, V_{-n,-\frac{1}{2n}}$	$V_{rac{1}{n}, rac{n}{2}}, \ V_{-rac{1}{n}, -rac{n}{2}}$
$\left(0,\frac{1}{2}\right)$	$V_{-n,\frac{1}{2n}}, V_{n,-\frac{1}{2n}}$	$V_{rac{1}{n},-rac{n}{2}},\ V_{-rac{1}{n},rac{n}{2}}$
η	$\left(0, \frac{1}{2n}\right), \left(0, -\frac{1}{2n}\right)$	$\left(\frac{1}{n}, 0\right), \left(-\frac{1}{n}, 0\right) \text{ if } n \text{ even}$ $\left(\frac{1}{n}, \frac{1}{2}\right), \left(-\frac{1}{n}, \frac{1}{2}\right) \text{ if } n \text{ odd}$

WZW

h = 1/2	$SU(2)_2, SU(4)_1, Spin(n)_1,$	
h = 1/4	$SU(2)_1,$	
h = 3/4	$SU(2)_3, SU(6)_1, USp(6)_1, Spin(12)_1, (E_7)_1$	

Can extend to cosets. E.g. $3Potts/SU(3)_1$ have interfaces with $\mathfrak{su}(2)$ phantom symmetry.

The reflection coefficient

A phantom symmetry $j = \psi_L \psi_R$ commutes only with the combination $T = T_L + T_R$.

On the other hand the (2,0) operators:

$$W^+ \simeq c_R T_L - c_L T_R \in \mathcal{H}_1$$
, $W^- \simeq h_R \partial \psi_L \psi_R - h_L \psi_L \partial \psi_R \in \mathcal{H}_n$,

form a doublet under the phantom symmetry:

$$[j_0, W^+] = nW^-, \quad [j_0, W^-] = -nW^+, \quad n \in \mathbb{Z}.$$

The reflection coefficient is computed by a 2pf of W^+ . Defining

 $\langle 0|W^{\pm}(z)\overline{W}^{\pm}(\bar{w})|B\rangle = \frac{\omega_B^{\pm}}{(z-w)^4}.$

we have $\mathcal{R} = (c_L^2 + c_R^2 + 2c_L c_R \omega_R^+)/(c_L + c_R)^2$ and:

$$\omega_{P}^{+}(\varepsilon) = \cos^{2}(n\varepsilon)\omega_{P}^{+}(0) + s\sin^{2}(n\varepsilon)\omega_{P}^{-}(0)$$
.

Choosing a "nice" reference B gives simple expressions.

(a) Transmissive $|B\rangle = |\mathcal{L}\rangle$:

$$\mathcal{R}(\varepsilon) = \frac{1 + sq_{\psi_L}^{\mathcal{L}} q_{\psi_R}^{\mathcal{L}}}{2} \sin^2(n\varepsilon).$$

(b) Reflective $|B\rangle = |B_L\rangle |B_R\rangle$:

$$\mathcal{R}(\varepsilon) = 1 - \frac{2c_L c_R}{(c_L + c_R)^2} \left(1 \mp \frac{\beta_L \beta_R}{k} \right) \sin^2(n\varepsilon) ,$$

$$\langle 0|\psi_{L/R}(z)\overline{\psi}_{L/R}(\overline{w})|B_0\rangle = \beta_{L/R}/(z-w)^{2h_{L/R}}$$
.

Symmetry and Defects IV: Symmetry Breaking and Modulation

We now consider symmetry-breaking defects, in which case t(x) is nontrivial. See also Shuhei's talk

Breaking a continuous symmetry G defines a family of defect \mathscr{D}_{σ} by the deformation:

$$i \int_{\mathscr{D}} \operatorname{Tr} \sigma t(x), \quad g \in G = e^{i\sigma}.$$

For boundary conditions \mathscr{B} , if G suffers from an 't Hooft anomaly (e.g. the $SU(N_f)$ symmetry of N_f Weyl fermions),

$$Z[A + d_A \lambda] = e^{i \int \omega(A,\lambda)} Z[A],$$

then $\mathscr{B} = \mathscr{B}_{\sigma}$ must break the symmetry.

We call this breaking anomaly-enforced [CC '25], see also Shuhei's talk

A natural question is whether an anomaly-enforced breaking fundamentally differs from a vanilla one.

