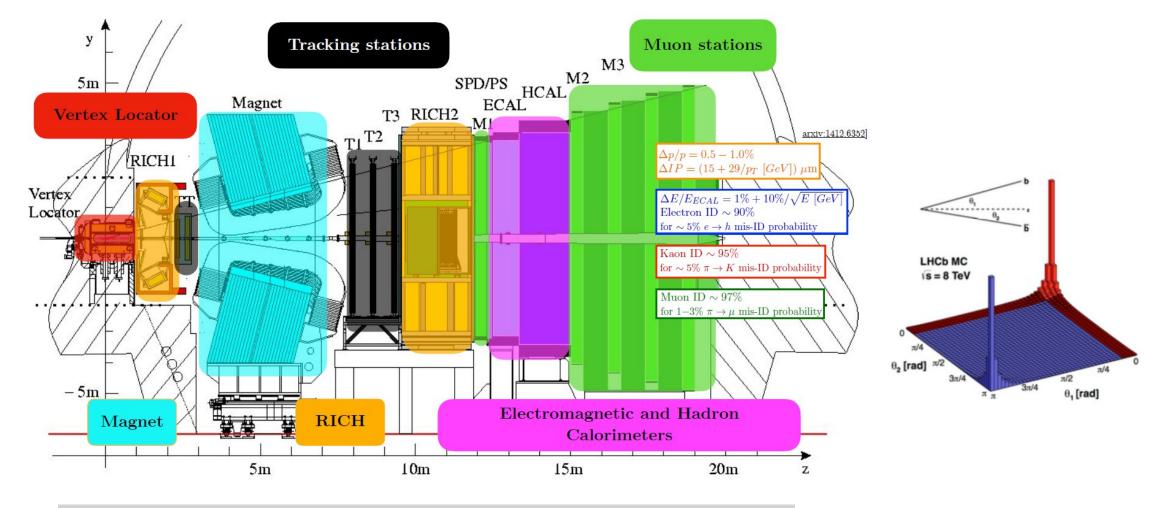


Highlights of Recent LHCb Results

Liang Sun
Wuhan University
2025/10/25


Outline

- LHCb experiment in Runs 1-2,3
- Highlights of recent HF&CPV results on
 - Beauty sector:
 - CPV

- See 尹航's CPV talk on Monday
- LFU & Rare decays
- See 王纪科's semileptonic talk on Monday


- Charm sector:
 - Mixing & CPV
 - Rare decays
- A complete list <u>here</u>
- See 张黎明's Hadron Spec talk on Sunday
- Summary & outlook

LHCb in Runs 1-2 (2011-2018)

LHCb is designed and optimized for HF & CPV

LHCb in Run3 (2022-)

LHCb original 2009-2018

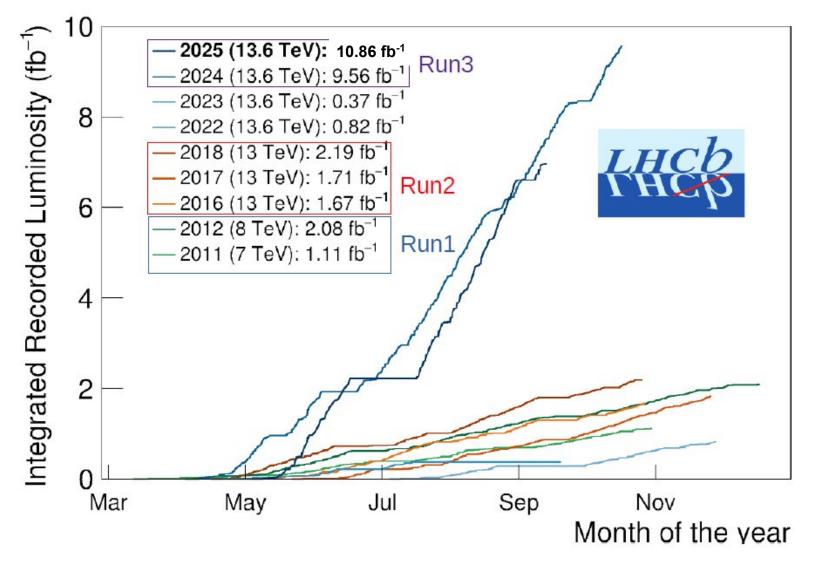
~1 pp collision per bunch-crossing

Running with 5x higher instantaneous luminosity!

New read out

+ new DAQ/data centre

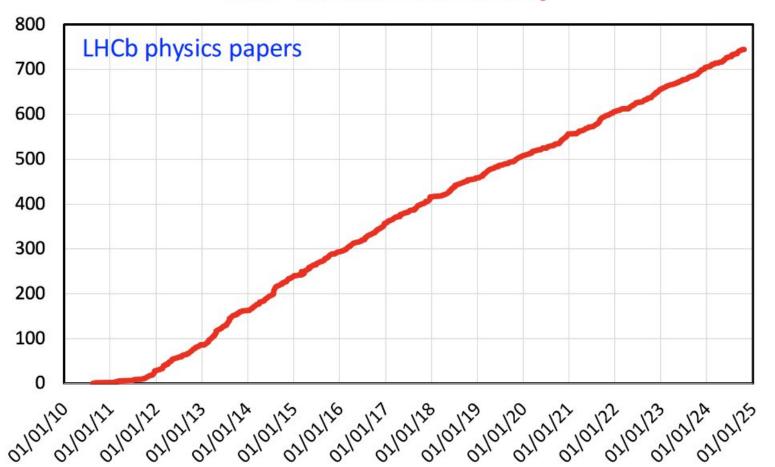
optics/mechanics

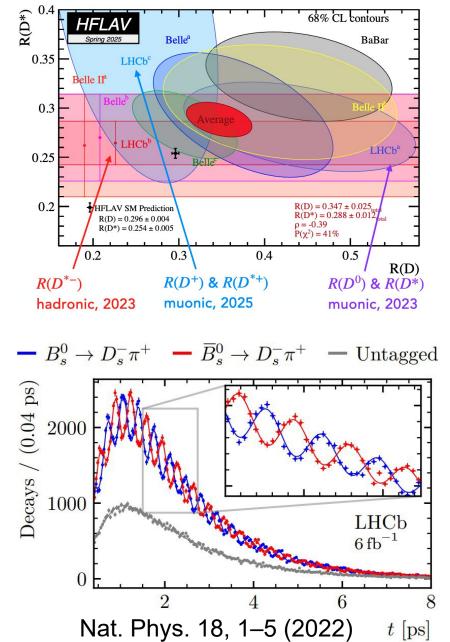

tracking

system (Si-strip +

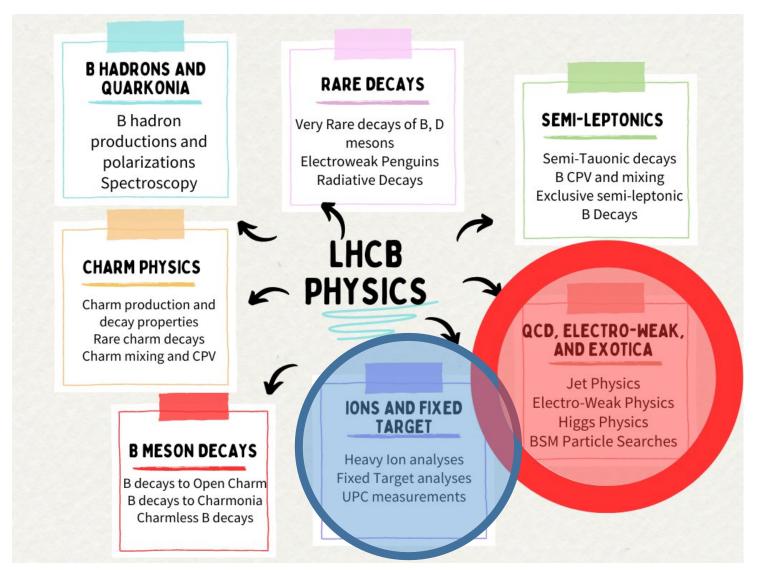
straw-tubes
->Scintillating fibres,+ Si
strip UT > granularity)

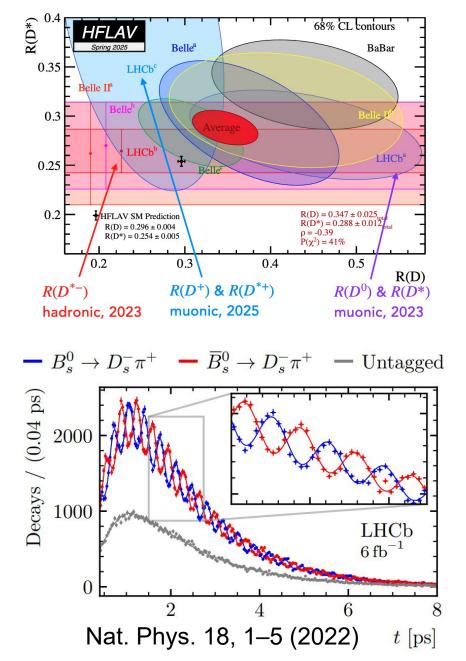
Excellent detector performance since 2024!

