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Symmetry and Organisation of Phases

Short-Range-Entangled Long-Range-Entangled
>
Complexity
Conventional Symmetry Broken ,
, , Topological Order
— E.g. Ising Ferromagnet, Dimer States
Conventional Symmetry Preserving — E.g., Toric Code
— E.g. Paramagnets, Topological Insulators s E.g., Spin Liquids, Hall Fluids

(Often) Explained by Conventional Symmetries. Explained by Generalized Symmetries.
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Main Message

. Non-invertible symmetries can support phases with ground states with distinct

> } oymmetry

[ will call these "Spontaneously non-uniform entangled phases” (SNE Phases)

(non-uniform) entanglement patterns.

. [his talk: Twill describe such phases, associated transitions and lattice

models using the SymTFT



Based on:

e arXiv: 2502.20440 [Gapped Phases w/ Fusion 2-categorical symmetries]
With Lakshya Bhardwaj, Sakura Schafer-Nameki & Alison Warman

e arXiv: 2503.12699 [Gapless Phases w/ Fusion 2-categorical symmetries]

With Lakshya Bhardwaj, Yuhan Gai, Shengjie Huang, Kansei Inamura,
Sakura Schafer-Nameki & Alison Warman

 arXiv: 2506.09177 [Lattice Models w/ Fusion 2-categorical symmetries]

With Shengjie Huang, Kansei Inamura & Sakura Schafer-Nameki
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Plan:

» Overview of Symmetry Topological Field Theory (SymTEFT)

- SNE Phase from SymTFT Based on arXiv:2502.20440

» A second order transition involving the SNE Phase Based on arXiv:2503.12699

« Lattice realisation of SNE Phase Based on arXiv:2506.09177



Symmetry Topological Field Theory (SymTFET)

*symmetry TET = Topological Holography = Symmetry TO

A theoretical gadget that separates the dynamical properties of a
quantum theory from its symmetry structure

cf Talks by:

Ling-Yan Hung, Jiahua Tian,
Wenjie Ji and Sakura Schafer-
Nameki.

|12

S-SymTFT

symmetry dynamics S-symmetric
(Topological boundary) theory

... [Witten];[Freed, Moore, Teleman]; [Apruzzi et al]; [Gaiotto, Kulp]; [Bhardwaj et al]; [Thorngren, Wang]; [Ji, Wen];
[Chatterjee, Wen]; [Moradi, Moosavian, AT]; [Kaidi, Ohmori, Zheng], [Lootens, Delcamp, Ortiz, Verstraete]; [Assen, Mong, Fendley]; [Lichtman, et al] ...
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e Symmetries: Defects on the symmetry boundary.
e Charged operators/multiplets: Classified by SymTFT defects.
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(symmetry boundary) (physical boundary) § symmetric system

e Symmetries: Defects on the symmetry boundary.
e Charged operators/multiplets: Classified by SymTFT defects.

e Gapped phases: Gapped physical boundaries. (Order parameters, ground states,...)
e Generalized gauging: Changing symmetry boundary.

[Lin, Okada, Seifnashri, Tachikawa], [Bhardwaj, Schafer-Nameki], [ Bartsch, Bullimore, Grigoletto, Pearson]
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‘Generalized Meissner Effect’

- Phase: Defined via a set of (Bosonic mutually local) Condensed charges
- Confined charges: Non-local with respect to a condensed charge is confined

- Deconfined charges: Local with respect to all condensed charges.

Reduced TFT
SymIFT of deconfined charges

Topological Interface
(Condensable algebra)
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All Boson type Emergent Fermion type
CUS (SymTET is Z(2Vec?)) (SymTFT 1s Z(2Vec’éff )

- Bulk Topological Defects of Z(2Vec) :

1. Codimension-1 defects: All condensation defects

2. Codimension-2 defects: @58]‘ ) Rep(Zg) , additional condensation surfaces

3. Codimension-3 defects: @If

- Topological Interfaces & Boundaries of Z(2Vec) :

" [g] = Conjugacy class, Z, = Centraliser group of g € [g], R € Rep(G)
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Fusion 2-categorical symmetries

Emergent Fermion type

All Boson type |
Sl (SymTFT is Z(2Veck,)) (SymTFT s Z(2Vec)))

- Bulk Topological Defects of Z(2Vec) :

