Spontaneously Non-uniform Entangled Phases

Apoorv Tiwari

Assistant Professor

Centre for Quantum Mathematics &

Danish Institute for Advanced Study,

University of Southern Denmark

GAPPED PHASES OF MATTER

Conventional Symmetry Broken

→ E.g. Ising Ferromagnet, Dimer States

Conventional Symmetry Preserving

→ E.g. Paramagnets, Topological Insulators

(Often) Explained by Conventional Symmetries.

Conventional Symmetry Broken

→ E.g. Ising Ferromagnet, Dimer States

Conventional Symmetry Preserving

→ E.g. Paramagnets, Topological Insulators

(Often) Explained by Conventional Symmetries.

Topological Order

 \rightarrow E.g., Toric Code

→ E.g., Spin Liquids, Hall Fluids

Explained by Generalized Symmetries.

Main Message

• Non-invertible symmetries can support phases with ground states with distinct (non-uniform) entanglement patterns.

Main Message

• Non-invertible symmetries can support phases with ground states with distinct (non-uniform) entanglement patterns.

I will call these "Spontaneously non-uniform entangled phases" (SNE Phases).

Main Message

• Non-invertible symmetries can support phases with ground states with distinct (non-uniform) entanglement patterns.

I will call these "Spontaneously non-uniform entangled phases" (SNE Phases).

• This talk: I will describe such phases, associated transitions and lattice models using the SymTFT.

Based on:

- arXiv: 2502.20440 [Gapped Phases w/ Fusion 2-categorical symmetries]
 With Lakshya Bhardwaj, Sakura Schafer-Nameki & Alison Warman
- arXiv: 2503.12699 [Gapless Phases w/ Fusion 2-categorical symmetries]
 With Lakshya Bhardwaj, Yuhan Gai, Shengjie Huang, Kansei Inamura,
 Sakura Schafer-Nameki & Alison Warman
- arXiv: 2506.09177 [Lattice Models w/ Fusion 2-categorical symmetries]
 With Shengjie Huang, Kansei Inamura & Sakura Schafer-Nameki

S₃ symmetric Lattice Model

S₃ symmetric Lattice Model

Ground states and symmetry action

S₃ symmetric Lattice Model

= Qubit

= Qutrit

Ground states and symmetry action

Gauging non-normal

 \mathbb{Z}_2 subgroup symmetry

 \mathbb{Z}_3 SSB Phase

2Rep(G) symmetric Lattice Model

[Delcamp, Tiwari '23],

[Inamura, Huang, Tiwari, Nameki '25]

*
$$\mathbb{G} = \mathbb{Z}_3^{(1)} \times \mathbb{Z}_2^{(0)}$$

S₃ symmetric Lattice Model

= Qubit

= Qutrit

Ground states and symmetry action

Gauging non-normal

 \mathbb{Z}_2 subgroup symmetry

2Rep(G) symmetric Lattice Model

[Delcamp, Tiwari '23],

[Inamura, Huang, Tiwari, Nameki '25]

Ground states and symmetry action

[non-invertible symmetry]

[1-form Symmetry Breaking]

2Rep(G)
SSB Phase

 \mathbb{Z}_3 SSB Phase

[1-form Symmetry Preserving]

* $\mathbb{G} = \mathbb{Z}_3^{(1)} \times \mathbb{Z}_2^{(0)}$

Plan:

• Overview of Symmetry Topological Field Theory (SymTFT)

• SNE Phase from SymTFT Based on arXiv:2502.20440

• A second order transition involving the SNE Phase Based on arXiv:2503.12699

• Lattice realisation of SNE Phase Based on arXiv:2506.09177

Symmetry Topological Field Theory (SymTFT)

*Symmetry TFT = Topological Holography = Symmetry TO

A theoretical gadget that separates the dynamical properties of a quantum theory from its symmetry structure.

... [Witten];[Freed, Moore, Teleman]; [Apruzzi et al]; [Gaiotto, Kulp]; [Bhardwaj et al]; [Thorngren, Wang]; [Ji, Wen]; [Chatterjee, Wen]; [Moradi, Moosavian, AT]; [Kaidi, Ohmori, Zheng], [Lootens, Delcamp, Ortiz, Verstraete]; [Assen, Mong, Fendley]; [Lichtman, et al] ...