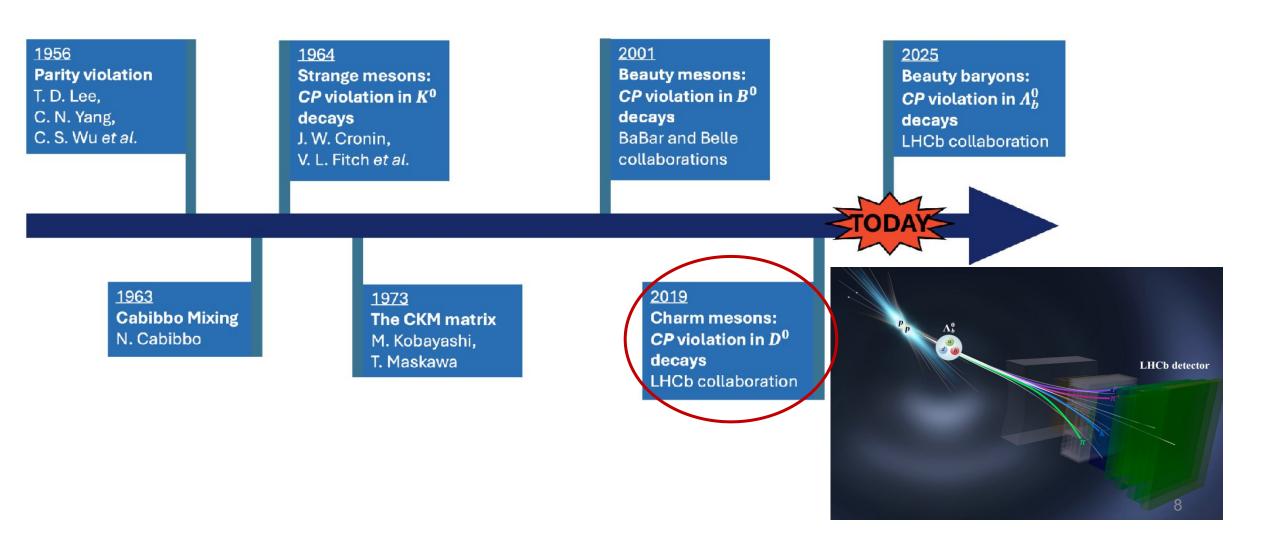

LHCb datasets



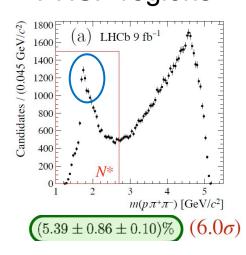
Most of results shown today are based on Runs 1-2 datasets

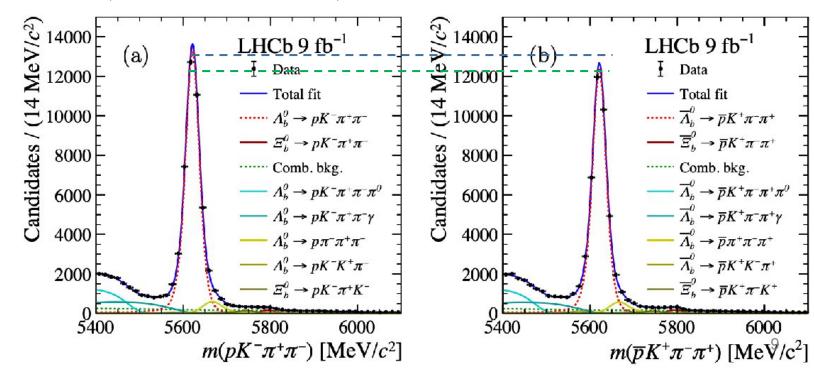

LHCb physics program


Publication luminosity



LHCb physics program



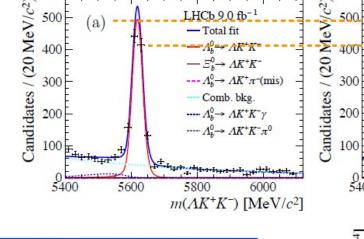

CP violation in baryon decay: the observation

CPV in $\Lambda_b^0 \rightarrow pK^-\pi^+\pi^-$ decay

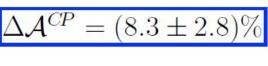
- Using Runs 1-2 dataset (9 fb⁻¹)
- Corrections for production & detection asymmetries as measured in $\Lambda_b^0 \to \Lambda_c^+ (\to pK^-\pi^+)\pi^-$ control channel
- Phase-space integrated $A_{CP} = (2.45 \pm 0.46 \pm 0.10)\% (5.2\sigma)$
- CP asymmetries also measured in different PHSP regions

LHCb 9.0 fb-1 - Total fit

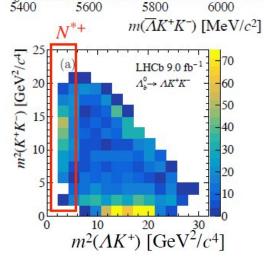
 $\overline{\Lambda}_{h}^{0} \rightarrow \overline{\Lambda}K^{+}K^{-}$


 $--- \overline{\Lambda}_{h}^{0} \rightarrow \overline{\Lambda} K^{+} K^{-} \gamma$

 $\cdots \overline{\Lambda}_{h}^{0} \rightarrow \overline{\Lambda} K^{+} K^{-} \pi^{0}$

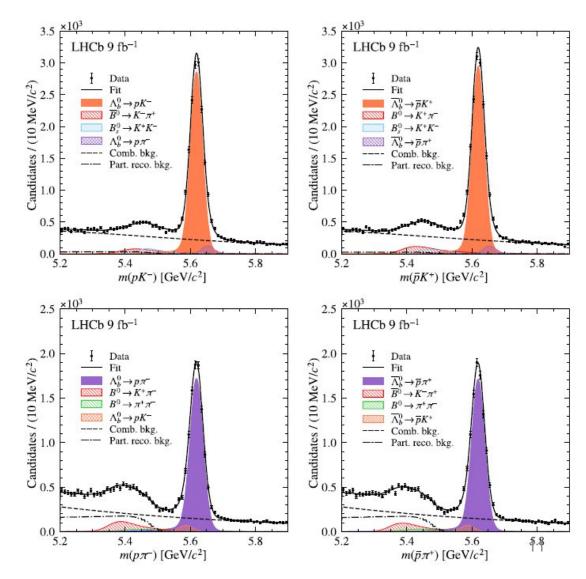

CPV in $\Lambda_h^0 \rightarrow \Lambda K^+ K^-$ decay: the evidence

- Using Runs 1-2 dataset (9 fb⁻¹)
- Study of Λ_h^0 and Ξ_h^0 decays to $\Lambda h^+ h'^-$
- Asymmetries are measured wrt control channel $\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-$
- Evidence at 3.1 σ for CPV in $\Lambda_h^0 \rightarrow$ $\Lambda K^+ K^-$ decay

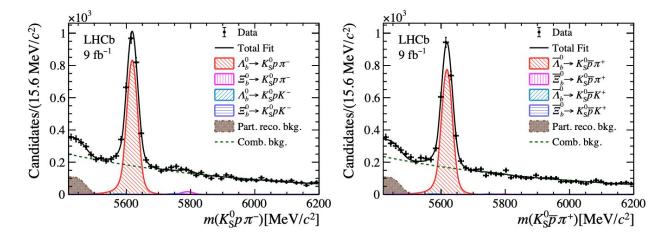

• Significance of 3.2 σ with phase space constrained to $\Lambda_b^0 \to N^{*+} (\to \Lambda K^+) K_{\text{channel}}^-$

