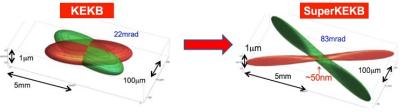

Overview of the Belle II experiment


贾森 (jiasen@seu.edu.cn) 东南大学

第二十二届全国重味物理与CP破坏研讨会 (HFCPV2025) 2025年10月24-28日 北京

SuperKEKB and Belle II

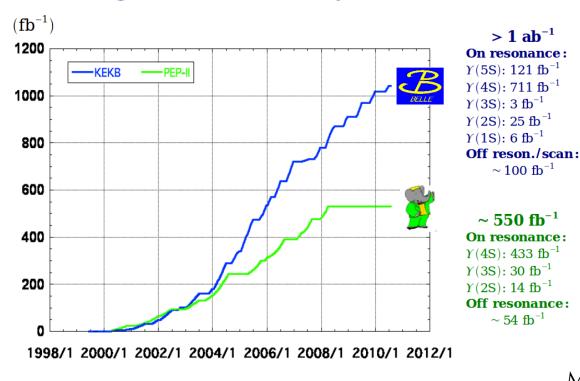
Nano-beam design:

Beam squeezing: ×20 smaller;

Beam current: ×2 larger

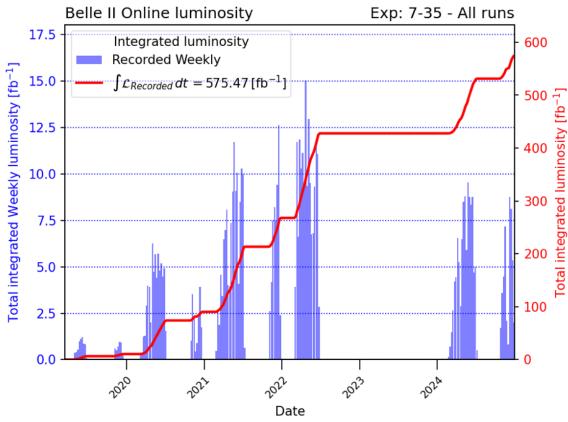
Target peak luminosity: KEKB×30

Belle and Belle II Datasets


- Belle (1999 2012)
- Belle II RUN-I (2019 2023)
- **Belle II RUN-II (2024 2025)**

Integrated luminosity of B factories

 $> 1 \text{ ab}^{-1}$


 $\sim 100 \text{ fb}^{-1}$

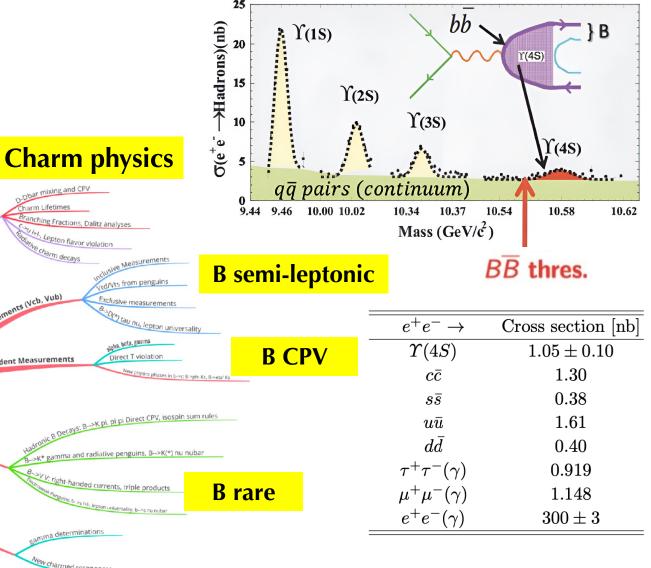
 $\sim 54 \text{ fb}^{-1}$

In December 2024

WORLD RECORD: 5. $1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Most data at or near the $\Upsilon(4S)$ resonance, and 19.6 fb⁻¹ near $\Upsilon(10753)$