• Symmetries: Defects on the symmetry boundary.

- Symmetries: Defects on the symmetry boundary.
- Charged operators/multiplets: Classified by SymTFT defects.

- Symmetries: Defects on the symmetry boundary.
- Charged operators/multiplets: Classified by SymTFT defects.
- Gapped phases: Gapped physical boundaries. (Order parameters, ground states,...)

- Symmetries: Defects on the symmetry boundary.
- Charged operators/multiplets: Classified by SymTFT defects.
- Gapped phases: Gapped physical boundaries. (Order parameters, ground states,...)
- Generalized gauging: Changing symmetry boundary.

• Phase: Defined via a set of (Bosonic mutually local) Condensed charges

• Phase: Defined via a set of (Bosonic mutually local) Condensed charges

- Phase: Defined via a set of (Bosonic mutually local) Condensed charges
- Confined charges: Non-local with respect to a condensed charge is confined

- Phase: Defined via a set of (Bosonic mutually local) Condensed charges
- Confined charges: Non-local with respect to a condensed charge is confined

- Phase: Defined via a set of (Bosonic mutually local) Condensed charges
- Confined charges: Non-local with respect to a condensed charge is confined
- Deconfined charges: Local with respect to all condensed charges.

- Phase: Defined via a set of (Bosonic mutually local) Condensed charges
- Confined charges: Non-local with respect to a condensed charge is confined
- Deconfined charges: Local with respect to all condensed charges.

- Phase: Defined via a set of (Bosonic mutually local) Condensed charges
- Confined charges: Non-local with respect to a condensed charge is confined
- Deconfined charges: Local with respect to all condensed charges.

- Phase: Defined via a set of (Bosonic mutually local) Condensed charges
- Confined charges: Non-local with respect to a condensed charge is confined
- Deconfined charges: Local with respect to all condensed charges.

• Bulk Topological Defects of Z(2Vec_G):

• Topological Interfaces & Boundaries of $Z(2\text{Vec}_G)$:

SymTFT for Fusion 2-categorical symmetries

- Bulk Topological Defects of Z(2Vec_G):
 - 1. Codimension-1 defects: All condensation defects
 - 2. Codimension-2 defects: $\mathbb{Q}_2^{[g]}$ Rep(Z_g), additional condensation surfaces
 - 3. Codimension-3 defects: Q_1^R
- Topological Interfaces & Boundaries of $Z(2\text{Vec}_G)$:

^{* [}g] = Conjugacy class, Z_g = Centraliser group of $g \in [g]$, $R \in Rep(G)$

SymTFT for Fusion 2-categorical symmetries

- Bulk Topological Defects of Z(2Vec_G):
 - 1. Codimension-1 defects: All condensation defects
 - 2. Codimension-2 defects: $\mathbb{Q}_2^{[g]}$ Rep(Z_g), additional condensation surfaces
 - 3. Codimension-3 defects: Q_1^R
- Topological Interfaces & Boundaries of $Z(2\text{Vec}_G)$:
 - 1. Math approach: Based on etale algebras. [Xu, Decoppet '24, talk by Zhihao Zhang]
 - 2. Physics based approach: Based on gauging boundary conditions. [Bhardwaj, Nameki, Pajer, Tiwari, Warman, Wuʻ24]

^{* [}g] = Conjugacy class, Z_g = Centraliser group of $g \in [g]$, $R \in Rep(G)$

Gapped Boundaries via gauging

• Gapped boundaries are constructible by generalized gauging on the Dirichlet boundary (\mathfrak{B}_{Dir}) i.e., $\mathfrak{B}_{Neu(H)}^T = [\mathfrak{B}_{Dir} \boxtimes T]/H$.

Gapped Boundaries via gauging

- Gapped boundaries are constructible by generalized gauging on the Dirichlet boundary (\mathfrak{B}_{Dir}) i.e., $\mathfrak{B}_{Neu(H)}^T = [\mathfrak{B}_{Dir} \boxtimes T]/H$.
- Non-minimal boundaries: T is a non-trivial topological order.

Gapped Boundaries via gauging

- Gapped boundaries are constructible by generalized gauging on the Dirichlet boundary (\mathfrak{B}_{Dir}) i.e., $\mathfrak{B}_{Neu(H)}^T = [\mathfrak{B}_{Dir} \boxtimes T]/H$.
- Non-minimal boundaries: T is a non-trivial topological order.