LHCb 9.0 fb

Channel	$m(h^{+}h'^{-})$	$m(\Lambda h^+)$	$\Delta \mathcal{A}^{CP}$
$\Lambda_b^0 \rightarrow \Lambda \phi (\rightarrow K^+K^-)$	$< 1.10 \text{GeV}/c^2$		$0.150 \pm 0.055 \pm 0.021$
$\Lambda_b^0 \rightarrow N^{*+} (\rightarrow \Lambda K^+) K^-$	$> 2.20 \text{GeV}/c^2$	$< 2.90 \text{GeV}/c^2$	$0.165 \pm 0.048 \pm 0.017$
$\Lambda_b^0 \rightarrow N^{*+} (\rightarrow \Lambda K^+) \pi^-$	_	$< 2.30 \text{GeV}/c^2$	$-0.078 \pm 0.051 \pm 0.027$
$\Lambda_b^0 \to \Lambda f (\to \pi^+ \pi^-)$	$< 1.70 \text{GeV}/c^2$		$0.088 \pm 0.069 \pm 0.021$



CPV in $\Lambda_b^0 \rightarrow ph^-$ decays

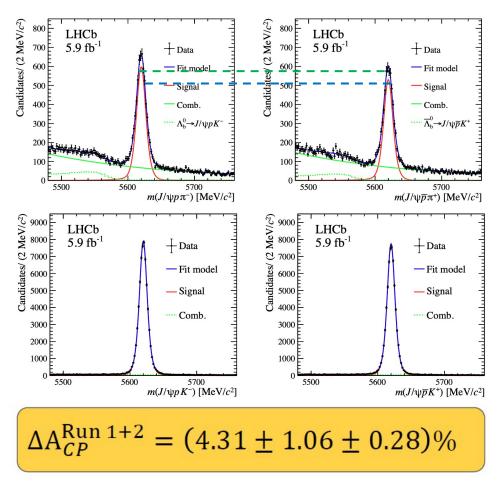

- Using Runs 1-2 dataset (9 fb⁻¹)
- Obtained asymmetries:

$$A_{CP}^{pK^{-}} = (-1.1 \pm 0.7 \pm 0.4)\%,$$

 $A_{CP}^{p\pi^{-}} = (0.2 \pm 0.8 \pm 0.4)\%,$

No CPV found Most precise to date

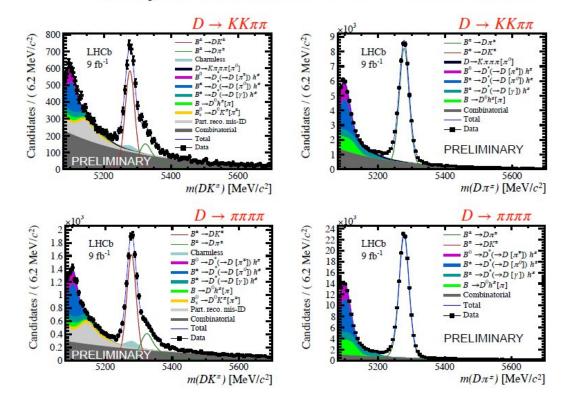
CPV in $\Lambda_b^0(\Xi_b^0) \to pK_S^0h^-$

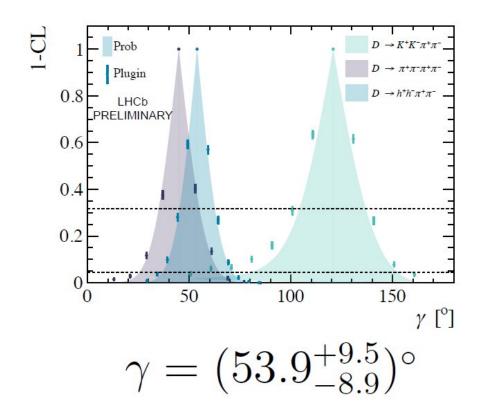

$$A_{CP}(\Lambda_b^0 \to p K_s^0 \pi^-) = (3.4 \pm 1.9_{\text{stat}} \pm 0.9_{\text{syst}})\%$$

$$A_{CP}(\Lambda_b^0 \to p K_s^0 K^-) = (2 \pm 13_{\text{stat}} \pm 5_{\text{syst}})\%$$

$$A_{CP}(\Xi_b^0 \to p K_s^0 K^-) = (22 \pm 15_{\text{stat}} \pm 10_{\text{syst}})\%$$

First observation of $\Lambda_b^0\left(\mathcal{Z}_b^0\right) \to pK_S^0K^-$ decays


CPV in $\Lambda_b^0 \to J/\psi ph^-$

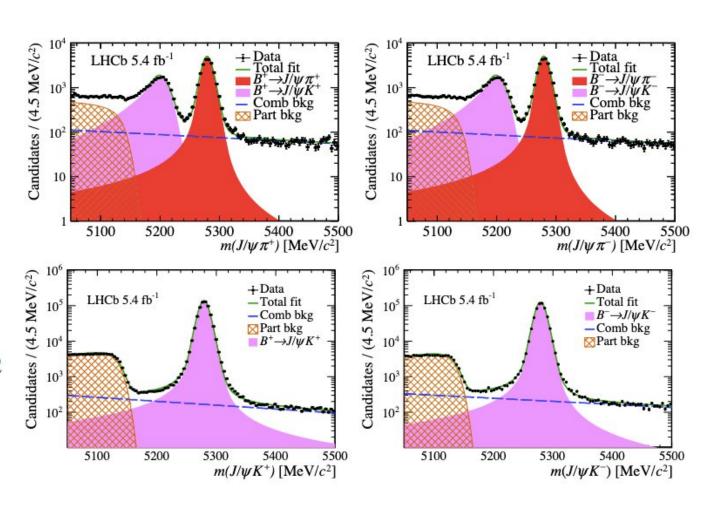


First evidence (3.9 σ) of CPV in baryon decays to charmonia

CKM angle γ with $B^{\pm} \rightarrow [h^+ h^- \pi^+ \pi^-]_D h^{\pm}$

- Model-independent measurement of CKM angle γ in $B^\pm \to [K^+K^-\pi^+\pi^-]_D h^\pm$ and $B^\pm \to [\pi^+\pi^-\pi^+\pi^-]_D h^\pm$, with $D=D^0$ or $\bar D^0$
- Use BESIII measurement of strong phase in phase-space bins of the D^0/\bar{D}^0 decays
- Analysis based on $9 \, \mathrm{fb}^{-1}$ from Run1+2

CPV in $B^+ \to J/\psi \pi^+$: first evidence


- Using Run 2 dataset
- CP asymmetry measured wrt the control channel $B^+ \to J/\psi K^+$:

$$\Delta \mathcal{A}^{CP} \equiv \mathcal{A}^{CP}(B^+ \to J/\psi \pi^+) - \mathcal{A}^{CP}(B^+ \to J/\psi K^+).$$

• Combined Runs1-2 9fb⁻¹ result:

$$\Delta A^{CP} = (1.42 \pm 0.43 \pm 0.08) \times 10^{-2}$$

First evidence (3.2σ) of DCPV in beauty decays to charmonia

Polarization & CPV in $B^+ \rightarrow \rho^0 K^{*+}$

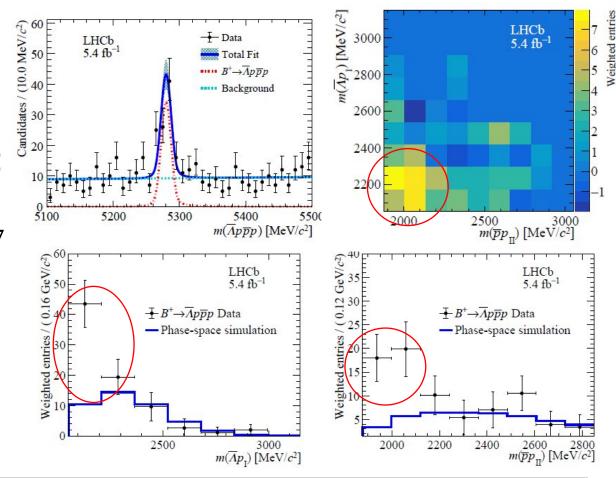
$$f_{L} = \frac{|A_0|^2}{|A_0|^2 + |A_{\perp}|^2 + |A_{\parallel}|^2}$$

- Charmless $B \rightarrow VV$ decays: three independent helicity states
- 5D amplitude analysis of $B^+ \to (\pi^+\pi^-)(K_S^0\pi^+)$ in the phase-space region: $(0.3 < m(\pi^+\pi^-) < 1.1) \text{ GeV}/c^2$, $(0.75 < m(K_S^0\pi^+) < 1.2) \text{ GeV}/c^2$
- *CP*-averaged f_L , $f_L^{avg} = 0.721 \pm 0.027 \text{ (stat)} \pm 0.030 \text{ (syst)}$
 - Consistent with BaBar and most theory predictions, but more precise