Belle II physics


 $\Upsilon(10753)$ study

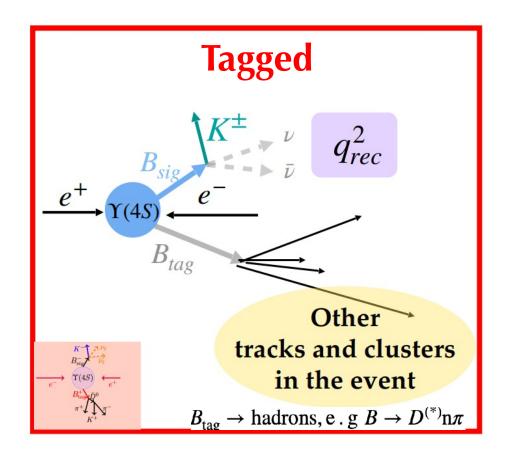
and ISR process

τ physics

NC (Neutral Current) universali

The Belle II Physics Book: [PTEP 2019 (2019) 12, 123C01]

From Belle II website homepage: Belle II has been designed to make precise measurements of weak interaction parameters, study exotic hadrons, and search for new phenomena beyond the Standard Model of particle physics.


td/Vts from penguins

Time Dependent Measurements

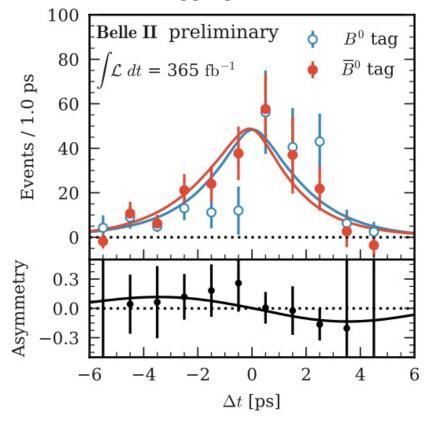
Belle II Data

B decays


Two ways of tagging

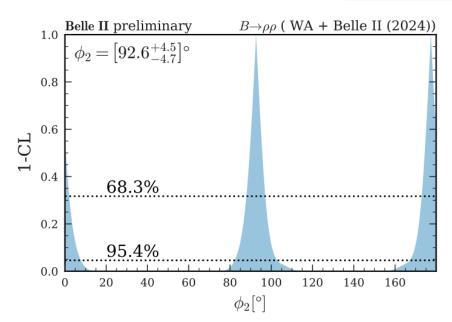
Efficiency

 q_{rec}^2 : mass squared of the neutrino pair


Purity, Resolution

- Tagging: Hadronic + Semileptonic
- Inclusive ROE (Rest of Event) (\times 10 20 efficiency, but large backgrounds); add some ML/AI (boosted decision trees or BDTs) to help suppress the large backgrounds.

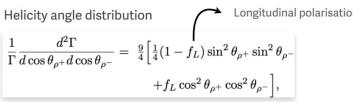
Search for CPV in $B^0 \rightarrow \rho^+ \rho^-$


- much smaller loop contribution \Rightarrow dominates ϕ_2 precision
- two π^{0} 's reconstruction needed \Rightarrow a channel suitable for Belle II
- Use hadronic tagging

$$S = -0.26 \pm 0.19 \pm 0.08$$
$$C = -0.02 \pm 0.12 \pm 0.05$$

$$\mathcal{B}(B^0 \to \rho^+ \rho^-) = (2.89^{+0.37}_{-0.35}) \times 10^{-5}$$

 $f_L = 0.921^{+0.029}_{-0.029}$


Constraining ϕ_2 :

Dominated by systematics from *S*

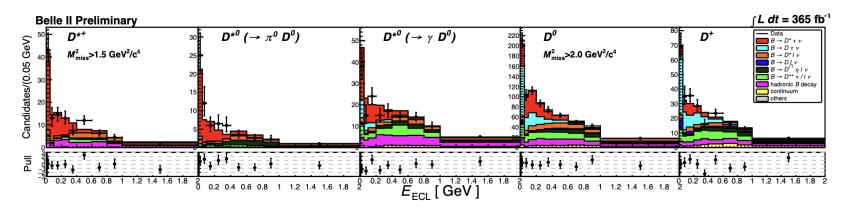
[PRD 111, 092001 (2025)]

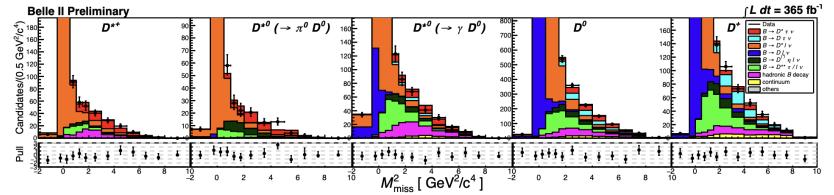
Probability distribution $P(\Delta t,q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \Big\{1 + q\big[S\sin(\Delta m_d \Delta t) \\ -C\cos(\Delta m_d \Delta t)\big]\Big\},$ Direct CPV param.

