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Explained by Generalized Symmetries. 
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Main Message

I will call these “Spontaneously non-uniform entangled phases” (SNE Phases).

• Non-invertible symmetries can support phases with ground states with distinct 

(non-uniform) entanglement patterns.  

• This talk: I will describe such phases, associated transitions and lattice 

models using the SymTFT.

Symmetry, , , …{ }



With Lakshya Bhardwaj, Sakura Schafer-Nameki & Alison Warman

Based on:

• arXiv: 2502.20440 [Gapped Phases w/ Fusion 2-categorical symmetries]

With Lakshya Bhardwaj, Yuhan Gai, Shengjie Huang, Kansei Inamura,  
Sakura Schafer-Nameki & Alison Warman

• arXiv: 2503.12699 [Gapless Phases w/ Fusion 2-categorical symmetries]

With Shengjie Huang, Kansei Inamura & Sakura Schafer-Nameki

• arXiv: 2506.09177 [Lattice Models w/ Fusion 2-categorical symmetries]



Intuitive Picture



Intuitive Picture
S3 symmetric Lattice Model

= Qubit
= Qutrit



Intuitive Picture
S3 symmetric Lattice Model

= Qubit
= Qutrit

Ground states and symmetry action

2

1

3

 SSB Phaseℤ3



Intuitive Picture
S3 symmetric Lattice Model

= Qubit
= Qutrit

Gauging  
non-normal 

  subgroup  
symmetry

ℤ2

Ground states and symmetry action

2

1

3

 SSB Phaseℤ3



Intuitive Picture
S3 symmetric Lattice Model

= Qubit
= Qutrit

Gauging  
non-normal 

  subgroup  
symmetry

ℤ2

Ground states and symmetry action

2

1

3

 SSB Phaseℤ3

2Rep( ) symmetric Lattice Model  
 

𝔾

[Delcamp, Tiwari ’23], 
[Inamura, Huang, Tiwari, Nameki ’25] 

* 𝔾 = ℤ(1)
3 ⋊ ℤ(0)

2



Intuitive Picture
S3 symmetric Lattice Model

= Qubit
= Qutrit

Gauging  
non-normal 

  subgroup  
symmetry

ℤ2

Ground states and symmetry action

2

1

3

 SSB Phaseℤ3

23

Ground states and symmetry action 

[1-form Symmetry 
Preserving]

1

[1-form Symmetry  
Breaking]

[non-invertible  
symmetry]

 
 SSB Phase

2Rep(𝔾)

2Rep( ) symmetric Lattice Model  
 

𝔾

[Delcamp, Tiwari ’23], 
[Inamura, Huang, Tiwari, Nameki ’25] 

* 𝔾 = ℤ(1)
3 ⋊ ℤ(0)

2



Plan:

• Overview of Symmetry Topological Field Theory (SymTFT)

Based on arXiv:2502.20440• SNE Phase from SymTFT

• Lattice realisation of SNE Phase

• A second order transition involving the SNE Phase Based on arXiv:2503.12699

Based on arXiv:2506.09177



Symmetry Topological Field Theory (SymTFT)
*Symmetry TFT = Topological Holography = Symmetry TO

A theoretical gadget that separates the dynamical properties of a 
quantum theory from its symmetry structure. 

… [Witten];[Freed, Moore, Teleman]; [Apruzzi et al]; [Gaiotto, Kulp]; [Bhardwaj et al]; [Thorngren, Wang]; [Ji, Wen];  
[Chatterjee, Wen]; [Moradi, Moosavian, AT]; [Kaidi, Ohmori, Zheng], [Lootens, Delcamp, Ortiz, Verstraete]; [Assen, Mong, Fendley]; [Lichtman, et al] …

≅

symmetry dynamics

S-SymTFT

S-symmetric  
theory(Topological boundary)

cf Talks by: 
Ling-Yan Hung, Jiahua Tian, 
Wenjie Ji and Sakura Schafer-
Nameki. 
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SymTFT overview

≅

(symmetry boundary) (physical boundary)

𝒮-SymTFT

𝒮 symmetric system

• Gapped phases: Gapped physical boundaries. (Order parameters, ground states,…)
• Generalized gauging: Changing symmetry boundary.

Ds
pDs

p

• Symmetries: Defects on the symmetry boundary.