Direct CP asymmetry

$$\mathcal{A}_{CP} = \frac{\sum_{\lambda} (|\overline{A}_{\lambda}|^2 - |A_{\lambda}|^2)}{\sum_{\lambda} (|\overline{A}_{\lambda}|^2 + |A_{\lambda}|^2)},$$
 where $\lambda \in \{0, \perp, \parallel\}$

- Measured to be $\mathcal{A}_{CP}=0.507\pm0.062\,\mathrm{(stat)}\pm0.017\,\mathrm{(syst)}$
 - First observation of CP-violation in this decay mode at $9\sigma!$


First observation & CPV in $B^+ \rightarrow \overline{\Lambda} p \overline{p} p$

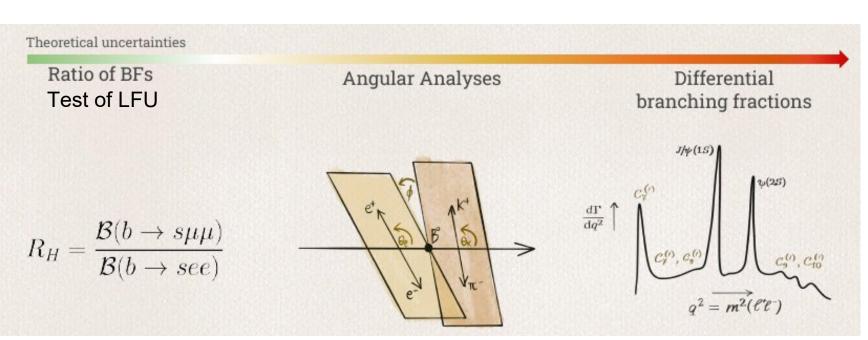
- Dominated by $b \rightarrow s$ transition, sensitive to NP
- Using Run2 5.4 fb⁻¹ data
- First observation with BF measured:

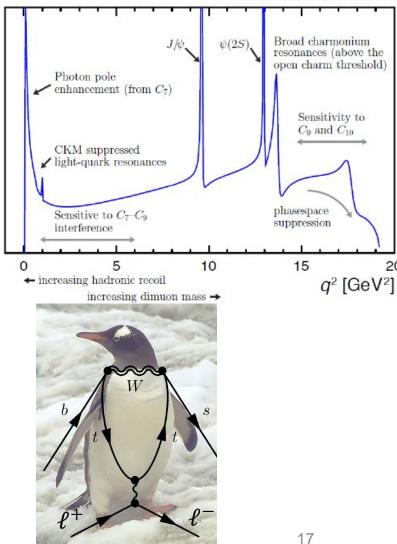
•
$$B(B^+ \to \overline{\Lambda}p\overline{p}p) =$$

(2.15 \pm 0.35 \pm 0.12 \pm 0.28) \times 10^{-7}

• Direct CP asymmetry measured:

$$A_{CP} = (5.4 \pm 15.6 \pm 2.4)\%$$

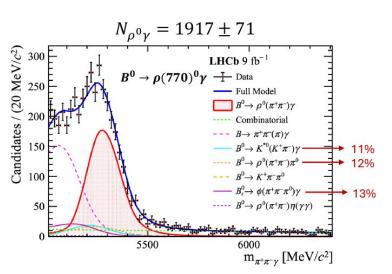

Pronounced enhancements at both kinematic thresholds

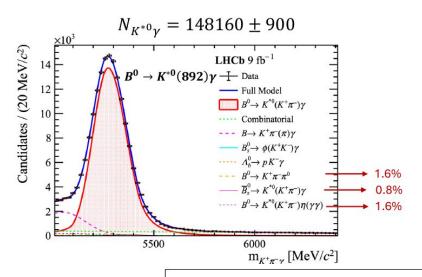

Observables in FCNC $b \rightarrow s(d)\ell\ell$ decays

 $d\Gamma/dq^2$

Physics depends on $q^2 = m^2_{\parallel}$:

- Resonances (e.g. J/ψ, φ)
- Photon pole at low q²
- Vector or axial vector current



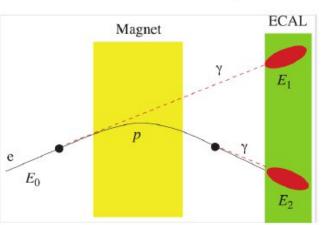

Radiative $B^0 \to \rho^0(770)\gamma$ decays

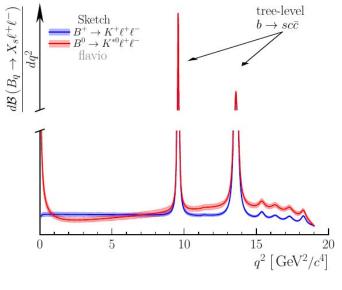
- Using full 9 fb⁻¹ Runs1-2 data
- Normalization channel $B^0 \to K^{*0} \gamma$

 $\frac{\mathcal{B}(B^0\to\rho^0(\pi^+\pi^-)\gamma)}{\mathcal{B}(B^0\to K^{*0}(K^+\pi^-)\gamma)}\propto |V_{td}/V_{ts}|^2$

Offering independent & direct constraint on |Vtd/Vts|

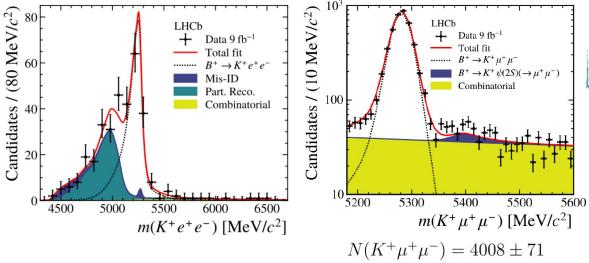
$$egin{aligned} rac{\mathcal{B}(B^0 o
ho(770)^0 \gamma)}{\mathcal{B}(B^0 o K^*(892)^0 \gamma)} = 0.0189 \pm 0.0007 \pm 0.0005, \ ext{(stat.)} \end{aligned}$$


$$\mathcal{B}(B^0 \to \rho^0 \gamma) = (7.9 \pm 0.3 \pm 0.2 \pm 0.2) \times 10^{-7}$$


R(K^(*)) measurements @ LHCb

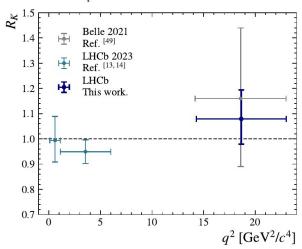
- Electrons & muons behave quite differently in the LHCb detector
- Lower efficiencies & worse resolution (energy loss) for electrons
- Double-ratio of branching fractions:

$$R_X = \frac{\mathcal{B}(B_q \to X_s \mu^+ \mu^-)}{\mathcal{B}(B_q \to X_s J/\psi(\mu^+ \mu^-))} \cdot \frac{\mathcal{B}(B_q \to X_s J/\psi(e^+ e^-))}{\mathcal{B}(B_q \to X_s e^+ e^-)} \stackrel{\xi}{=} \left[\frac{\xi}{g} \right]$$


- Most of systematic uncertainties cancel to 1st order
- LFU in $J/\psi \rightarrow l^+ l^-$ well established at ‰ level [BESIII, PRD 88, 032007 (2013)]
- Validated in $\psi(2S)$ mode

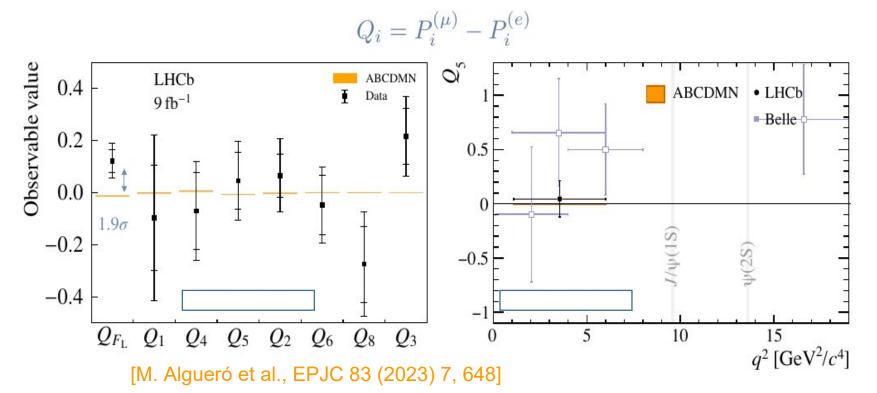
R(K) result at high q²

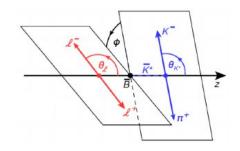
- First LHCb result at high q² region above $\psi(2S)$ (q² > 14.3 GeV²)
- Full Runs1-2 9 fb⁻¹ analysis



$$R_K = \frac{N(K^+ \mu^+ \mu^-)}{N(K^+ e^+ e^-)} \cdot \frac{\varepsilon(K^+ e^+ e^-)}{\varepsilon(K^+ \mu^+ \mu^-)} \cdot \frac{1}{r_{J/\psi}}$$