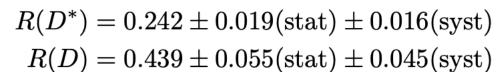
 $B \rightarrow \rho \rho$ world average: $\phi_2 = (91.5^{+4.5}_{-5.4})^{\circ}$

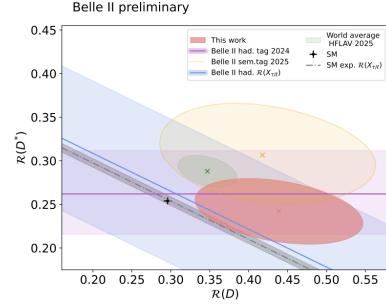
 $B \rightarrow \rho \rho$ world average + Belle II $\rho^+ \rho^-$ result $\Rightarrow \phi_2 = (92.6^{+4.5}_{-4.8})^\circ$

$\mathcal{R}(D)$ and $\mathcal{R}(D^*)$

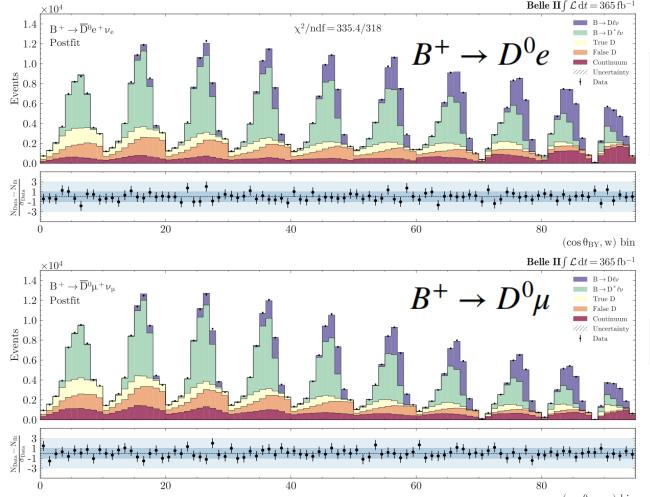

$$\mathcal{R}(D^{(*)+}) = \frac{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\ell^-\bar{\nu}_{\ell})}$$


- Test Lepton-Flavor Universality
- Use hadronic tagging, efficiency: 0.30%, purity: 29%


[Belle II Preliminary]


Signal extraction

• 2D log-likelihood fit to E_{ECL} and M_{miss}^2



Most precise determination of $\mathcal{R}(\mathbf{D}^{(*)})$ with hadronic tagging

$|V_{cb}|$ from untagged exclusive $B \rightarrow D \ell \nu_{\ell}$

Signal yields are extacted in 10 bins of w by fitting the simultaneously in the electron and muon channels and in the charged and neutral modes

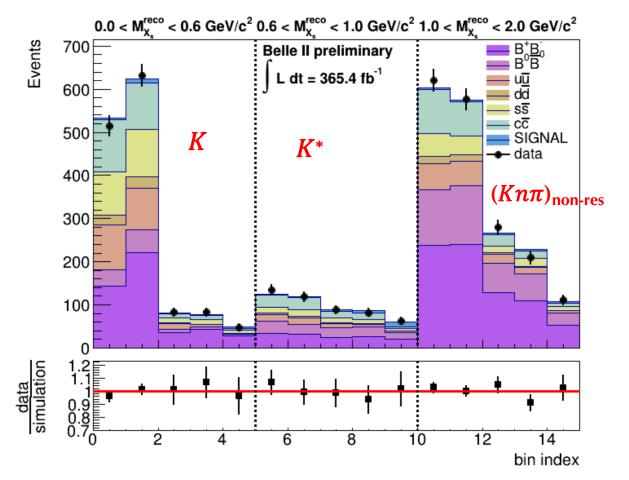
The recoil variable $w = v_B \cdot v_D$ $\cos \vartheta_{BY}$: the angle between the signal B and D ℓ system