ϵR
p−1 Φa

p−1ϵL
p−1

Ds′￼

p Ds′￼

p

• Charged operators/multiplets: Classified by SymTFT defects.

Qa
p

[Lin, Okada, Seifnashri, Tachikawa], [Bhardwaj, Schafer-Nameki], [Bartsch, Bullimore, Grigoletto, Pearson]
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“Generalized Meissner Effect”

deconfined

𝖤

condensed

Δ𝖤 confined

SymTFT
Reduced TFT 

of deconfined charges

Topological Interface
(Condensable algebra)

• Phase: Defined via a set of (Bosonic mutually local) Condensed charges            

• Confined charges: Non-local with respect to a condensed charge is confined

• Deconfined charges: Local with respect to all condensed charges.
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SymTFT for Fusion 2-categorical symmetries

All Boson type Emergent Fermion type

(SymTFT is )Z(2Vecπ
G) (SymTFT is )Z(2Vecπf

Gf
)

This 
talk 

1. Codimension-1 defects: All condensation defects 

2. Codimension-2 defects:            , additional condensation surfaces   

3. Codimension-3 defects:  

𝒬[𝗀]
2 Rep(Z𝗀)

𝒬R
1

*  = Conjugacy class,  = Centraliser group of ,  [𝗀] Z𝗀 𝗀 ∈ [𝗀] R ∈ Rep(G)

• Bulk Topological Defects of  :Z(2VecG)

• Topological Interfaces & Boundaries of  :Z(2VecG)
1. Math approach: Based on etale algebras. [Xu, Decoppet ‘ 24, talk by Zhihao Zhang] 
2. Physics based approach: Based on gauging boundary conditions.  

[Bhardwaj, Nameki, Pajer, Tiwari, Warman, Wu ‘ 24]
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Gapped Boundaries via gauging
• Gapped boundaries are constructible by generalized gauging on the 

Dirichlet boundary ( ) i.e.,  .𝔅Dir 𝔅T
Neu(H) = [𝔅Dir ⊠ T]/H

• Non-minimal boundaries :  is a non-trivial topological order.T

Example:
𝔅T

Neu(ℤ2) =
𝔅Dir(ℤ2) ⊠ Toric Code

ℤ2

1. As symmetry boundaries: non-minimal  1-form symmetry ( ) 

2. As physical boundaries:

ℤ2 {1 , ψ , ψ̄ , ψψ̄ , σσ̄}

i. Non-minimal  0-form preserving phase (Toric code) 

ii. Non-minimal  1-form breaking phase (Doubled Ising topological order)

ℤ2

ℤ2



S3 SymTFT
• SymTFT( ) = SymTFT( ) = 4d S3 Dijkgraaf-Witten Theory 2Vec(S3) 2Rep(𝔾)

• Bulk defects:
Surfaces Lines

Q[a]
2

Q[b]
2

QP
1

QE
1

𝔾 = ℤ(1)
3 ⋊ ℤ(0)

2

S3 conventions 

S3 = ⟨a , b |a3 = b2 = 1 , bab = a2⟩

[id] , [a] = {a , a2} , [b] = {b , ab , a2b}

Group structure:

Conjugacy classes:

Irreducible Representations:  {1 , P , E}

Fusion of irreps: P ⊗ P = 1 , P ⊗ E = E ⊗ P = 1 ⊕ P ⊕ E



S3 SymTFT
• SymTFT( ) = SymTFT( ) = 4d S3 Dijkgraaf-Witten Theory 2Vec(S3) 2Rep(𝔾)

• Bulk defects:
Surfaces Lines

Q[a]
2

Q[b]
2

QP
1

QE
1

𝔾 = ℤ(1)
3 ⋊ ℤ(0)

2

S3 conventions 

S3 = ⟨a , b |a3 = b2 = 1 , bab = a2⟩

[id] , [a] = {a , a2} , [b] = {b , ab , a2b}

Group structure:

Conjugacy classes:

Irreducible Representations:  {1 , P , E}

Fusion of irreps: P ⊗ P = 1 , P ⊗ E = E ⊗ P = 1 ⊕ P ⊕ E

Organize the generalized charges.  
Other defects obtained by 
condensation.
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Neumann( )  
boundary