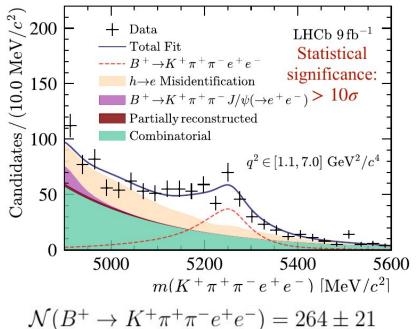
Most precise to date:

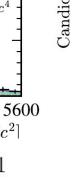

$$R_K(q^2 > 14.3 \text{ GeV}^2/c^4) = 1.08^{+0.11}_{-0.09}{}^{+0.04}_{-0.09}$$

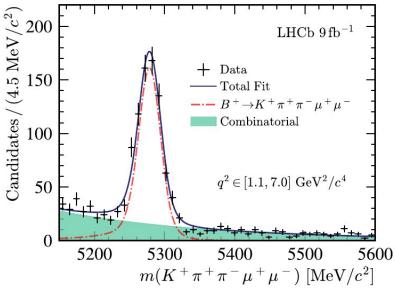

- Compatible with the SM

LFU in angular analysis of $B \rightarrow K^{*0}e^+e^-$

- First angular analysis at central q² region
- Full Runs1-2 9 fb⁻¹ analysis with 5D unbinned weighted fit
- LFU quantities derived by comparing e^+e^- to $\mu^+\mu^-$ results in [PRL 132 (2024) 131801]






Results are all consistent with LFU conservation hypothesis

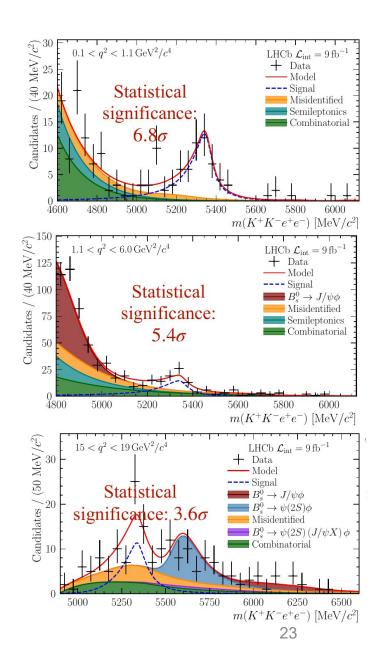
$R(K\pi\pi)$: LFU in $B \to K\pi\pi l^+ l^-$

- First LFU test in this channel, inclusive $K\pi\pi$ system
- In central q^2 region: 1.0 < q^2 < 7.0 GeV²
- First observation of $B^+ \to K^+ \pi^+ \pi^- e^+ e^-$
- Cross-checks: $r_{J/w} = 1.033 \pm 0.017, R_{w(2S)} = 1.040 \pm 0.030$

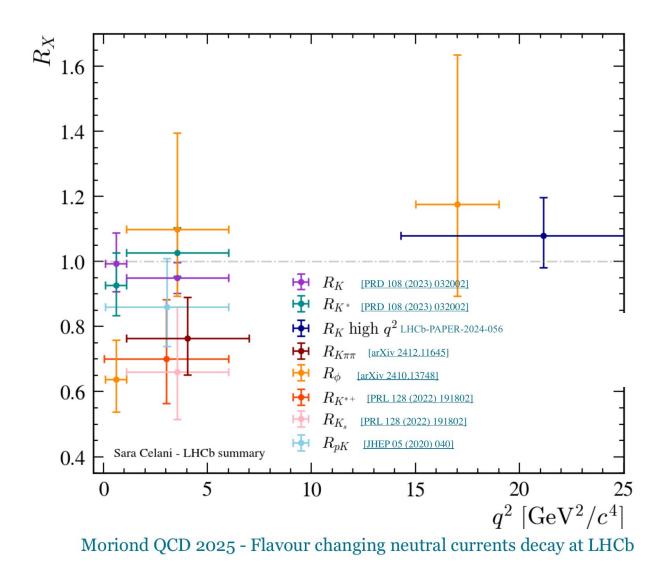
$$\mathcal{N}(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-) = 731 \pm 31$$

$$R_{K\pi\pi}^{-1} \equiv \frac{\frac{\mathcal{N}}{\varepsilon}(B^+ \to K^+\pi^+\pi^-e^+e^-)}{\frac{\mathcal{N}}{\varepsilon}[B^+ \to K^+\pi^+\pi^-J/\psi\ (\to e^+e^-)]} \bigg/ \frac{\frac{\mathcal{N}}{\varepsilon}(B^+ \to K^+\pi^+\pi^-\mu^+\mu^-)}{\frac{\mathcal{N}}{\varepsilon}[B^+ \to K^+\pi^+\pi^-J/\psi\ (\to \mu^+\mu^-)]}$$

$$R_{K\pi\pi}^{-1} = 1.31_{-0.17}^{+0.18} \text{(stat)}_{-0.09}^{+0.12} \text{(syst)}$$

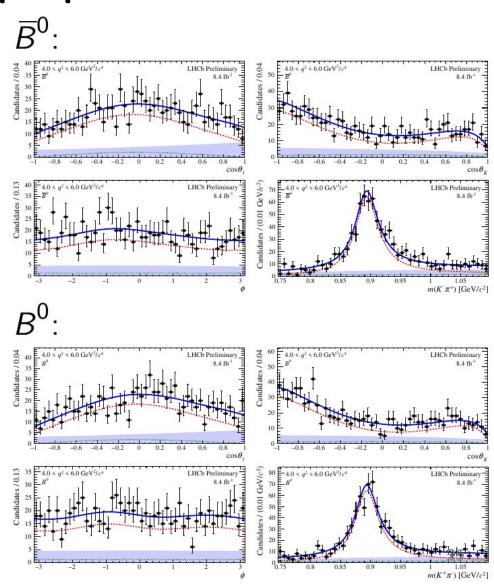

Compatible with the SM

$\mathsf{R}(\phi)$: LFU in $B_s^0 \to \phi l^+ l^-$

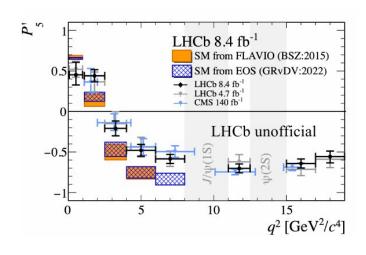

- First LFU test for B_s⁰ decays
- In three q² regions: [0.1, 1.1], [1.1, 6.0], [15, 19] GeV²
- Cross-checks: $r_{J/\psi} = 0.997 \pm 0.013, R_{\psi(2S)} = 1.010 \pm 0.026$
- Results in agreement with SM:

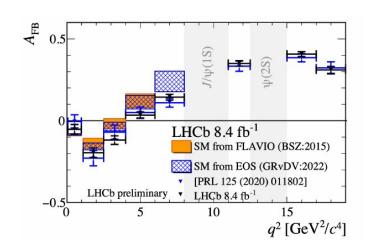
$q^2 \left[\text{GeV}^2/c^4 \right]$	R_{ϕ}^{-1}
$0.1 < q^2 < 1.1$	$1.57^{+0.28}_{-0.25}\pm0.05$
$1.1 < q^2 < 6.0$	$1.57_{-0.25}^{+0.28} \pm 0.05 0.91_{-0.19}^{+0.20} \pm 0.05$
$15.0 < q^2 < 19.0$	$0.85^{+0.24}_{-0.23}\pm0.10$
3	

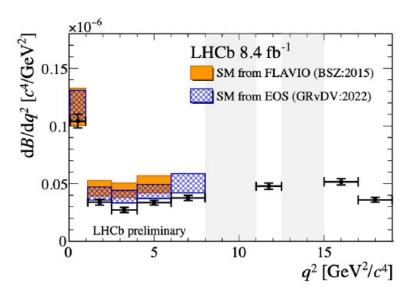
$$R_{\phi} = \left(\frac{\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to J/\psi(\to \mu^+ \mu^-)\phi)}\right) \middle/ \left(\frac{\mathcal{B}(B_s^0 \to \phi e^+ e^-)}{\mathcal{B}(B_s^0 \to J/\psi(\to e^+ e^-)\phi)}\right)$$