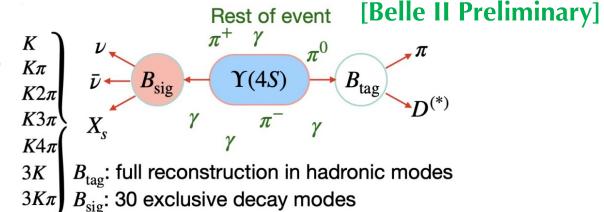
[Belle II Preliminary]

$$\mathcal{B}(B^0 \to D^- \ell^+ \nu_{\ell}) = (2.06 \pm 0.05(\text{stat.}) \pm 0.10(\text{syst.})) \%$$

$$\mathcal{B}(B^+ \to \bar{D}^0 \ell^+ \nu_{\ell}) = (2.31 \pm 0.04(\text{stat.}) \pm 0.09(\text{syst.})) \%$$

Extract by fitting values of $\Delta T/\Delta w$ using BCL (Phys. Rev. D 82, 099902 (2010)) form factor parametrisation.


$$|V_{cb}| = (39.2 \pm 0.4(\text{stat.}) \pm 0.6(\text{syst.}) \pm 0.5(\text{th.})) \times 10^{-3}$$


- Result in agreement with exclusive HFLAV average
- ightharpoonup Most precise measurement using $B \to D\ell \nu_\ell$ decays

Inclusive $B \rightarrow X_s \nu \nu$ with hadronic tagging

- Probe flavor changing neutral currents (FCNC) in $b \rightarrow s\nu\nu$.
- The branching fraction for $B \to X_s \nu \nu$ is cleanly predicted to be $(2.9\pm0.3)\times10^{-5}$ in the SM [JHEP 02, 184 (2015)].

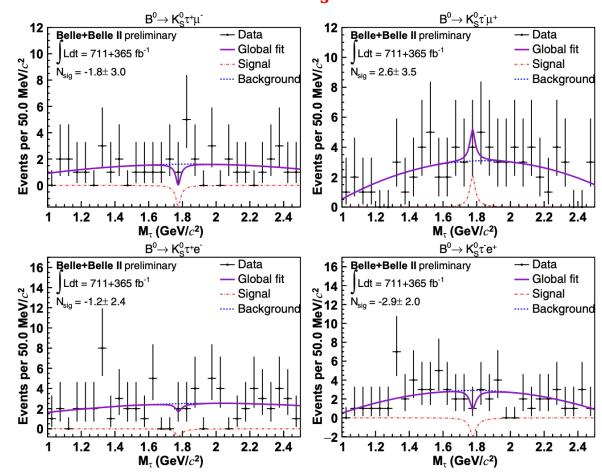
Maximum likelihood fit in $M_{Xs} \times \mathcal{O}_{BDT}$ with 3×5 bins:

			$\mathcal{B} [10^{-5}]$		
M_{X_s} [GeV/ c^2]	ϵ	$N_{ m sig}$	Central value	$\mathrm{UL}_{\mathrm{obs}}$	$\mathrm{UL}_{\mathrm{exp}}$
[0, 0.6]	0.29%	$6^{+18}_{-17}{}^{+19}_{-16}$	$0.3^{+0.8}_{-0.8}{}^{+0.9}_{-0.7}$	2.2	2.0
[0.6, 1.0]	0.12%	$36^{+27}_{-26}{}^{+31}_{-26}$	$3.5^{+2.6}_{-2.5}{}^{+3.1}_{-2.6}$	9.5	6.6
$[1.0,M_{X_s}^{\rm max}]$	0.07%	$24^{+44}_{-43}{}^{+62}_{-53}$	$5.1^{+9.2}_{-8.8}{}^{+12.9}_{-11.0}$	31.2	26.7
Full range	0.10%	$66^{+64}_{-62}^{+95}_{-81}$	$8.8^{+8.5}_{-8.2}^{+12.6}_{-10.8}$	32.2	24.4