ℤ2
QP

1

SymTFT
D−

1 𝒪P

Did
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1
𝒪E

±
QE

1

Q[𝖻]
2

DA
2

Did
2 ⊕ DA

2

Q[𝖺]
2

ℒA

ℒb , ℒAb

Boundary defect category  :2Rep(ℤ(1)
3 ⋊ ℤ(0)

2 )

DA
2 ⊗ DA

2 = DA
2 ⊕ DCond

2

DA
2 ⊗ DCond

2 = 2DA
2

D−
1 ⊗ D−

1 = Did
1

* Additional choice of discrete torsion

Dirichlet and Neumann(Z2) Boundaries of S3 SymTFT



Summary of generalized charges

𝔅sym = 𝔅Dir 𝔅sym = 𝔅Neu(ℤ2)

QP
1

QE
1

Q[𝖺]
2

Q[𝖻]
2

𝒪P

𝒪E = {𝒪E
1 , 𝒪E

2}

{(ℒ𝖺 , Da
2) , (ℒ𝖺2 , Da2

2 )}

{(ℒ𝖻 , Db
2) , (ℒ𝖺b , Dab

2 ) , (ℒ𝖺2b , Da2b
2 )}

(𝒪P , D−
1 )

{𝒪E
+ , (𝒪E

− , D−
1 )}

(ℒA , DA
2 )

{ℒb , (ℒAb , DAb
2 )}

* Relative (twisted sector) point and line operators denoted as  and   respectively. (𝒪 , Dx
1) (ℒ , Dy

2)
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Spontaneously non-uniform entangled phase

≅

Neumann(ℤ2)

S3-SymTFT

SNE PhaseNeumann(ℤ2)

𝒪E
+

QE
1

𝒪E
+ Φ

QE
1 𝒪E

+

𝒪E
−

D−
1 D−

1

Φ−

Z2 1-form properties: 

Φ− ⋅ v0 = v0

Φ− ⋅ v1 = 0

(Z2 1-form preserving)

(Z2 1-form breaking)

v0 = (2 − Φ)/3 ,

Vacua (idempotents) are:

v1 = (1 + Φ)/3

Φ × Φ = Φ + 2
Algebra of local operators

Φ × Φ− = − Φ−

Symmetry action

DA
2
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Non-invertible symmetry action:
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2 : (v0 , v1) ⟶ (v0 + 2v1 , v0)

DA
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Sanity check:
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Non-minimal SNE Phases

S3-SymTFT

𝔅Neu(ℤ2)   𝔅T
Neu(ℤ2)

Ising TO Toric Code

(Non-minimal 
Z2 1-form SSB)

(Non-minimal 
Z2 1-form Trivial)

SymTFT setup Non-minimal SNE Phase 

(T = Toric Code)



A 2nd order transition  
involving SNE phase
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• Consider the  condensed interface in the S3 SymTFTQE
1
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Z2 SymTFT (3+1d Toric Code)
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Interface

• Pick the symmetry boundary as 𝔅Neu(ℤ2)

Provides a monoidal 2-functor Φ : 2Rep(𝔾) ⟶ 𝒮′￼

𝔅Neu(ℤ2)

2Rep(𝔾) QE
1

SymTFT(S3) SymTFT(ℤ2)

Interface 𝔅′￼

𝒮′￼

SymTFT(ℤ2)
Compactify
SymTFT(S3)

Multi Fusion  

2-category



• In the present case,  is the decomposable boundary of the Z2 SymTFT 𝔅′￼

. 𝒮′￼ = (2Rep(ℤ2) 2Vec
2Vec 2Vec(ℤ2))

𝔅′￼ = (𝔅m)0 ⊞ (𝔅e)1 𝔅′￼𝔅sym

on which the multi 2-fusion category of defects is 



•  is realized on  via the monoidal 2-functor 2Rep(ℤ(1)
3 ⋊ ℤ(0)

2 ) 𝔅′￼ Φ

Φ(D−
1 ) = (D−

1 )0 ⊕ (Did
1 )1

Φ(DA
2 ) = B01 ⊕ B10 ⊕ 111 .
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boundary produces the phase 

ℤ2 T

T′￼ =
T

ℤ(0)
2

⊞ T

𝔅′￼

SymTFT(ℤ2)