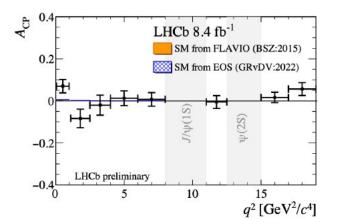


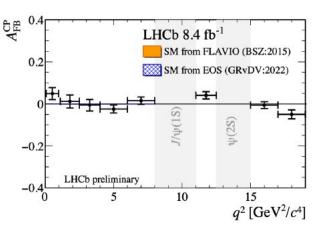
Summary of LHCb FCNC LFU results



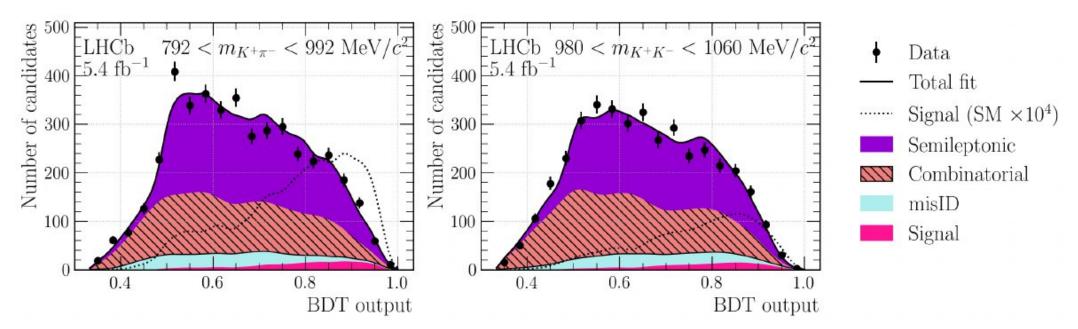

Legacy Runs1-2 $B^0 \to K^{*0} \mu^+ \mu^-$ measurement


- 5D (3 decay angles, m_B , $m_{K\pi}$) unbinned ML fit in bins of q^2
 - Improved selection, more observables (CPV, dBF)
 - Finer q² binning
 - Lepton mass accounted for
 - Full suite of S-wave and P-/S-wave interference observables
 - 2x statistics
 - Data split into B^0 and \overline{B}^0 , and fit simultaneously


Legacy Runs1-2 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ measurement



- ➤ Results in P'₅ excellent agreement with both CMS and previous LHCb
- The forward-backward asymmetry, A_{FB} , also now shows marked disagreement with improved statistics
- \blacktriangleright Deviations of 2.6 and 2.7 σ in 4-6 and 6-8 GeV² bins



The branching fraction is consistently below SM predictions

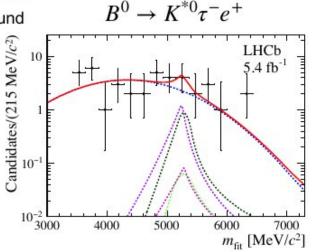
Search for $B^0 \to K^+ \pi^- \tau^+ \tau^- \& B_S^0 \to K^+ K^- \tau^+ \tau^-$

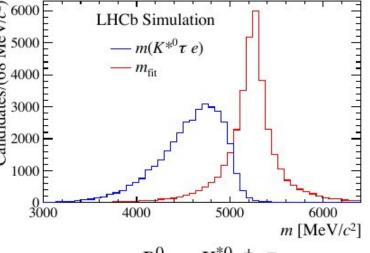
- Using Run2 5.4 fb⁻¹ data
- Reconstructing taus with muonic channel
- Decays are searched in bins of dihadron masses

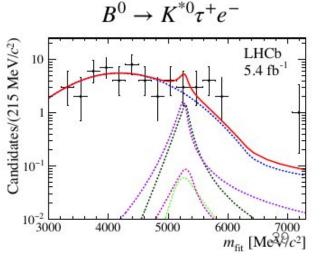
Searches in the lowest Kπ and KK bins

Search for
$$B^0 \to K^+ \pi^- \tau^+ \tau^- \& B_S^0 \to K^+ K^- \tau^+ \tau^-$$

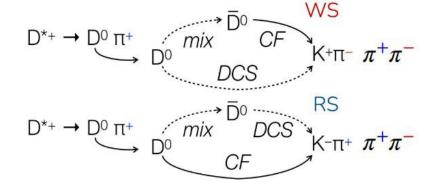
- Using Run2 5.4 fb⁻¹ data
- Reconstructing taus with muonic channel
- Decays are searched in bins of dihadron masses
- No signal founds, upper limits are set:


Upper limit on the shift Δ in the $C_{9(10)}^{\tau\tau}$ Wilson coefficient at 90% and 95% CL.

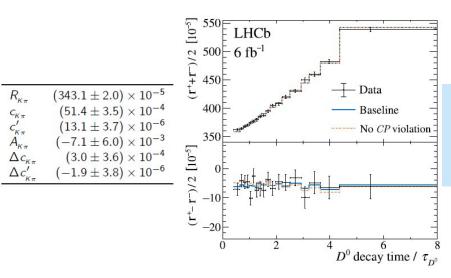

Confidence	level $B^0 o K^+\pi^-\tau^-$	$^+ au^ B_s^0 o K^+K^- au^+$	$\frac{1}{2\tau^{-}} \mathcal{C}_{9(10)}^{\tau\tau} = \mathcal{C}_{9(10)}^{NP} - (+)\Delta$
90%	2.5×10^{4}	4.5×10^{4}	
95%	2.9×10^{4}	5.2×10^4	28


Search for LFV decay $B^0 \to K^{*0} \tau^{\pm} e^{\mp}$

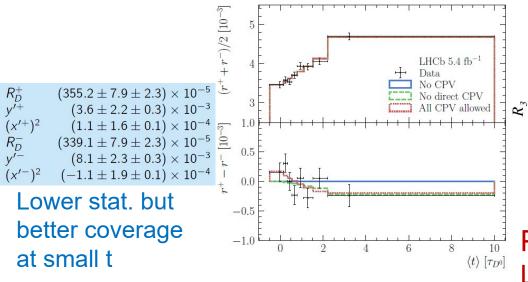
- Lepton Flavour Violating decays would be enabled/enhanced by leptoquarks or Z' models
- New search for the lepton-flavour-violating decays $B^0 o K^{*0} au^\pm e^\mp$ at LHCb
 - first direct LFV search at LHCb with $e\tau$ combination (Run2 data)
 - New Physics models predict branching ratio up to 10^{-6} for this decay
 - 3-prong τ hadronic decay ⇒ decay vertex available, kinematic constraints with dedicated Decay Tree Fit gives much improved resolution!
 - $B^0 \to D^- D_s^+ (D^- \to K\pi\pi, D_s^+ \to KK\pi)$ used as normalisation and control channel, and 3 multivariate discriminators to suppress background:
 - topologies of the signal decays and the combinatorial background
 - Isolation (simulation + Same Sign data)
 - Charm vs τ-lepton rejection
 - Limits on two decay channels at 90%(95%) CL:


$$\mathcal{B}(B^0 \to K^{*0}\tau^-e^+) < 5.9(7.1) \times 10^{-6}$$

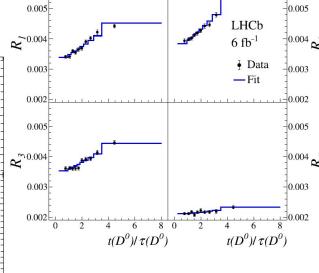
 $\mathcal{B}(B^0 \to K^{*0}\tau^+e^-) < 4.9(5.9) \times 10^{-6}$



Charm mixing & CPV



• Measure neutral D mixing & CPV using RS/WS $D^0 \to K^{\mp} \pi^{\pm} (\pi^+ \pi^-)$

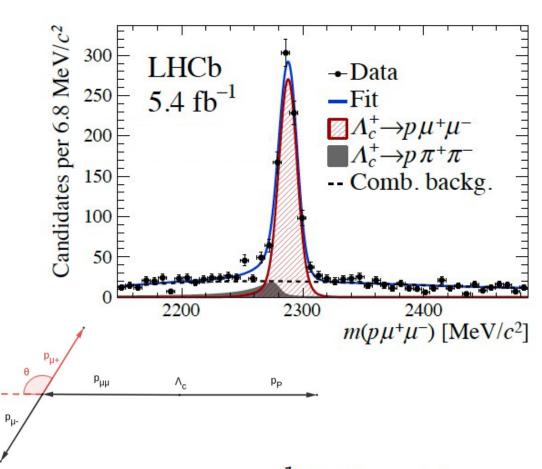

No evidence of CPV in mixing or decay found

Prompt $D^0 \to K^{\mp} \pi^{\pm}$ PRD 111 (2025) 012001

Semileptonic $D^0 \to K^{\mp} \pi^{\pm}$ JHEP 03 (2025) 149

Prompt $D^0 \rightarrow K3\pi$ LHCb-PAPER-2025-029 in prep.