1. Codimension-1 defects: All condensation defects

2. Codimension-2 defects: @gg], ) Rep(Zg) , additional condensation surfaces

3. Codimension-3 defects: @If

- Topological Interfaces & Boundaries of Z(2Vec) :

1. Math approach: Based on etale algebras. [Xu, Decoppet ¢ 24, talk by Zhihao Zhang]

2, Physics based approach: Based on gauging boundary conditions.
| Bhardwaj, Nameki, Pajer, Tiwari, Warman, Wu ¢ 24]

" [g] = Conjugacy class, Z, = Centraliser group of g € [g], R € Rep(G)
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Gapped Boundaries via gauging

- Gapped boundaries are constructible by generalized gauging on the
Dirichlet boundary (8Bp,,) 1e. B an = [Boi X T|/H

- Non-minimal boundaries : T is a non-trivial topological order.

Example . Bpirz,) X Toric Code
%Neu(Zz) — Z,

1 Assymmetry boundaries non-minimal Z, 1-form symmetry {1,y , y, Wy, 06 })

2. As physical boundaries:
1. Non-minimal Z, O-form preserving phase (Toric code)

i. Non-minimal Z, 1-form breaking phase (Doubled Ising topological order)
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- SymTFET(2Vec(S,)) = SymTFET(2Rep(G)) = 4d Sz Dijkgraat-Witten Theory

— 7(1) (0)
G=2,"XZ,

S3 conventions
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O30V

- SymTFET(2Vec(S,)) = SymTFET(2Rep(G)) = 4d Sz Dijkgraat-Witten Theory

- Bulk defects:

— 7(1) (0)
G=2,"XZ,

S3 conventions

Group structure: S, = (a,b |a’ =b” = 1,bab = a?)

Conjugacy classes: [id],[a] = {a,a’},[b] = {b,ab,a’b)

Irreducible Representations: {1,P,E}

Fusion of irreps: PP =1,

Surfaces

PRIE=EQP=1®dPDE

Organize the generalized charges.
Other defects optained by
condensation.
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Dirichlet and Neumann(Z;) Boundaries of S3 SymTFT

Dirichlet
boundary Neumann(Z,) Dj
boundary
Dy @ Dy
Gauging
non-normal
| | Zg Zg subgroup

symmetry I

Boundary defect categorv 2Vec« generated by D8
/ S S5 s Boundary defect category 2Rep(Z§1) X Z(zo)):

D} ® D5 = D5 @ D5°
A Cond _ A

D2 ® D5 = 2D4

D; ® Dy = DY

*~ Additional choice of discrete torsion



Summary ol generalized charges

23sym = B, 23sym — 23Neu(zz)
0, oF (6P, D7)
Oy OF = (6%, OF) (0%, (OF,D)))
QL] ((Z%,D3),(£*,DY)) (£*, D)
O | {(£*.DY.(Z*.DP),(£*",D5P)) (L. (2", D))

* Relative (twisted sector) point and line operators denoted as (O, Dy) and (fZ,Dzy) respectively.
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53=SymTFT Algebra of local operators
OXDPD=O]D+2
0y PXD =—D_
= Symmetry action
Oy

Neumann(Z,) Neumann(Z,) SNE Phase



Spontaneously non-uniform entangled phase

S3'SymTFT

Algebra of local operators

OXD=D+?2
OXP =—-—0]_

|12

Symmetry action

Neumann(Z,) ann(Zz) SNE Phase

Vacua (ildempotents) are:
VO — (2 — (I))/g o
v, = (1 + ®)/3



Spontaneously non-uniform entangled pnhase

53=SymTFT Algebra of local operators
OXD=O]+2
Oy OxD_ =—D_
a symmetry action
Oy
Neumann(Z,) Neumann(Z,) SNE Phase
Vacua (idempotents) are: 72 1-form properties:
vy = (2 — ®)/3, O -v,=v, (£21-form preserving)

v, = (1 4+ ®)/3 ®_-v, =0 (Z21-form breaking)
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Spontaneously non-uniform entangled pnhase

Non-invertible symmetry action:
]:)12Ax . (VO : Vl) — > (VO + 2V1 . Vo)

Dy = 1y ® By © By




Spontaneously non-uniform entangled pnhase

Non-invertible symmetry action: Sanity check:
D? Dgond

D3 ® Dy = (199 @ By; @ Bp) & (BB)yy @ (BB),; .