Full range:

$$\mathcal{B}(B \to X_s \nu \bar{\nu}) < 3.6 \times 10^{-4} \ (90 \% \ \text{CL})$$

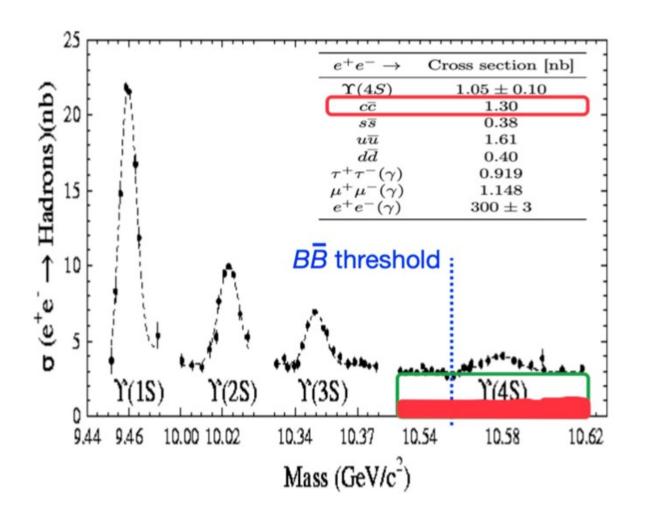
Most stringent upper limit on the inclusive rate

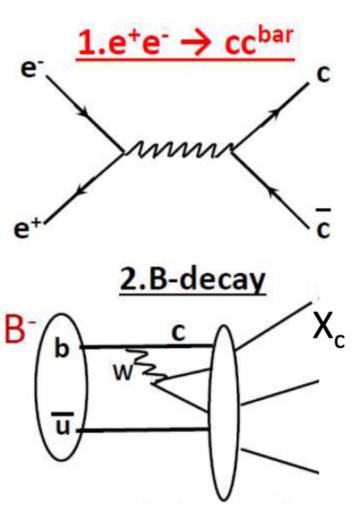

B rare decays

- Flavor changing neutral current processes are forbidden at tree level in SM.
- Lepton flavor-violating decays are forbidden in SM.
- The decay rates can be enhanced by physics beyond the SM.

$$B^0 \to K_s^0 \tau^\pm \boldsymbol{\ell}^{\mp}$$

- > Use hadronic tagging
- No significant signals, and upper limits were set.

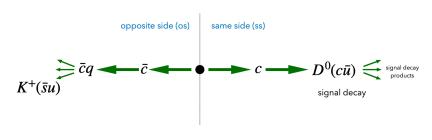

Channel	UL at 90% C.L.	Comments	References
$\boxed{ B^0 \to K_s^0 \tau^\pm \boldsymbol{\ell}^\mp }$	3.6×10 ⁻⁵	Best limits	PRL 135, 0418 01 (2025)
$B^0 \to K^{*0} \tau^{\pm} \ell^{\mp}$	6.4×10 ⁻⁵	LHCb: 5.9×10 ⁻⁶ (<i>e</i> mode) 1.0×10 ⁻⁵ (μ mode)	JHEP 08 (2025) 184
$B^0 \to K^{*0} \tau^+ \tau^-$	1.8×10 ⁻³	Best limits	arXiv:2504.10 042, PRL accepted
$B^+ \to K^+ \tau^+ \tau^-$	0.9×10 ⁻³	Best limits	Belle II preliminary



Charm

Charm production at Belle II

- At Belle II, e^+e^- mainly collide at 10.58 GeV to make $\Upsilon(4S)$ resonance mainly decaying into $B\overline{B}$.
- Meanwhile, continuum processes $e^+e^- \rightarrow q\overline{q}$ (q = u, d, s, c) have large cross sections.
- Two ways to produce charm samples: 1) $e^+e^- \rightarrow c\bar{c}$, and 2) $B \rightarrow charm decays$.