TT T′￼

Compactify
SymTFT(ℤ2)



• Inserting a  symm. gapless theory  on the physical 
boundary produces the phase 

ℤ2 T

T′￼ =
T

ℤ(0)
2

⊞ T

• Picking , produces the transition  transition between  T = Ising Ising/ℤ2 ⊕ Ising

Ising/ℤ2 ⊕ Ising
Triv Triv TrivToric Code Triv

[  SSB phase]2Rep(ℤ(1)
3 ⋊ ℤ(0)

2 ) [0-form  SSB x 1-form trivial phase]

𝔅′￼

SymTFT(ℤ2)

TT T′￼

Compactify
SymTFT(ℤ2)
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= ℂ[S3]
= , I.e.,  right cosets in S3ℂ3 ℤb

2
 objects in ∈ 𝒜
 morphisms in ∈ 𝒜

Generalized gauging  
via  𝒜 = ⨁

h∈H

𝒜h

[Minimal gauging  
when  ]𝒜 = Vecω

H

•  Hamiltonian: The state spaces admit a right action of 2Vec(S3), using which Hamiltonian operators can 
be defined as: 

defining the Hamiltonian via an algebra  produces a fixed-point limit of a gapped phase.ℬ = ⨁
k∈K

ℬk

[Inamura, Huang, Tiwari, Nameki ’25]



Schematic SymTFT Picture

Lattice Hilbert space 
with S3 degrees  

of freedom

𝔅Dir

𝔅DirSymTFT

Hamiltonian operators  
defined via ℬ Gauged Hilbert space 

𝔅Dir /𝒜
𝔅DirSymTFT

Hamiltonian operators  
defined via ℬ
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plaquettes.  We define operators 
|aq
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Zi |aq⟩ = e2πiq/3 |aq⟩
Xi |aq⟩ = |aq+1 mod 3⟩
Γi |aq⟩ = |a−q mod 3⟩
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= , I.e.,  right cosets in S3ℂ3 ℤb
2

 objects in ∈ 𝒜
 morphisms in ∈ 𝒜• Consider the basis , with  on the 

plaquettes.  We define operators 
|aq

i ⟩ q = 0,1,2

Zi |aq⟩ = e2πiq/3 |aq⟩
Xi |aq⟩ = |aq+1 mod 3⟩
Γi |aq⟩ = |a−q mod 3⟩

0 ,

• Consider the standard - Levin Wen operators on 
the edges and vertices of the triangulation

𝒜

Bx
i = xi i Aijk

i

jk

y x

z

=

hom(x, y ⊗ z) = ∅

i

jk

y x

z

else .
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• Let us choose . The corresponding fixed-point Hamiltonian isℬ = Vecℤb
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• Let us choose . The corresponding fixed-point Hamiltonian isℬ = Vecℤb
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3
+ (P𝒜b

)ij ⊗
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3
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𝒪1
i = ∑

x∈𝒜1

dx

𝒟
Bx

i , 𝒪b
i = ∑

x∈𝒜b

dx

𝒟
Bx

i Γi ,

(
1 0 0
0 0 1
0 1 0)
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• Symmetry operators can be constructed concretely that reproduce the 2Rep(2-group) action

|GS0⟩ = |Z(𝒜1)⟩ , |GS1⟩ = |Z(𝒜)⟩ 𝒰A |GS0⟩ = 2 |GS1⟩ , 𝒰A |GS1⟩ = |GS1⟩ + |GS0⟩ ,



Summary
• Spontaneous non-uniform entangled (SNE) phases are qualitatively new kinds of gapped 

phases protected by non-invertible (non-condensation) 2 fusion categorical symmetries.

• The SymTFT is a useful framework to organise various aspects of these phases as well as 
construct lattice models.

• Generalizations to “Emergent fermion type” 2-fusion categories.

• Generalizations to continuous non-invertible symmetries.

• Applications to quantum computing.
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phases protected by non-invertible (non-condensation) 2 fusion categorical symmetries.

• The SymTFT is a useful framework to organise various aspects of these phases as well as 
construct lattice models.

• Generalizations to “Emergent fermion type” 2-fusion categories.

• Generalizations to continuous non-invertible symmetries.

• Applications to quantum computing.

Thank you!!
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