D? . (VO : Vl) — > (VO + 2V1 . Vo)




Spontaneously non-uniform entangled pnhase

Non-invertible symmetry action: Sanity check:
D‘;‘ Dgond
A . _ — —
D2 : (VO , V1) —> (VO + 2V1 ,Vo) DzzAx ® DzzAx — (100 D BOI D BIO) D (BB)OO D (BB)H .
D5 = 1oy @ By; @ By. = D5 @ D5°™.

[non-invertible
symmetry]

)

[1-form Symmetry [1-form Symmetry 2Rep(G)
Preserving] Breaking] SSB Phase




Non-minimal SNE Pnhases

SymTFT setup Non-minimal SNE Phase

S3-SymTFT

Ising TO Toric Code

(Non-minimal (Non-minimal
/2 1-form SSB) /2 1-tform Trivial)

T
%NGU(Zz)
(T = Toric Code)




A ?2nad order transition
nvolving SNE phase






- Consider the QF condensed interface in the S3 SymTFT
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: implements a condensation to the
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- Consider the QF condensed interface in the S3 SymTFT

SymTFT(S;) SymTFT(Z,)

OF . OF e implements a condensation to the
L ; e S Z2 SymTFT (3+1d Toric Code)
et S
0, oy
Interface
. Pick the symmetry boundary as %Neu(zz) > g/lumt usien
-category
SymTFT(S;) SymTFT(Z,) SymTFT(Z,)
Compactity
SymTFT(S;) l S’ C
23Neu(Zz) Interface %

Provides a monoidal 2-functor @ : 2Rep(G) — &



. |n the present case, B'is the decomposable boundary of the Z2 SymTFT EI: # ‘

B = (%m)O (%e)l B Sym B’

on which the multi 2-fusion category of defects is

KCS”— (2Rep(Zz) 2Vec ) A

2Vec  2Vec(Z,)
\_ /




. |n the present case, B'is the decomposable boundary of the Z2 SymTFT ‘ » ‘

B = (%m)o (%e)l B Sym B’

on which the multi 2-fusion category of defects is

KCS”— (2Rep(Zz) 2Vec ) A

2Vec 2Vec(Z,)
\_ J

. 2Rep(Z" x ) is realized on B’ via the monoidal 2-functor @

4 . N
(D7) = (D7), ® (DY),

®(D3) =By @By ® 1y -
\_ /




nsert|

Ng a Z, symm. gapless theory T on the physical

OOUNG

ary produces the phase
4
T = !
— 76
\_

%/

SymTFT(Z,)

Compactity

SymTFT(Z,) I

T/



poundary produces the phase

-
T = -
— Zg))

\-

nserting a Z, symm. gapless theory T on the physical

SymTFT(Z,)

%/

Compactity

SymTFT(Z,) I

T T

» Picking T = Ising, produces the transition Ising/Z, @ Ising transition between

-

\_

[ <

Toric Ejode Triv

[2Rep(Z"” % Z{") SSB phase]

Ising/Z, & Ising

~

/

> [ [ o

Triv Triv Triv

|O-form SSB x 1-form trivial phose)
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[Inamura, Huang, Tiwari, Nameki ’25]



Ss symmetric Lattice Model ﬁ Non-minimal 2Rep(G) symmetric Lattice Model

[Inamura, Huang, Tiwari, Nameki ’25]



S3 symmetric Lattice Model

Q=D

ﬁ

Generalized gauging

via d = @ o,

heH

[Minimal gauging
when & = Vecy |

Non-minimal 2Rep(() symmetric Lattice Model

o =-C’, I.e.,Zg right cosets in S3

» €E objectsin &
€ morphisms in &

~

[Inamura, Huang, Tiwari, Nameki ’25]




S3 symmetric Lattice Model

Y T (et

_J

d

Generalized gauging

via d = @ o,
heH

[Minimal gauging
when & = Vecy |

Non-minimal 2Rep(() symmetric Lattice Model

o 1
p—_— P
N
® » o
|
o
- N
‘ 1

~

o =-C’, I.e.,Zg right cosets in S3

€ objectsin &
€ morphisms in &

~

- Hamiltonian: The state spaces admit a right action of 2Vec(S3), using which Hamiltonian operators can

be defined as:

defining the Hamiltonian via an algebra &8 = 9B, produces a fixed-point limit of a gapped phase.
k

keK

[Inamura, Huang, Tiwari, Nameki ’25]




Schematic symTFT Picture

/

Lattice Hilbert space Hamiltonian operators
with S3 degrees defined via & Gauged Hilbert space Hamiltonian operators

of freedom defined via &%
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- Let us choose &/ = o, @ ..