Example:

$$\mathfrak{B}_{\text{Neu}(\mathbb{Z}_2)}^{\text{T}} = \frac{\mathfrak{B}_{\text{Dir}(\mathbb{Z}_2)} \boxtimes \text{Toric Code}}{\mathbb{Z}_2}$$

- 1. As symmetry boundaries: non-minimal \mathbb{Z}_2 1-form symmetry ($\{1, \psi, \bar{\psi}, \psi\bar{\psi}, \sigma\bar{\sigma}\}$)
- 2. As physical boundaries:
 - i. Non-minimal \mathbb{Z}_2 0-form preserving phase (Toric code)
 - ii. Non-minimal \mathbb{Z}_2 1-form breaking phase (Doubled Ising topological order)

S₃ SymTFT

• SymTFT(2Vec(S_3)) = SymTFT(2Rep(G)) = 4d S_3 Dijkgraaf-Witten Theory

S₃ conventions

Group structure: $S_3 = \langle a, b \mid a^3 = b^2 = 1, bab = a^2 \rangle$

Conjugacy classes: [id], [a] = $\{a, a^2\}$, [b] = $\{b, ab, a^2b\}$

Irreducible Representations: $\{1, P, E\}$

Fusion of irreps: $P \otimes P = 1$, $P \otimes E = E \otimes P = 1 \oplus P \oplus E$

· Bulk defects:

Surfaces	Lines
$Q_2^{[a]}$	Q_1^{P}
$Q_2^{[b]}$	Q_1^{E}

S₃ SymTFT

• $SymTFT(2Vec(S_3)) = SymTFT(2Rep(G)) = 4d S_3 Dijkgraaf-Witten Theory$

$$\Longrightarrow \mathbb{G} = \mathbb{Z}_3^{(1)} \rtimes \mathbb{Z}_2^{(0)}$$

S₃ conventions

Group structure: $S_3 = \langle a, b \mid a^3 = b^2 = 1, bab = a^2 \rangle$

Conjugacy classes: [id], [a] = $\{a, a^2\}$, [b] = $\{b, ab, a^2b\}$

Irreducible Representations: $\{1, P, E\}$

Fusion of irreps: $P \otimes P = 1$, $P \otimes E = E \otimes P = 1 \oplus P \oplus E$

• Bulk defects:

Surfaces	Lines
$Q_2^{[a]}$	Q_1^{P}
$Q_2^{[b]}$	Q_1^{E}

Organize the generalized charges.
Other defects obtained by
condensation.

Dirichlet boundary

Boundary defect category $2 Vec_{S_3}$ generated by $D_2^{\mathbf{g}}$.

Boundary defect category $2 Vec_{S_3}$ generated by $D_2^{\mathbf{g}}$.

Boundary defect category $2 Vec_{S_3}$ generated by $D_2^{\textbf{g}}$.

Boundary defect category $2 Vec_{S_3}$ generated by D_2^{g} .

Boundary defect category $2 Vec_{S_3}$ generated by $D_2^{\mathbf{g}}$.

Boundary defect category $2 Vec_{S_3}$ generated by $D_2^{\mathbf{g}}$.

Boundary defect category $2\text{Rep}(\mathbb{Z}_3^{(1)} \rtimes \mathbb{Z}_2^{(0)})$:

$$D_2^A \otimes D_2^A = D_2^A \oplus D_2^{Cond}$$

$$D_2^A \otimes D_2^{Cond} = 2D_2^A$$

$$D_1^- \otimes D_1^- = D_1^{id}$$

^{*} Additional choice of discrete torsion

Summary of generalized charges

	$\mathfrak{B}_{\text{sym}} = \mathfrak{B}_{\text{Dir}}$	$\mathfrak{B}_{\text{sym}} = \mathfrak{B}_{\text{Neu}(\mathbb{Z}_2)}$		
Q_1^{P}	\mathcal{O}^{P}	$(\mathcal{O}^{\mathbf{P}}, \mathbf{D}_1^{-})$		
Q_1^{E}	$\mathcal{O}^{\mathrm{E}} = \{\mathcal{O}_{1}^{\mathrm{E}}, \mathcal{O}_{2}^{\mathrm{E}}\}$	$\{\mathcal{O}_{+}^{\mathrm{E}},(\mathcal{O}_{-}^{\mathrm{E}},\mathbf{D}_{1}^{-})\}$		
$\mathcal{Q}_2^{[a]}$	$\{(\mathcal{L}^a, \mathrm{D}_2^a), (\mathcal{L}^a^2, \mathrm{D}_2^a^2)\}$	$(\mathscr{L}^{\mathrm{A}},\mathrm{D}_{2}^{\mathrm{A}})$		
$\mathcal{Q}_2^{[b]}$	$\{(\mathcal{L}^{b},D_{2}^{b}),(\mathcal{L}^{ab},D_{2}^{ab}),(\mathcal{L}^{a^{2}b},D_{2}^{a^{2}b})\}$	$\{\mathscr{L}^{b},(\mathscr{L}^{Ab},D_{2}^{Ab})\}$		

^{*} Relative (twisted sector) point and line operators denoted as (\mathcal{O}, D_1^x) and (\mathcal{L}, D_2^y) respectively.

SIVE Phase

Vacua (idempotents) are:

$$v_0 = (2 - \Phi)/3$$
,

$$v_1 = (1 + \Phi)/3$$

Vacua (idempotents) are:

$$v_0 = (2 - \Phi)/3$$
,

$$v_1 = (1 + \Phi)/3$$

Z2 1-form properties:

$$\Phi_{-} \cdot v_0 = v_0$$
 (Z2 1-form preserving)

$$\Phi_{-} \cdot v_{1} = 0$$
 (Z2 1-form breaking)

Non-invertible symmetry action:

$$D_2^A: (v_0, v_1) \longrightarrow (v_0 + 2v_1, v_0)$$

$$D_2^A = 1_{00} \oplus B_{01} \oplus \overline{B}_{10}.$$

Non-invertible symmetry action:

$$D_2^A: (v_0, v_1) \longrightarrow (v_0 + 2v_1, v_0)$$

$$D_2^A = 1_{00} \oplus B_{01} \oplus \overline{B}_{10}.$$

Sanity check:
$$D_{2}^{A} = D_{2}^{Cond}$$

$$D_{2}^{A} \otimes D_{2}^{A} = (1_{00} \oplus B_{01} \oplus \overline{B}_{10}) \oplus (\overline{B}\overline{B})_{00} \oplus (\overline{B}B)_{11}.$$

$$= D_{2}^{A} \oplus D_{2}^{Cond}.$$

Non-invertible symmetry action:

$$D_2^A: (v_0, v_1) \longrightarrow (v_0 + 2v_1, v_0)$$

$$D_2^A = 1_{00} \oplus B_{01} \oplus \overline{B}_{10}.$$

Sanity check:
$$D_2^A = D_2^{Cond}$$

$$D_2^A \otimes D_2^A = (1_{00} \oplus B_{01} \oplus \overline{B}_{10}) \oplus (B\overline{B})_{00} \oplus (\overline{B}B)_{11}.$$

$$= D_2^A \oplus D_2^{Cond}.$$

Non-minimal SNE Phases

SymTFT setup

Non-minimal SNE Phase

A 2nd order transition involving SNE phase

- Consider the $Q_1^{\rm E}$ condensed interface in the S3 SymTFT

implements a condensation to the Z2 SymTFT (3+1d Toric Code)

- Consider the $Q_1^{\rm E}$ condensed interface in the S3 SymTFT

implements a condensation to the Z2 SymTFT (3+1d Toric Code)

- Pick the symmetry boundary as $\mathfrak{B}_{\mathrm{Neu}(\mathbb{Z}_2)}$

Provides a monoidal 2-functor $\Phi: \operatorname{2Rep}(\mathbb{G}) \longrightarrow \mathcal{S}'$

• In the present case, ${f 3}'$ is the decomposable boundary of the Z2 SymTFT

$$\mathfrak{B}' = (\mathfrak{B}_{\mathrm{m}})_0 \boxplus (\mathfrak{B}_{\mathrm{e}})_1$$

on which the multi 2-fusion category of defects is

$$S' = \begin{pmatrix} 2\operatorname{Rep}(\mathbb{Z}_2) & 2\operatorname{Vec} \\ 2\operatorname{Vec} & 2\operatorname{Vec}(\mathbb{Z}_2) \end{pmatrix}.$$