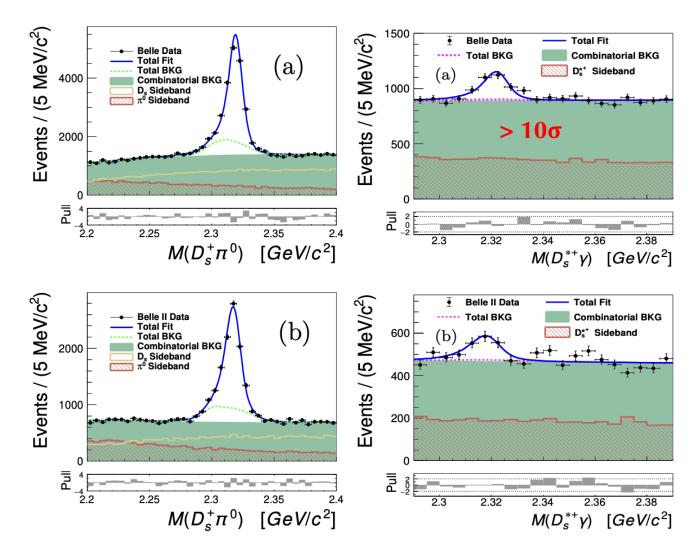


Charm CPV

New Charm-flavor-tag (CFT) D^0 :

• The D $\rightarrow \pi\pi$ decays help to determine the source of CPV:

$$R = \frac{A_{CP}^{\text{dir}}(D^{0} \to \pi^{+}\pi^{-})}{1 + \frac{\tau_{D^{0}}}{\beta_{+-}} \left(\frac{\beta_{00}}{\tau_{D^{0}}} - \frac{2}{3}\frac{\beta_{+0}}{\tau_{D^{+}}}\right)} + \frac{A_{CP}^{\text{dir}}(D^{0} \to \pi^{0}\pi^{0})}{1 + \frac{\tau_{D^{0}}}{\beta_{00}} \left(\frac{\beta_{+-}}{\tau_{D^{0}}} - \frac{2}{3}\frac{\beta_{+0}}{\tau_{D^{+}}}\right)} + \frac{A_{CP}^{\text{dir}}(D^{+} \to \pi^{+}\pi^{0})}{1 - \frac{3}{2}\frac{\tau_{D^{+}}}{\beta_{+0}} \left(\frac{\beta_{00}}{\tau_{D^{0}}} + \frac{\beta_{+-}}{\tau_{D^{0}}}\right)} \xrightarrow{K^{+}(\bar{s}u)} C \longrightarrow D^{0}(c\bar{u}) \leqslant \frac{\sin \operatorname{decay}}{\operatorname{products}}$$

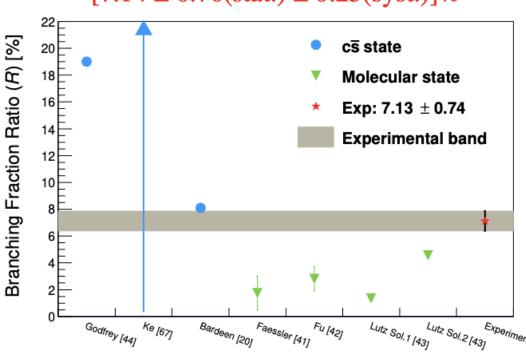

if R \neq 0, CPV from $\Delta I = 1/2$ amplitude; if R = 0 and at least one $A_{CP}^{dir} \neq 0$, CPV from a beyond-SM $\Delta I = 3/2$ amplitude.

Search for Charm CPV in following channels:

Channel	A _{CP}	References
$D^0 \to \pi^0 \pi^0$	(+0.3±0.7±0.2)%	PRD 112, 012006 (2025)
$D^+ \to \pi^+ \pi^0$	$(-1.8\pm0.9\pm0.1)\%$	PRD 112, L031101 (2025)
$D^0 \to \pi^+\pi^-\pi^0$	(0.3±0.3±0.1)%	Preliminary result
$D^0 \to K^0_s K^0_s$	(-0.6±1.1±0.1)%	PRD 111, 012015 (2025), PRD 112, 012017 (2025)
$D^+,D_s^+\to K_s^0K^-\pi^+\pi^+$	(+3.9±4.5±1.1)%, (-0.2±2.5±1.1)%	JHEP 04 (2025) 036
$\Lambda_c^+ \rightarrow \Lambda K^+, \Sigma^0 K^+$	(+2.1±2.6±0.1)%, (+2.5±5.4±0.4)%	Sci. Bull. 68 (2023) 583
$\Lambda_c^+ o p K^+ K^-$, $p \pi^+ \pi^-$	$(+3.9\pm1.7\pm0.7)\%, (+0.3\pm1.0\pm0.2)\%$	Preliminary result
$\Xi_c^+ \to \Sigma^+ K^+ K^- \text{, } \Sigma^+ \pi^+ \pi^-$	$(+3.7\pm6.6\pm0.6)\%, (+9.5\pm6.8\pm0.5)\%$	Preliminary result

