Categorical Anomalies

(or RG flows in the SymTFT)

Andrea Antinucci

(Oxford)
Generalized symmetries in HEP and CMP

01/08/2025

2508.XXXX with Christian Copetti, Yuhan Gai and Sakura Schäfer-Nameki

"Anomalies" are very powerful

['t Hooft '79; Witten '83]

Caveat: symmetry does NOT need to be the same in IR

- A sub-symmetry can be come trivial
- Emergent (higher-form) symmetries
- $G_{\text{LIV}}^{(0)}$ in the IR doesn't act on local operators, but on extended objects

'Phenomenology' of anomaly matching:

- Emergent anomalies. E.g. anomaly free $\mathbb{Z}_4 \longrightarrow$ anomalous $\mathbb{Z}_4/\mathbb{Z}_2 \cong \mathbb{Z}_2$
- UV anomaly of 0-form symmetry → anomaly of "emergent" higher-form symmetry (fractionalization/transmuation [Barkeshli, Bonderson, Cheng, Wang '14; Wang, Wen, Witten '17] [Delmastro, Gomis, Hsin Komargodski '22; Brennan, Cordova, Dumitrescu '22; AA, Benini, Rizi '24; Seiberg, Seifnashri '25]

What is the most general constraint?

Non-invertible symmetries

- Hard to separate anomaly from symmetry
- ullet Only Yes/No type of definitions: ${\cal C}$ anomalous if no trivially gapped realization.
- Not enough for "anomaly matching":

When can two anomalous symmetries C_{UV} , C_{IR} be connected by an RG?

Formulation of anomaly (symmetry) matching?

- Symmetry in QFT has to be thought of as (higher) tensor category.
- The UV symmetry defects remain topological in the IR: fusions and (higher) associativity data are invariant.
- RG interfaces

Central concept: **tensor functors**

$$F: \mathcal{C}_{\mathsf{UV}} \to \mathcal{C}_{\mathsf{IR}}$$

- When a tensor functor $F : \mathcal{C}_{\mathsf{UV}} \to \mathcal{C}_{\mathsf{IR}}$ exists?
- Extract some "data" $\mathfrak{A}(\mathcal{C})$

Very complicated (especially w/ non-invertible and/or d > 2 ...

Central concept: tensor functors

$$F: \mathcal{C}_{\mathsf{UV}} \to \mathcal{C}_{\mathsf{IR}}$$

- When a tensor functor $F : \mathcal{C}_{\mathsf{UV}} \to \mathcal{C}_{\mathsf{IR}}$ exists?
- Extract some "data" $\mathfrak{A}(\mathcal{C})$

Very complicated (especially w/ non-invertible and/or d > 2 ...

SymTFT!

Out(punch)line

1 Tensor functors are SymTFT interfaces

- 2 Functor/interface dictionary
- 3 Normal subcategories and short-exact-sequences

$$\mathcal{N} \to \mathcal{C} \to \mathcal{S}$$

- 4 Anomalous Simple Categories (ASCies) $\mathcal{S}: \mathfrak{A}(\mathcal{C}) = \{\mathcal{S}_1, \mathcal{S}_2, ...\}$
- **6** Examples:
 - Known
 - Expected
 - New

Symmetry Topological Field Theory (SymTFT)

Any symmetry \mathcal{C} in d-dim $\cong (\mathfrak{Z}(\mathcal{C}), \mathfrak{B}^{\mathsf{sym}}_{\mathcal{C}})$

- $\mathfrak{Z}(\mathcal{C}) = (d+1)$ -dim TQFT = (flat) gauging \mathcal{C} in (d+1)-dim (state-sum).
- $\mathfrak{B}^{\mathsf{sym}}_{\mathcal{C}} = \mathsf{topological}$ boundary condition (Lagrangian algebra $\mathcal{L}_{\mathcal{C}}$)

"Isolate symmetry/topology from dynamics"

Symmetry Matching Equation (ME)

$$\mathfrak{B}_{\mathsf{UV}}^{\mathsf{sym}} imes \mathcal{I}_F = \mathfrak{B}_{\mathsf{IR}}^{\mathsf{sym}}$$