BESIII results on hadronic parameters fundamental

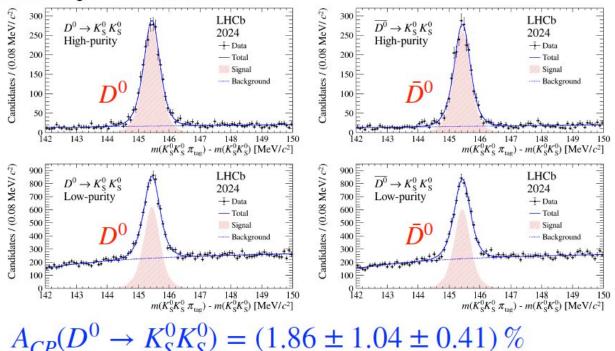

CPV in $\Lambda_c^+ \to p\mu^+\mu^-$

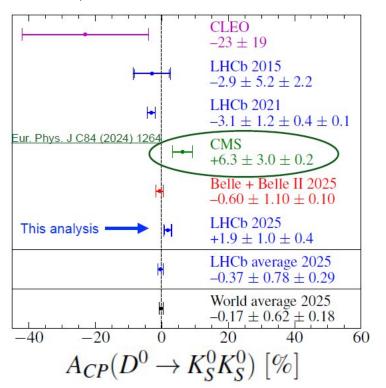
- Using Run 2 5.4 fb⁻¹ data
- Control sample: $\Lambda_c^+ \to pK_S^0$
- Forward-backward asymmetry:

$$A_{FB} = \frac{N(\cos \theta > 0) - N(\cos \theta < 0)}{N(\cos \theta > 0) + N(\cos \theta < 0)}$$

• Final results:

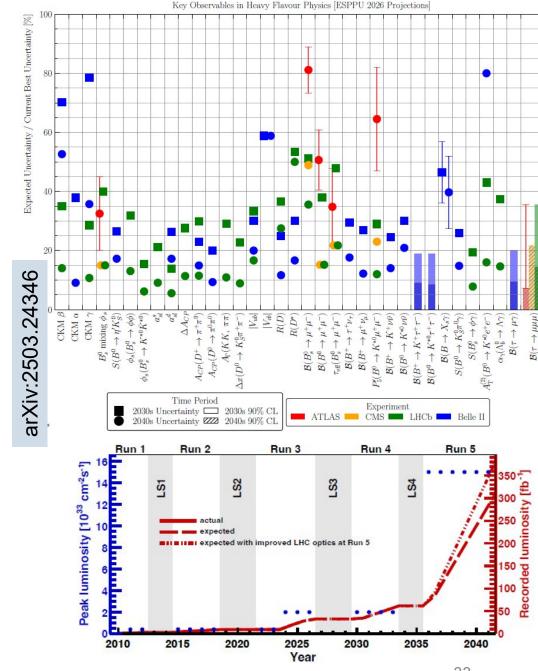
$$A_{CP} = -1.1 \pm 4.0 \pm 0.5\%$$
 $\Sigma A_{\mathrm{FB}} = +3.9 \pm 4.0 \pm 0.6\%$
 $\Delta A_{\mathrm{FB}} = +3.1 \pm 4.0 \pm 0.4\%$




$$\Sigma A_{FB} = rac{1}{2} \left(A_{FB}^{\Lambda_c^+} + A_{FB}^{\overline{\Lambda}_c^-}
ight)$$
 $\Delta A_{FB} = rac{1}{2} \left(A_{FB}^{\Lambda_c^+} - A_{FB}^{\overline{\Lambda}_c^-}
ight)$

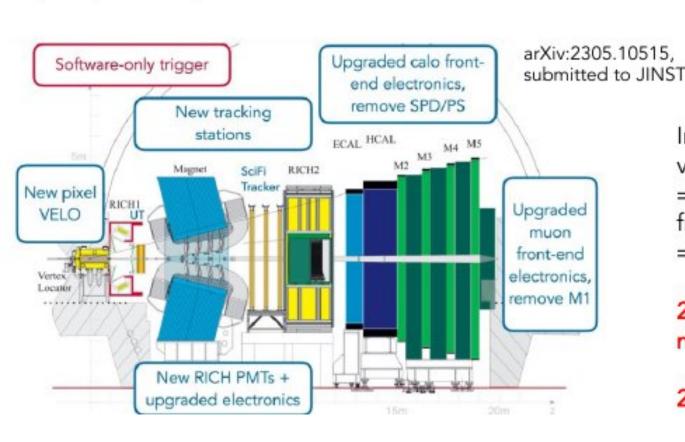
CPV in $D^0 \to K_S^0 K_S^0$

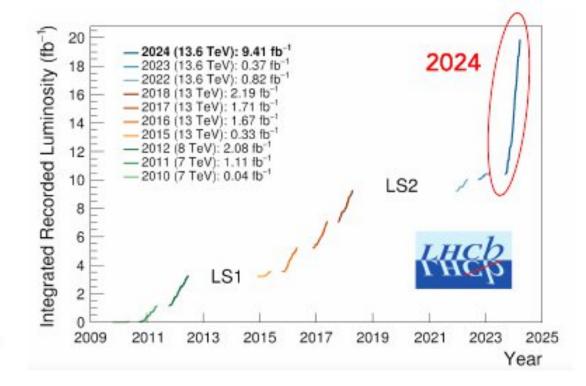
- D^0/\overline{D}^0 tagged via $D^{*+} \to D^0\pi_s^+$
- $D^0 \to K_S^0 \pi^+ \pi^-$ used as control mode to cancel tagging/production asymmetries
- First LHCb result with 2024 data! Total signal yield: 15,676 ± 229


Define two categories with different purities according to a MVA classifier

Summary & outlook

- Broad & rich flavor physics programs at LHCb
- Not included: hadron spec., semileptonic B decays, strange hadron decays, etc.
- Many first observations & precision measurements such as CPV in baryonic decay
- So far, no surprises, but tensions still persist (C₉?)
- Many new results on the way, stay tuned for CLHCP & implication workshop!
- Now a new detector and improved hadron trigger: higher efficiency per fb⁻¹
- And we will have Run4 and Upgrade-II!
 - 50 fb⁻¹ by 2033, > 300 fb⁻¹ by 2041

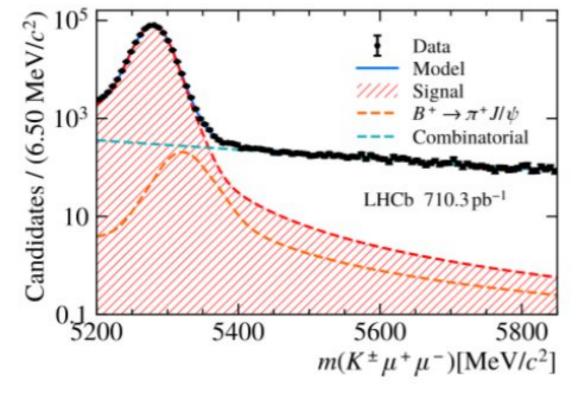



Backup Slides

LHCb-Upgrade I

Luminosity x5 wrt Run2 5.5 visible interactions/crossing Higher track multiplicity from ~<70> to ~<180>)

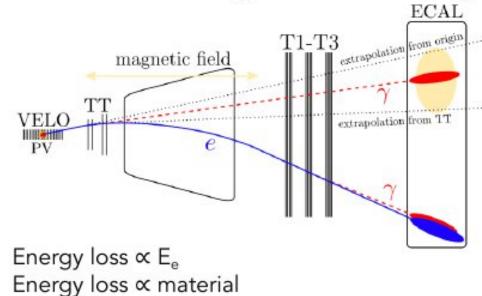
No more hardware trigger (full detector readout at 40 MHz) Tracking & PID detectors modified/replaced Higher granularity


In January 2023, a loss of control of the LHC primary vacuum system

- ⇒ plastic deformation of the RF foil separating VELO from LHC.
- ⇒ significant impact on 2023 physics programme

2022 – 2023 : commissioning and understanding the new detector

2024: a lot of data!