First observation of $D_{s0}^*(2317)^+ \rightarrow D_s^{*+}\gamma$

- Target: $D_{s0}^{*}(2317)^{+} \rightarrow D_{s}^{*+}\gamma$
- Control channel: $D_{s0}^*(2317)^+ \rightarrow D_s^+\pi^0$ (Br = $(100^{+0}_{-20})\%$)

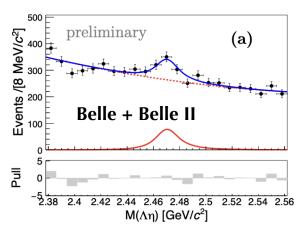


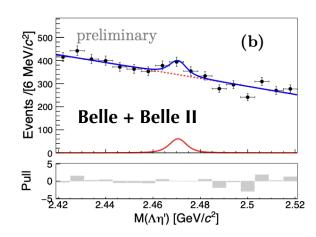
Partial decay widths:

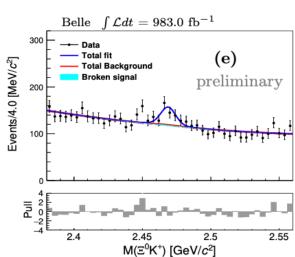
unique in discriminating between various models

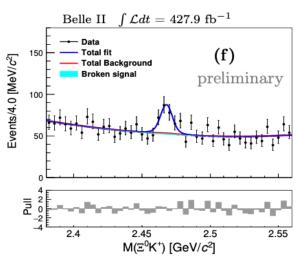
$$\mathcal{R} = \frac{\mathcal{B}(D_{s0}^*(2317)^+ \to D_s^{*+}\gamma)}{\mathcal{B}(D_{s0}^*(2317)^+ \to D_s^{+}\pi^0)}$$

 $= [7.14 \pm 0.70(\text{stat.}) \pm 0.23(\text{syst.})]\%$

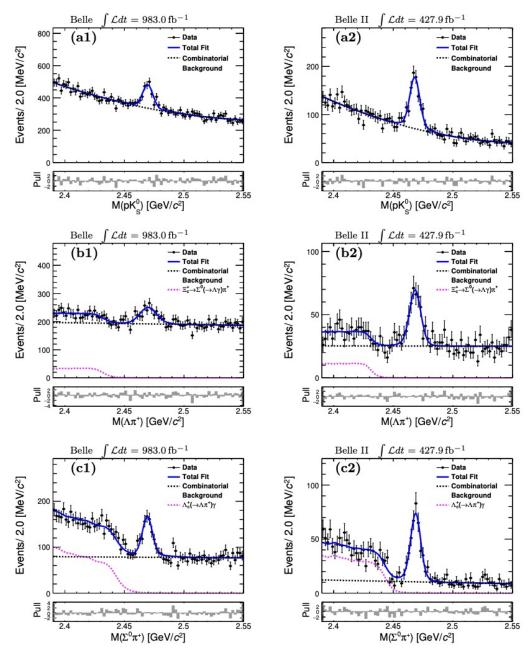


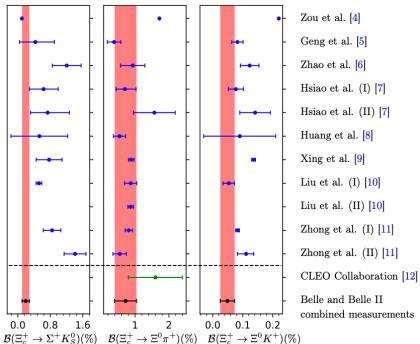

 $D_{s0}(2317)^+$ could be the mixture state of pure $c\bar{s}$ state and molecular state.