- Intuition: \mathcal{I}_F is symmetric under $\mathcal{C}_{\mathsf{UV}}$.
- Action of F on $D \in \mathcal{C}_{LIV}$ determined by action of \mathcal{I}_F on O, $\pi_{LIV}(O) = D$:

$$F(\mathsf{D}) = \pi_{\mathsf{IR}} \left(\mathcal{I}_F(Q) \right)$$

• The (ME) $\equiv \mathcal{I}_F(\mathcal{L}_{UV}) = \mathcal{L}_{IR} \Longrightarrow$ independence on arbitrariness in Q

Injective functors $\longleftrightarrow \mathcal{C}_{\mathsf{UV}}$ acts faithfully in the IR

- $F^*: \mathcal{Q}_{\mathcal{C}_{\mathsf{IR}}} \to \mathcal{Q}_{\mathcal{C}_{\mathsf{IN}}}$ is surjective $\Longrightarrow \mathcal{A} = \ker(F^*)$ trivialized charges.
- $\mathfrak{Z}(\mathcal{C}_{\mathsf{UV}}) = \mathfrak{Z}(\mathcal{C}_{\mathsf{IR}})/\mathcal{A}_F$, $\mathcal{A}_F \subset \mathcal{L}_{\mathcal{C}_{\mathsf{IR}}}$ condensable **electric** algebra.

• $\mathfrak{B}^{\mathsf{sym}}_{\mathsf{LIV}} imes \mathcal{I}_F \leftrightarrow \mathcal{L} \in \mathfrak{Z}(\mathcal{C}_{\mathsf{IR}})$ by sequential gauging \Longrightarrow choose $\mathcal{L}_{\mathsf{IR}} = \mathcal{L}$

Example: (1+1)d, $C_{LIV} = Vec_{\mathbb{Z}_2}^1$.

$$\mathfrak{Z}(\mathcal{C}_{\mathsf{UV}}) = \mathsf{DW}(\mathbb{Z}_2^1) = rac{2\pi i}{2} \int_{X_2} a \cup db + a \cup eta(a) \; .$$

Choose

$$\mathfrak{Z}(\mathcal{C}_\mathsf{IR}) = \mathsf{DW}(\mathbb{Z}_4) = rac{2\pi i}{4} \int_{X_3} a \cup db$$
 $e = e^{i \int a} \ , \ \ m = e^{i \int b} \ , \ \ heta(e^{n_e} m^{n_m}) = e^{rac{2\pi i}{4} n_e n_m}$

We have $\mathfrak{Z}(\mathcal{C}_{\mathsf{LIV}}) = \mathfrak{Z}(\mathcal{C}_{\mathsf{IR}})/\mathcal{A}$ with

$$A = 1 \oplus e^2 m^2$$

The (ME) is satisfied with

$$\mathcal{L}_{\mathsf{IR}} = 1 \oplus e^2 \oplus m^2 \oplus e^2 m^2 \Longrightarrow \mathcal{C}_{\mathsf{IR}} = \mathsf{Vec}^\omega_{\mathbb{Z}_2 imes \mathbb{Z}_2}$$

The functor is

The functor is
$$F: \mathsf{Vec}^1_{\mathbb{Z}_2} o \mathsf{Vec}^\omega_{\mathbb{Z}_2 imes \mathbb{Z}_2} \;, \;\; F(\mathsf{D}) = \mathsf{D}_1 \mathsf{D}_2$$

Surjective functors ←→ **no** emergent symmetries

- ker(F)=trivial subsymmetry in IR
- $\Im(\mathcal{C}_{\mathsf{IR}}) = \Im(\mathcal{C}_{\mathsf{UV}})/\mathcal{A}_F$, $\pi_{\mathsf{UV}}(\mathcal{A}_F) = \ker(F)$.
- A_F magnetic condensable algebra $: A_F \cap \mathcal{L}_{\mathsf{UV}} = \{1\}$

From the (ME) $\mathfrak{B}_{\mathsf{UV}}^{\mathsf{sym}} \times \mathcal{I}_F = \mathfrak{B}_{\mathsf{IR}}^{\mathsf{sym}}$: magnetic \mathcal{A}_F follows from simplicity of $\mathfrak{B}_{\mathsf{UV}}^{\mathsf{sym}} \times \mathcal{I}_F$.