• In the present case, ${f 3}'$ is the decomposable boundary of the Z2 SymTFT

$$\mathfrak{B}' = (\mathfrak{B}_{\mathrm{m}})_0 \ \boxplus \ (\mathfrak{B}_{\mathrm{e}})_1$$

on which the multi 2-fusion category of defects is

$$\mathcal{S}' = \begin{pmatrix} 2\operatorname{Rep}(\mathbb{Z}_2) & 2\operatorname{Vec} \\ 2\operatorname{Vec} & 2\operatorname{Vec}(\mathbb{Z}_2) \end{pmatrix}.$$

• $2\text{Rep}(\mathbb{Z}_3^{(1)} \rtimes \mathbb{Z}_2^{(0)})$ is realized on \mathfrak{B}' via the monoidal 2-functor Φ

$$\Phi(D_1^-) = (D_1^-)_0 \oplus (D_1^{id})_1$$

$$\Phi(D_2^A) = B_{01} \oplus B_{10} \oplus 1_{11}.$$

• Inserting a \mathbb{Z}_2 symm. gapless theory T on the physical boundary produces the phase

$$T' = \frac{T}{\mathbb{Z}_2^{(0)}} \quad \boxplus \quad T$$

• Inserting a \mathbb{Z}_2 symm. gapless theory T on the physical boundary produces the phase

$$T' = \frac{T}{\mathbb{Z}_2^{(0)}} \quad \boxplus \quad T$$

• Picking T = Ising, produces the transition Ising/ $\mathbb{Z}_2 \oplus$ Ising transition between

Lattice models

Non-minimal 2Rep(G) symmetric Lattice Model

S₃ symmetric Lattice Model

Non-minimal 2Rep(G) symmetric Lattice Model

Generalized gauging

$$via \mathscr{A} = \bigoplus_{h \in H} \mathscr{A}_h$$

[Minimal gauging when $\mathscr{A} = \mathrm{Vec}_{\mathrm{H}}^{\omega}$]

- = \mathbb{C}^3 , I.e., \mathbb{Z}_2^b right cosets in S_3
- \in objects in \mathscr{A}
- \in morphisms in \mathscr{A}

S₃ symmetric Lattice Model

Non-minimal 2Rep(G) symmetric Lattice Model

Generalized gauging

$$via \mathscr{A} = \bigoplus_{h \in H} \mathscr{A}_h$$

[Minimal gauging when $\mathscr{A} = \mathrm{Vec}_{\mathrm{H}}^{\omega}$]

- = \mathbb{C}^3 , I.e., \mathbb{Z}_2^b right cosets in S_3
- \in objects in \mathscr{A}
- \in morphisms in \mathscr{A}

• Hamiltonian: The state spaces admit a right action of 2Vec(S3), using which Hamiltonian operators can be defined as:

defining the Hamiltonian via an algebra $\mathscr{B} = \bigoplus_{k \in K} \mathscr{B}_k$ produces a fixed-point limit of a gapped phase.

Schematic SymTFT Picture

• Let us choose $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_b$.

• Let us choose $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_b$.

- Let us choose $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_b$.
- Consider the basis $|a_i^q\rangle$, with q=0,1,2 on the plaquettes. We define operators

$$Z_{i} | a^{q} \rangle = e^{2\pi i q/3} | a^{q} \rangle$$

$$X_{i} | a^{q} \rangle = | a^{q+1 \mod 3} \rangle$$

$$\Gamma_{i} | a^{q} \rangle = | a^{-q \mod 3} \rangle$$

• Let us choose $\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_b$.