1fb⁻¹ collected during October 2024

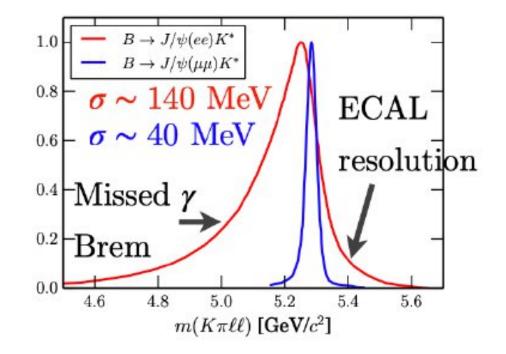
LHCb_TDR_023

Observable	Current LHC	b Upgr	ade I	Upgrade II
	(up to $9 \mathrm{fb}^{-1}$	(23fb^{-1})	$(50{\rm fb}^{-1})$	$(300{\rm fb}^{-1})$
CKM tests				
$\gamma \ (B \to DK, \ etc.)$	4° [9, 10)] 1.5°	1°	0.35°
$\phi_s \; \left(B_s^0 o J/\psi \phi \right)$	$32 \mathrm{mrad}$ [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} (\Lambda_b^0 \to p\mu^- \overline{\nu}_\mu, etc.)$	6% [29, 3		2%	1%
$a_{\rm sl}^d \; (B^0 o D^- \mu^+ u_\mu)$	$36 \times 10^{-4} [34]$		5×10^{-4}	2×10^{-4}
$a_{\rm sl}^{s} \ (B_s^0 o D_s^- \mu^+ u_\mu)$	$33 \times 10^{-4} [35]$	10×10^{-4}	7×10^{-4}	3×10^{-4}
Charm				
$\Delta A_{CP} \ (D^0 \rightarrow K^+K^-, \pi^+\pi^-)$	29×10^{-5} [5]		8×10^{-5}	3.3×10^{-5}
$A_{\Gamma} \ (D^0 \to K^+ K^-, \pi^+ \pi^-)$	$11 \times 10^{-5} [38]$	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}
$\Delta x \ (D^0 \to K_{\rm S}^0 \pi^+ \pi^-)$	$18 \times 10^{-5} [37]$	6.3×10^{-5}	4.1×10^{-5}	1.6×10^{-5}
Rare Decays				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	69% [40, 4	1] 41%	27%	11%
$S_{\mu\mu} \left(B_s^0 o \mu^+ \mu^- \right)$		8 7 - 8 7	25 28	0.2
$A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$A_{\rm T}^{ m Im} \; (B^0 o K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$\mathcal{A}_{\phi\gamma}^{\overline{\Delta}\Gamma}(B_s^0 \to \phi\gamma)$	$^{+0.41}_{-0.44}$ [51]	0.124	0.083	0.033
$S_{\phi\gamma}(B_s^0 \to \phi\gamma)$	0.32 [51]	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$ [53]	0.148	0.097	0.038
Lepton Universality Tests				
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	0.007
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12 [61]	0.034	0.022	0.009
$R(D^*) \ (B^0 \to D^{*-}\ell^+\nu_\ell)$	0.026 [62, 6]	4] 0.007	0.005	0.002

Bremsstrahlung emission is significant for electrons

⇒ Use of a recovery algorithm

Before the magnet

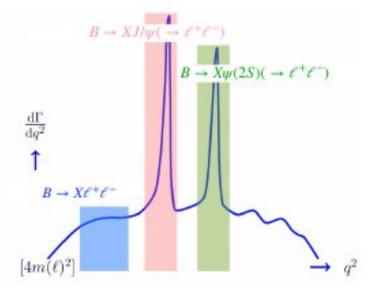

- electron can be swept out (=lost!)
- · kinematics are "wrong"

After the magnet

not an issue

In both cases E/p is correct

Nuclei

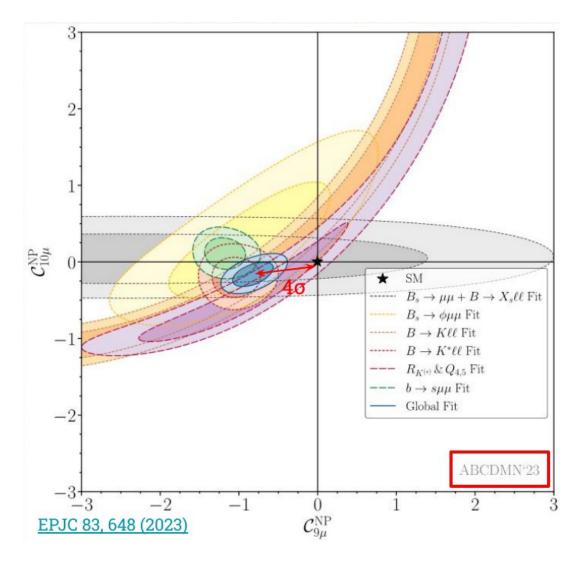

LFU ratio: Experimental strategy

- R_X are measured as double ratios, to mitigate e/μ reconstruction differences

$$R_{X} = \underbrace{\frac{\mathcal{N}_{B \to X \mu^{+} \mu^{-}}}{\mathcal{N}_{B \to X J / \psi (\to \mu^{+} \mu^{-})}} \cdot \frac{\mathcal{N}_{B \to X J / \psi (\to e^{+} e^{-})}}{\mathcal{N}_{B \to X e^{+} e^{-}}} \cdot \underbrace{\frac{\epsilon_{B \to X J / \psi (\to \mu^{+} \mu^{-})}}{\epsilon_{B \to X \mu^{+} \mu^{-}}} \cdot \frac{\epsilon_{B \to X J / \psi (\to e^{+} e^{-})}}{\epsilon_{B \to X J / \psi (\to e^{+} e^{-})}}}$$

$$\cdot \frac{\epsilon_{B \to XJ/\psi(\to \mu^+\mu^-)}}{\epsilon_{B \to X\mu^+\mu^-}} \cdot \frac{\epsilon_{B \to Xe^+e^-}}{\epsilon_{B \to XJ/\psi(\to e^+e^-)}}$$

- Yields: unbinned maximum-likelihood fits to the B invariant mass
- Efficiencies: simulation corrected for well-known MC/data differences

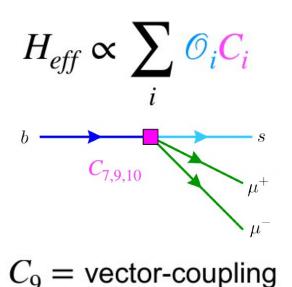

- Resonant channels also used for checks/data driven studies
 - J/ψ and $\psi(2S)$ satisfy LFU, not mediated by $b \to s\ell\ell$

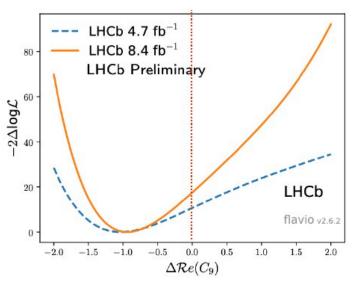
•
$$r_{J/\psi} = \frac{\mathscr{B}(B \to XJ/\psi(\to \mu\mu))}{\mathscr{B}(B \to XJ/\psi(\to ee))} \equiv 1$$
 Sensitive to e, μ differences

$$* R_{\psi(2S)} = \frac{\mathcal{B}(B \to X(\psi(2S) \to \mu\mu))}{\mathcal{B}(B \to X(J/\psi \to \mu\mu))} \cdot \frac{\mathcal{B}(B \to X(J/\psi \to ee))}{\mathcal{B}(B \to X(\psi(2S) \to ee))} \equiv 1$$

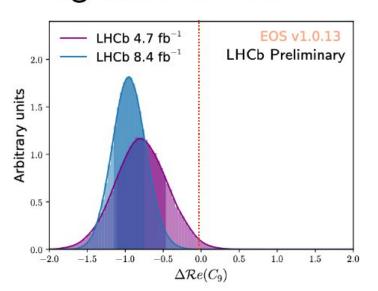
Efficiency related systematics cancel in double ratio

Wilson Coefficients global fits




EPJS 233, 409-428 (2024)

Legacy Runs1-2 B⁰ \rightarrow K*0 $\mu^{+}\mu^{-}$ measurement


 Two different theory packages are used, which take different approaches, e.g. different non-local form factors

$$\Delta Re(C_9) = -0.93^{+0.18}_{-0.16}$$
 Significance: 4.1σ

$$\Delta Re(C_9) = -0.94^{+0.22}_{-0.22}$$

Significance: 4.0σ