- The trivialized symmetry $\ker(F)$ does **not** determine \mathcal{A}_F : $\pi_{\mathsf{UV}}(\mathcal{A}_F^{(i)}) = \ker(F)$.
- Different $\mathcal{A}_F^{(i)} o \operatorname{different} \mathfrak{Z}(\mathcal{C}_{\mathsf{IR}}^{(i)}) = \mathfrak{Z}(\mathcal{C}_{\mathsf{UV}})/\mathcal{A}_F^{(i)} o \operatorname{different} \mathcal{C}_{\mathsf{IR}}^{(i)}.$
- (invertible symm): Emergent anomalies
- (non-invertible): More surprising: even fusion rules can be different!!!

Example: (1+1)d, $C_{UV} = Vec_{\mathbb{Z}_4}$.

$$\mathcal{L}_{\mathsf{UV}} = 1 \oplus e \oplus e^2 \oplus e^3 \Longrightarrow \mathsf{D} = \pi_{\mathsf{UV}}(e^x m)$$

To trivialise $\mathbb{Z}_2 \subset \mathbb{Z}_4$, two choices (only two magnetic algebras)

- $2 \mathcal{A}_1 = 1 \oplus e^2 m^2 \Longrightarrow \mathsf{Vec}^1_{\mathbb{Z}_2}$

Physically, to gap-out $\mathbb{Z}_2 \subset \mathbb{Z}_4$: $\mathcal{O}_e(x)$ heavy while $\mathcal{O}_{e^2}(x)$ light. But

- **1)** $\mathcal{O}_m(x)$ light, while $\mathcal{O}_{em}(x)$ heavy too.
- ② $\mathcal{O}_m(x)$ also heavy, while $\mathcal{O}_{em}(x)$ remains light.

Fiber functors $F: \mathcal{C}_{\mathsf{UV}} \to (\mathsf{d-1})\text{-Vec}$

- Physically: RG flow that trivializes the symmetry.
- Surjective $\Longrightarrow \mathcal{A} \in \mathfrak{Z}(\mathcal{C}_{\mathsf{UV}})$ magnetic.
- $\mathcal{Z}((d-1)\text{-Vec}) = \text{trivial} \Longrightarrow \mathcal{I}_F = \text{b.c.} \Longrightarrow \mathcal{A}_F = \text{Lagrangian}$

$\mathcal{C}_{\mathsf{UV}}$ anomalous iff \nexists magnetic Lagrangian algebra

[Kaidi, Nardoni, Zheng; Zhang, Cordova; AA, Benini, Copetti, Galati, Rizi; Cordova, Hsin, Zhang '23]

Normal subcategories

A subcategory $\mathcal{N} \subset \mathcal{C}$ is **normal** if

$$\mathcal{N} \stackrel{I}{\longrightarrow} \mathcal{C} \stackrel{P}{\longrightarrow} \mathcal{S}$$
, $\mathsf{im}(I) = \ker(P)$

- $P \circ I$ is a fiber-functor $\Longrightarrow \mathcal{N}$ is anomaly free
- $\mathcal{N} = \ker(P) \Longrightarrow$ determined by a magnetic algebra $\mathcal{A}_P \in \mathfrak{Z}(\mathcal{C})$

$$\mathcal{A}_I \otimes \mathcal{A}_P$$
, Lagrangian algebra

Normal subcategories

A subcategory $\mathcal{N} \subset \mathcal{C}$ is **normal** if

$$\mathcal{N} \xrightarrow{I} \mathcal{C} \xrightarrow{P} \mathcal{S}$$
, $\mathsf{im}(I) = \ker(P)$

- $P \circ I$ is a fiber-functor $\Longrightarrow \mathcal{N}$ is anomaly free
- $\mathcal{N} = \ker(P) \Longrightarrow$ determined by a magnetic algebra $\mathcal{A}_P \in \mathfrak{Z}(\mathcal{C})$

 $\mathcal{A}_I \otimes \mathcal{A}_P$, Lagrangian algebra

$$\mathcal{L}_{\mathcal{N},\mathsf{mag}}\otimes\mathcal{L}_{\mathcal{S}}$$
 $\mathfrak{Z}(\mathcal{S})=\mathfrak{Z}(\mathcal{C})/\mathcal{A}_{P}$ $\mathfrak{Z}^{\mathsf{sym}}_{\mathcal{N}}$ $\mathfrak{Z}^{\mathsf{sym}}_{\mathcal{S}}$

Normal subcategories: physical interpretation

 ${\cal N}$ is a subgategory that can be gapped out consistently without emergent symmetries

Not all anomaly free subcategories are normal!