• Consider the basis $|a_i^q\rangle$, with q=0,1,2 on the plaquettes. We define operators

$$Z_{i} | a^{q} \rangle = e^{2\pi i q/3} | a^{q} \rangle$$

$$X_{i} | a^{q} \rangle = | a^{q+1 \mod 3} \rangle$$

$$\Gamma_{i} | a^{q} \rangle = | a^{-q \mod 3} \rangle$$

• Consider the standard \mathcal{A} - Levin Wen operators on the edges and vertices of the triangulation

$$B_i^x$$
 =

On
$$A_{ijk} \mid \stackrel{z}{\underset{y = -\infty}{\downarrow}} = \begin{cases} 0, & \text{hom}(x, y \otimes z) = \emptyset \\ \frac{z}{\underset{y = -\infty}{\downarrow}} & \text{else}. \end{cases}$$

• Let us choose $\mathscr{B} = \operatorname{Vec}_{\mathbb{Z}^b}$. The corresponding fixed-point Hamiltonian is

$$\mathcal{H}_{\text{SNEP}} = -\sum_{ij} P_{ij} - \frac{1}{2} \sum_{i} \left[\mathcal{O}_{i}^{1} + \mathcal{O}_{i}^{b} \right]$$

• Let us choose $\mathscr{B} = \mathrm{Vec}_{\mathbb{Z}^b}$. The corresponding fixed-point Hamiltonian is

$$\mathcal{H}_{\text{SNEP}} = -\sum_{ij} P_{ij} - \frac{1}{2} \sum_{i} \left[\mathcal{O}_{i}^{1} + \mathcal{O}_{i}^{b} \right]$$

$$\downarrow g_{i}$$

$$\downarrow g_{i}$$

$$\downarrow g_{j}$$
1 or b

Projects onto:

$$(g_i, x_{ij}, g_j) \in \{(a^q, x, a^q) \mid x \in \mathcal{A}_1\} \sqcup \{(a^q, x, a^{-q}) \mid x \in \mathcal{A}_b\}$$

$$P_{ij} = (P_{\mathcal{A}_1})_{ij} \otimes \frac{1 + Z_i Z_j^{-1} + Z_i^{-1} Z_j}{3} + (P_{\mathcal{A}_b})_{ij} \otimes \frac{1 + Z_i Z_j + Z_i^{-1} Z_j^{-1}}{3}$$

• Let us choose $\mathscr{B} = \mathrm{Vec}_{\mathbb{Z}^{\S}}$. The corresponding fixed-point Hamiltonian is

Projects onto:

$$(g_i, x_{ij}, g_j) \in \{(a^q, x, a^q) \, | \, x \in \mathscr{A}_1\} \sqcup \{(a^q, x, a^{-q}) \, | \, x \in \mathscr{A}_b\}$$

$$P_{ij} = (P_{\mathcal{A}_1})_{ij} \otimes \frac{1 + Z_i Z_j^{-1} + Z i^{-1} Z_j}{3} + (P_{\mathcal{A}_b})_{ij} \otimes \frac{1 + Z_i Z_j + Z i^{-1} Z_j^{-1}}{3}$$

$$V = \operatorname{Span}_{\mathbb{C}} \left\{ (g_i, x_{ij}, g_j) \in \{ (a^q, x, a^q) \, | \, x \in \mathscr{A}_1 \} \sqcup \{ (a^q, x, a^{-q}) \, | \, x \in \mathscr{A}_b \} \right\}$$

$$V_0 = V \Big|_{q \neq 0}$$

$$V_0 = V \Big|_{q=0}$$

$$V = Span_{\mathbb{C}} \left\{ (g_i, x_{ij}, g_j) \in \{ (a^q, x, a^q) \, | \, x \in \mathscr{A}_1 \} \sqcup \{ (a^q, x, a^{-q}) \, | \, x \in \mathscr{A}_b \} \right\}$$

$$\mathbf{V}_0 = \mathbf{V} \Big|_{\mathbf{q} \neq \mathbf{0}}$$

$$\mathbf{V}_0 = \mathbf{V} \Big|_{\mathbf{q} = \mathbf{0}}$$

The Hamiltonians on the projected spaces have the form

$$V = \operatorname{Span}_{\mathbb{C}} \left\{ (g_i, x_{ij}, g_j) \in \{ (a^q, x, a^q) \, | \, x \in \mathscr{A}_1 \} \sqcup \{ (a^q, x, a^{-q}) \, | \, x \in \mathscr{A}_b \} \right\}$$

$$V_0 = V \Big|_{q \neq 0}$$

$$V_0 = V \Big|_{q=0}$$

The Hamiltonians on the projected spaces have the form

$$\mathcal{H}\Big|_{V_0} = -\sum_{i} \left[\sum_{x \in \mathcal{A}_1} \frac{d_x}{\mathscr{D}} B_i^x + \sum_{x \in \mathcal{A}_b} \frac{d_x}{\mathscr{D}} B_i^x \widetilde{\sigma}_i^x \right] - \sum_{ijk} A_{ijk}$$
Pauli-x in q=1,2 subspace