. Consider the basis | a?), with g = 0,1,2 on the
plaquettes. We define operators

Zi | aq> _ eZﬂiq/?v | aq>

Xi ‘ aq> — ‘ aq+1mod3>

I ) = [a1m0%)

[ .attice model for non-minimal SN

Phase
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o =-C’, I.e.,le’ right cosets in S3
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- Let us choose &/ = o, @ ..

. Consider the basis | a?), with g = 0,1,2 on the
plaquettes. We define operators

Zi | aq> _ eZﬂiq/?v | aq>

Xi ‘ aq> — ‘ aq+1mod3>

I ) = [a1m0%)

[ attice model for non-minimal SNE Phase

-

o =-C’, I.e.,le’ right cosets in S3

€ objectsin &
€ morphisms in &

~

- Consider the standard &/- Levin Wen operators on

the edges and vertices of the triangulation

[Ty = [T01)

Ajix

0, hom(x,y®z) = &

y4
k| ]
else..
y ' x







. Let us choose % = Vec . The corresponding fixed-point Hamiltonian is

%SNEP:_ZPij_%Z [@il'l'@?]

y 1



. Let us choose % = Vec . The corresponding fixed-point Hamiltonian is

. SNEP = _ZPij_%z [@il"'@ﬂ
i i

Projects onto:
(2 X 2) € {(@% x,a% | x € o, } U {(a% x,a™9)|x € )

1 +277' +Zi7'Z 1+ 2722+ Zi"'Z;"
B AL L e a—

Py=Pgy); ®




. Let us choose % = Vec . The corresponding fixed-point Hamiltonian is

. SNEP = _ZPij_%z [@il"'@ﬂ
i i |

Projects onto:
(2 X 2) € {(@% x,a% | x € o, } U {(a% x,a™9)|x € )

dX
=2 5B
1 +277' +Zi7'Z 1+ 27272+ Zi"'Z;" ! g 1’
— 53 T Py )i ® —

Py=Pgy); ®

]l orb
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- The subspace projected by P;, decomposes into a direct sum vV =V, @ V,

1]’

V = Spang {(gi, Xj g) € t@Lx,al)[x € A} U@L x,a™)|x € ‘Q[b}}

V() =V VO =
g0 =0

- The Hamiltonians on the projected spaces have the form
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XE&Zfl XetQ[b l ljk

1 xed jk
Pauli-x in gq=1,2
subspace

(Z2 enriched Levin Wen model based on &) (Levin-Wen model based on &)




- The subspace projected by P;, decomposes into a direct sum vV =V, @ V,

1]’

V = Spang {(gi, Xj g) € t@Lx,al)[x € A} U@L x,a™)|x € ‘Q[b}}

q7#0 q=0

- The Hamiltonians on the projected spaces have the form

7|, =X Z o Zom| - X 7| -2 T Em-Ta

XeH (S jk

1 xed jk
Pauli-x in gq=1,2
subspace

(Z2 enriched Levin Wen model based on &/ ) (Levin-Wen model based on /)

- Symmetry operators can be constructed concretely that reproduce the 2Rep(2-group) action

|GSy) = 1Z(A ), |GSy) = |Z(A)) Ux1GSg) =21GSy), UAIGSy) =1GS)) +1GSy)



oummary

- Spontaneous non-uniform entangled (SNE) phases are qualitatively new kinds of gapped
phases protected by non-invertible (non-condensation) 2 fusion categorical symmetries.

- The SymTFT is a useful framework to organise various aspects of these phases as well as
construct lattice models.

Outlook

- Generalizations to “Emergent fermion type” 2-fusion categories.

- Generalizations to continuous non-invertible symmetries.

- Applications to quantum computing.
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- Spontaneous non-uniform entangled (SNE) phases are qualitatively new kinds of gapped
phases protected by non-invertible (non-condensation) 2 fusion categorical symmetries.

- The SymTFT is a useful framework to organise various aspects of these phases as well as
construct lattice models.

Outlook

- Generalizations to “Emergent fermion type” 2-fusion categories.

- Generalizations to continuous non-invertible symmetries.

- Applications to quantum computing.

Thank you!!