Example: $\operatorname{Vec}_{\mathbb{Z}_4}^{\omega=2}$.

 $\mathbb{Z}_2 \subset \mathbb{Z}_4$ is anomaly free. But **not** normal!

 $\mathfrak{Z}(\mathsf{Vec}^2_{\mathbb{Z}_4}) = \mathsf{DW}(\mathbb{Z}_4^2)$ does not have magnetic algebras $\mathcal{A} \cap \mathcal{L}_{\mathcal{C}} = \{1\} \Longrightarrow$ no surjective functor $P : \mathsf{Vec}^2_{\mathbb{Z}_4} \to \mathcal{S}$.

To gap out \mathbb{Z}_2 :

- **1** Break explicitly \mathbb{Z}_4 down to \mathbb{Z}_2 with a deformation.
- 2 Emergent symmetries. (e.g. in gapped phases)

Anomalous Simple Category (ASCy) S = symmetry with **no** normal subsymmetry

Anomalous Simple Category (ASCy) S = symmetry with **no** normal subsymmetry

 $\mathsf{Vec}^1_{\mathbb{Z}_2}$

Anomalous Simple Category (ASCy) S = symmetry with **no** normal subsymmetry

 $\mathsf{ec}^1_{\mathbb{Z}_2}$

Anomalous Simple Category (ASCy) S = symmetry with **no** normal subsymmetry

 $\mathsf{Vec}^1_{\mathbb{Z}_2} \qquad \mathsf{Vec}^2_{\mathbb{Z}_4}$

Anomalous Simple Category (ASCy) S = symmetry with **no** normal subsymmetry

 $\mathsf{Vec}^1_{\mathbb{Z}_2} \qquad \mathsf{Vec}^2_{\mathbb{Z}_4} \qquad \mathsf{TY}(\mathbb{Z}_2)$

Anomalous Simple Category (ASCy) S = symmetry with **no** normal subsymmetry

 $\mathsf{Vec}^1_{\mathbb{Z}_2} \qquad \mathsf{Vec}^2_{\mathbb{Z}_4} \qquad \mathsf{TY}(\mathbb{Z}_2) \qquad \mathsf{Fib}$

From any symmetry C: extract ASCies

$$\mathcal{N}_i o \mathcal{C} o \mathcal{S}_i$$

 \mathcal{N}_i is **maximal** (e.g. avoid $\mathsf{Vec}_{\mathbb{Z}_2} o \mathsf{Vec}_{\mathbb{Z}_4} o \mathsf{Vec}_{\mathbb{Z}_2}^1$)

Even for fixed \mathcal{N}_i , \mathcal{S}_i is not unique \Longrightarrow list of ASCies

$$\mathfrak{A}(\mathcal{C}) = \{\mathcal{S}_1, \mathcal{S}_2,\} =$$
 "quantification" of anomaly of \mathcal{C}

SymTFT: look for maximal magnetic algebras $A_P \in \mathfrak{Z}(C)$:

$${\mathfrak{Z}}({\mathcal S})={\mathfrak{Z}}({\mathcal C})/{\mathcal A}_P$$

Example: $Vec_{\mathbb{Z}_8}^{\omega=4}$

$$\mathfrak{Z}(\mathsf{Vec}_{\mathbb{Z}_8}^{\omega=4}) = \mathsf{DW}(\mathbb{Z}_8^4).$$
 Lines $e^{n_e}m^{n_m}$:

$$heta(n_e,n_m) = \exp\left(rac{2\pi i}{8}\left(n_m n_e - rac{1}{2}n_m^2
ight)
ight)\,, ~~ \mathcal{L_C} = 1 \oplus e \oplus e^2 \oplus ... \oplus e^7$$

Two ('maximal') magnetic algberas ↔ two surjective functors

$$\bullet \mathcal{A}_{P_1} = 1 \oplus m^4 \Longrightarrow \mathfrak{Z}(\mathsf{Vec}_{\mathbb{Z}_8}^{\omega=4})/\mathcal{A}_{P_1} = \mathfrak{Z}(\mathsf{Vec}_{\mathbb{Z}_4}^1).$$