(Z2 enriched Levin Wen model based on \mathcal{A}_1)

$$V = \operatorname{Span}_{\mathbb{C}} \left\{ (g_i, x_{ij}, g_j) \in \{ (a^q, x, a^q) \, | \, x \in \mathscr{A}_1 \} \sqcup \{ (a^q, x, a^{-q}) \, | \, x \in \mathscr{A}_b \} \right\}$$

$$V_0 = V \bigg|_{q \neq 0}$$

$$V_0 = V \Big|_{q=0}$$

The Hamiltonians on the projected spaces have the form

$$\mathcal{H}\Big|_{V_0} = -\sum_{i} \left[\sum_{x \in \mathcal{A}_1} \frac{d_x}{\mathscr{D}} B_i^x + \sum_{x \in \mathcal{A}_b} \frac{d_x}{\mathscr{D}} B_i^x \widetilde{\sigma}_i^x \right] - \sum_{ijk} A_{ijk}$$
Pauli-x in q=1,2
subspace

(Z2 enriched Levin Wen model based on \mathcal{A}_1)

$$\mathcal{H} \bigg|_{V_1} = -\sum_{i} \sum_{x \in \mathcal{A}} \frac{d_x}{\mathcal{D}} B_i^x - \sum_{ijk} A_{ijk}$$

(Levin-Wen model based on \mathcal{A})

$$V = \operatorname{Span}_{\mathbb{C}} \left\{ (g_i, x_{ij}, g_j) \in \{ (a^q, x, a^q) \, | \, x \in \mathscr{A}_1 \} \sqcup \{ (a^q, x, a^{-q}) \, | \, x \in \mathscr{A}_b \} \right\}$$

$$V_0 = V \bigg|_{q \neq 0}$$

$$V_0 = V \Big|_{q=0}$$

The Hamiltonians on the projected spaces have the form

$$\mathcal{H}\Big|_{V_0} = -\sum_{i} \left[\sum_{x \in \mathcal{A}_1} \frac{d_x}{\mathscr{D}} B_i^x + \sum_{x \in \mathcal{A}_b} \frac{d_x}{\mathscr{D}} B_i^x \widetilde{\sigma}_i^x \right] - \sum_{ijk} A_{ijk}$$
Pauli-x in q=1,2 subspace

$$\mathcal{H} \bigg|_{V_1} = -\sum_{i} \sum_{x \in \mathcal{A}} \frac{d_x}{\mathcal{D}} B_i^x - \sum_{ijk} A_{ijk}$$

(Z2 enriched Levin Wen model based on \mathcal{A}_1)

(Levin-Wen model based on \mathcal{A})

· Symmetry operators can be constructed concretely that reproduce the 2Rep(2-group) action

$$|GS_0\rangle = |Z(\mathscr{A}_1)\rangle, |GS_1\rangle = |Z(\mathscr{A})\rangle$$
 $\mathscr{U}_A|GS_0\rangle = 2|GS_1\rangle, \mathscr{U}_A|GS_1\rangle = |GS_1\rangle + |GS_0\rangle,$

Summary

• Spontaneous non-uniform entangled (SNE) phases are qualitatively new kinds of gapped phases protected by non-invertible (non-condensation) 2 fusion categorical symmetries.

• The SymTFT is a useful framework to organise various aspects of these phases as well as construct lattice models.

Outlook

- · Generalizations to "Emergent fermion type" 2-fusion categories.
- · Generalizations to continuous non-invertible symmetries.
- · Applications to quantum computing.

Summary

• Spontaneous non-uniform entangled (SNE) phases are qualitatively new kinds of gapped phases protected by non-invertible (non-condensation) 2 fusion categorical symmetries.

• The SymTFT is a useful framework to organise various aspects of these phases as well as construct lattice models.

Outlook

- · Generalizations to "Emergent fermion type" 2-fusion categories.
- · Generalizations to continuous non-invertible symmetries.
- · Applications to quantum computing.

Thank you!!