To answer this we would like to couple the bulk + defect system to a gauge field A.

Naively this is not possible, as $A \to A + d_A \lambda$ gives rise to a boundary term

$$i \int_{\mathcal{Q}} \operatorname{Tr} \lambda(x) t(x) .$$

This can be circumvented provided we consider coupling the defect to a **modulated** coupling $\sigma(x)$.

The bulk + boundary system can be made gauge invariant by a non-linear transformation for σ :

$$A \to A + d\lambda$$
, $\sigma \to \sigma - \lambda$.

The defect free-energy now depends on A, σ and the invariant combination $\omega_A = q^{-1}(d+A)q$.

For anomalous symmetries in the presence of a boundary, the Wess-Zumino consistency condition is violated by a boundary term:

$$\delta_{\lambda_1}\omega(A,\lambda_2) - \delta_{\lambda_2}\omega(A,\lambda_1) - \omega(A,[\lambda_1,\lambda_2]) = d\beta(\lambda_1,\lambda_2,A).$$

The presence of a boundary term forces the symmetry breaking [Jensen, Yarom '19].

However, for modulated defects, β can be cancelled by the modulated free energy $F_{\mathscr{B}}$:

$$\beta(\lambda_1, \lambda_2, A) = \delta_{\lambda_1} F_{\mathscr{B}}(\lambda_2, A) - \delta_{\lambda_2} F_{\mathscr{B}}(\lambda_1, A).$$

This fixes universal, anomaly-induced terms in $F_{\mathscr{B}}$.

Boundary Transport and SPT pumping

Consider G = U(1) the anomalies:

$$\omega_{(1+1)} = \frac{\chi_{(1+1)}}{2\pi} \int d\lambda \, A \,, \qquad \qquad \omega_{(3+1)} = \frac{\chi_{(3+1)}}{24\pi^2} \int d\lambda A \, dA \,,$$

Fix:

$$F_{\mathscr{B},(1+1)} = \frac{\chi_{(1+1)}}{2\pi} \int \sigma(A + d\sigma) + \dots, \quad F_{\mathscr{B},(3+1)} = \frac{\chi_{(3+1)}}{24\pi^2} \int \sigma(A + d\sigma) dA + \dots$$

Give rise to the following (Hall) boundary currents:

$$Q_{\mathscr{B}} = \chi_{(1+1)} \frac{\sigma}{2\pi} \,, \qquad \qquad \mathcal{J}_{\mathscr{B}}^i = \chi_{(3+1)} \frac{\sigma}{8\pi^2} \epsilon^{ijk} \, F_{jk} \,.$$

As we wind around the circle $\sigma \to \sigma + 2\pi$ charge is deposited on the boundary.

This is a Thouless-pump phenomenon and correspond to the stacking of U(1) SPTs

$$i\chi_{(1+1)} \int_{\mathscr{B}} A$$
, $i\frac{\chi}{4\pi} \int_{\mathscr{B}} AdA$,

Which describe Integer Quantum Hall states in (0+1) and (2+1) dimensions.

This shows a deep interplay between bulk 't Hooft anomalies and the topology of families of defects related by anomaly-enforced symmetry breaking.

- o How do symmetry-refined versions of defect entropy interplay with the possible representations of symmetry on 𝒯? ([Karch,Kusuki,Ooguri,Sun,Wang '23] for recent studies of defect entropy and [Choi, Rayhaun, Zheng '24] [Heymann,Quella '24] [Kusuki,Murciano,Ooguri,Pal '24] [Bastida,Das,Sierra,Molina-Vilaplana '24] symmetry resolved entropy)
- Does (generalized) symmetry allow to constrain/bootstrap defect fusion rules?
 [Bachas,Brunner '07] [Konechny '15] [Soderberg '21] [Diatlyk,Khanchandani,Popov,Wang '24] [Kravchuck,Radcliffe,Sinha '24] .
- "Anomalies in the space of couplings" [Cordova,Freed,Lam,Seiberg '19] for defect RG flows? Relation with [Debray,Devalapurkar,Krulewski,Liu,Pacheco-Tallaj,Thorngren '23]?
- Application to lattice impurities (generalized Kondo)? How is the representation of symmetry on the defect encoded in the lattice formulation?