Kernel determined by $\mathcal{A}_I=1\oplus e^2\oplus e^4\oplus e^6\Longrightarrow \mathcal{N}=\mathsf{Vec}_{\mathbb{Z}_2}.$

$$2 \mathcal{A}_{P_{-1}} = 1 \oplus e^4 m^4 \Longrightarrow \mathfrak{Z}(\mathsf{Vec}_{\mathbb{Z}_8}^{\omega=4})/\mathcal{A}_{P_{-1}} = \mathfrak{Z}(\mathsf{Vec}_{\mathbb{Z}_4}^{-1}).$$

Kernel determined by $\mathcal{A}_I = 1 \oplus e^2 \oplus e^4 \oplus e^6 \Longrightarrow \mathcal{N} = \mathsf{Vec}_{\mathbb{Z}_2}.$

Example: $Vec_{\mathbb{Z}_8}^{\omega=4}$

$$\mathfrak{A}(\mathsf{Vec}^{\omega=4}_{\mathbb{Z}_8}) = \left\{ \mathsf{Vec}^1_{\mathbb{Z}_4}, \mathsf{Vec}^{-1}_{\mathbb{Z}_4}
ight\}$$

$$\mathcal{I}_I \qquad \mathcal{I}_{P_{\pm 1}}$$

$$\mathfrak{Z}(\mathsf{Vec}_{\mathbb{Z}_2}) \qquad \mathfrak{Z}(\mathsf{Vec}^{\omega=4}_{\mathbb{Z}_8}) \qquad \mathfrak{Z}(\mathsf{Vec}^{\omega=\pm 1}_{\mathbb{Z}_4})$$

$$\mathsf{Vec}_{\mathbb{Z}_2} \qquad \mathsf{Vec}^{\omega=4}_{\mathbb{Z}_8} \qquad \mathsf{Vec}^{\omega=\pm 1}_{\mathbb{Z}_4}$$

Upshot: if trivialize $\mathbb{Z}_2 \Longrightarrow$ anomaly not uniquely determined in the IR! **remark:** related with emergent anomaly $\text{Vec}_{\mathbb{Z}_8} \to \text{Vec}_{\mathbb{Z}_4}^2$

Example: $\mathsf{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2)_{\chi_d,\epsilon=-1}$

 $\mathsf{TY}(\mathbb{Z}_2 imes \mathbb{Z}_2)_{\chi_d,-1}$ has **Second-obstruction anomaly** [AA, Benini, Copetti, Galati, Rizi '23]

Lines of $\mathfrak{Z}(\mathsf{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2)_{\chi_d,\epsilon=-1})$

	$X_{(0,0),\pm 1}$	$X_{(1,0),\pm i}$	$X_{(0,1),\pm i}$	$X_{(1,1),\pm 1}$	$Y_{(0,0),(1,0)}$	
θ	1	-1	-1	1	1	
d	1 1		1	1	2	
	$Y_{(0,0),(0,1)}$	$Y_{(0,0),(1,1)}$	$Y_{(1,0),(0,1)}$	$Y_{(1,0),(1,1)}$	$Y_{(0,1),(1,1)}$	
θ	$Y_{(0,0),(0,1)}$	$Y_{(0,0),(1,1)}$ 1	$Y_{(1,0),(0,1)}$	$Y_{(1,0),(1,1)} -1$	$Y_{(0,1),(1,1)} -1$	

	$Z_{ ho_1,\pm\zeta_8^3}$	$Z_{ ho_2,\pm\zeta_8}$	$Z_{ ho_3,\pm i}$	$Z_{ ho_4,\pm i}$
θ	$\pm e^{\frac{3\pi i}{4}}$	$\pm e^{\frac{\pi i}{4}}$	$\pm i$	$\pm i$
d	2	2	2	2

$$\mathcal{L}_{\mathsf{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2)_{\gamma_d,-}} = 1 \oplus X_{(0,0),-1} \oplus Y_{(0,0),(1,0)} \oplus Y_{(0,0),(0,1)} \oplus Y_{(0,0),(1,1)}$$

Example: $\mathsf{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2)_{\gamma_d,-}$

- There is a unique maximal magnetic algebra $\mathcal{A}_P=1\oplus X_{(1,1),+1}\oplus Y_{(1,0),(0,1)}$
- $\mathfrak{Z}(\mathsf{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2)_{\gamma_d,-})/\mathcal{A}_P = \mathfrak{Z}(\mathsf{Vec}^1_{\mathbb{Z}_2})$
- Kernel of $P: \mathsf{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2)_{\gamma_d,-}) o \mathsf{Vec}^1_{\mathbb{Z}_2}$ given by $\mathcal{A}_I = 1 \oplus X_{(0,0),-1}$

$$P(\mathcal{D}) = 1 \oplus \eta \,, \ P(a_1) = P(a_2) = 1$$

- No fiber functor.
- No duality invariant SPT, but \exists duality invariant TQFT: SSB $\mathbb{Z}_4 \to \mathbb{Z}_2$

		$X_{0,\pm 1}$	$X_{1,\pm\zeta_8}$	$X_{2,\pm 1}$	$X_{3,\pm\zeta_8}$	$Y_{1,0}$	$Y_{2,0}$	$Y_{3,0}$
ℓ	Э	1	-i	1	-i	1	1	1
C	l	1	1	1	1	2	2	2
		$Y_{1,2}$	$Y_{1,3}$	$Y_{3,2}$	$Z_{ ho_0,\pm\zeta_{16}}$	$Z_{ ho_1,\pm 1}$	$Z_{ ho_2,\pm\zeta_{16}^{-3}}$	$Z_{ ho_3,\pm 1}$
θ	9	-1	i	-1	$\pm \zeta_{16}$	± 1	$\pm \zeta_{16}^{-3}$	± 1
C	l	2	2	2	2	2	2	2

 $\text{Vec}_{\mathbb{Z}_4} \subset \text{TY}(\mathbb{Z}_4)$ anomaly free but not normal. $\text{Vec}_{\mathbb{Z}_2}$ also normal!

Two maxiamal magnetic algebras:

2
$$\mathcal{A}_{P_{-}} = 1 \oplus X_{2,-1} \Longrightarrow \mathsf{Vec}_{\mathbb{Z}_2 \times \mathbb{Z}_2}^{\omega = \mathsf{mixed}}$$

$$\mathcal{I}_{l}$$
 $\mathcal{I}_{P_{+}}$ $\mathcal{I}_{Q_{+}}$ $\mathcal{I}_{Q_$

 $P_{+}(\mathcal{D}) = \eta \oplus \eta^{3}$, $P_{+}(a) = \eta^{2}$, $P_{+}(a^{2}) = 1$

$$\mathcal{I}_{I}$$
 $\mathcal{I}_{P_{-}}$ \mathcal{I}_{V} $\mathcal{I}_{P_{-}}$ \mathcal{I}_{V} \mathcal

$$P_{-}(\mathcal{D}) = \eta_1 \oplus \eta_2 \,, \quad P_{-}(a) = \eta_1 \eta_2 \,, \quad P_{-}(a^2) = 1$$

$$\mathfrak{A}(\mathsf{TY}(\mathbb{Z}_4)_+) = \left\{\mathsf{Vec}^1_{\mathbb{Z}_4}, \mathsf{Vec}^\omega_{\mathbb{Z}_2 \times \mathbb{Z}_2}\right\}$$

- Different ASCies have different fusion rules!
- $P_+(a) = \eta^2 \in \mathsf{Vec}^1_{\mathbb{Z}_4}$, $P_-(a) = \eta_1 \eta_2 \in \mathsf{Vec}^\omega_{\mathbb{Z}_2 \times \mathbb{Z}_2}$: both anomalous \Longrightarrow 'duality enforced' emergent anomaly
- Intuitive interpretation: preserving duality \Longrightarrow if $\mathcal{O}_e(x)$ is light, $\mathcal{O}_m(x)$ is also light!

Other topics & future directions

- d>2: matching anomalies with higher-form symmetries. Wang-Wen-Witten, Symmetry fractionalization, transmutation [Seiberg, Seifnashri '25]
- Duality symmetries in (3+1)d
- LSM anomalies [Pace, Aksoy, Lam '25]

Future directions

- Systematics in (2+1)d and (3+1)d
- Math of ASCies?
- Structure of ASCies in higher dimensions
- Continuous symmetries
- Weak symmetries [Sakura's talk]
- Fermionic anomalies