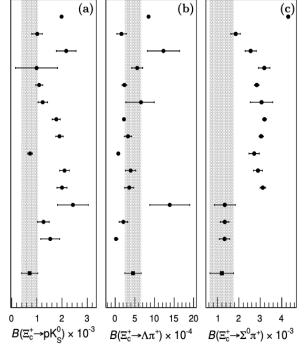

Ξ_c^+ and Ξ_c^0 decays


Reconstruct:

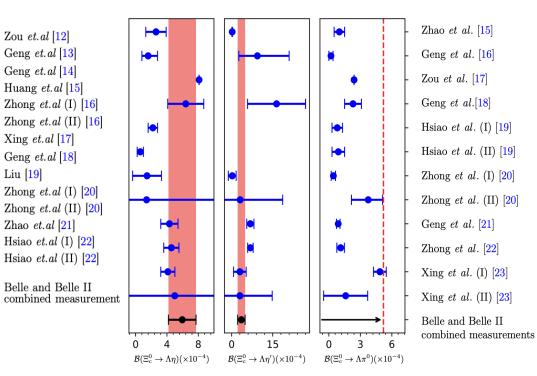
- $\Xi_c^0 \to \Lambda \eta$, $\Xi_c^0 \to \Lambda \eta'$ (singly Cabibbo-suppressed (SCS))
- $\bullet\quad\Xi_c^+\to\Xi^0K^+,\,\Xi_c^+\to pK_s^0,\,\Xi_c^+\to\Lambda\pi^+,\,\Xi_c^+\to\Sigma^0\pi^+\ (SCS)$




$e^+e^- \rightarrow \Xi_c^+/\Xi_c^0$ + anything


Branching fractions

First or most precise measurements!


[JHEP 08 (2025) 195]

[JHEP 03 (2025) 061]

- In hadronic weak decays of charmed baryons, nonfactorizable contributions play an essential role and cannot be neglected.
- Various approaches describe the nonfactorizable effects: the covariant confined quark model, the pole model (Pole), current algebra (CA), and, SU(3)_F flavor symmetry.

Next steps: 1. Explore three-body decays; 2. Amplitude analyses to search for new intermediate states and identify J^P.

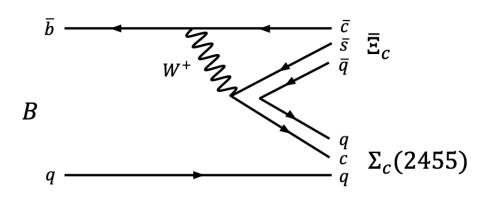
[Belle II Preliminary]

$B^{+,0} \to \Sigma_c(2455)^{++,0} \overline{\Xi}_c^{-,0}$

[PRD 112 (2025) L051101]

→ Data

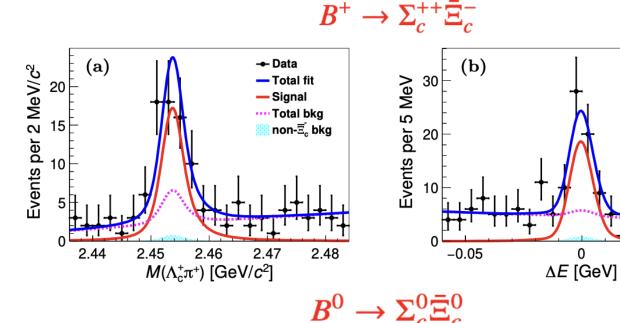
Total fit

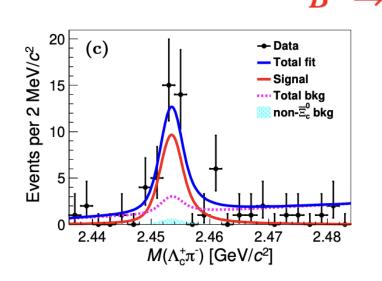

···· Total bkg

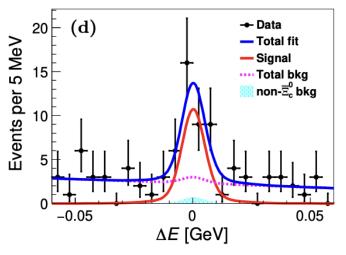
non-Ēc bkg

0.05

Signal


These two decays proceed through a purely internal W-emission:

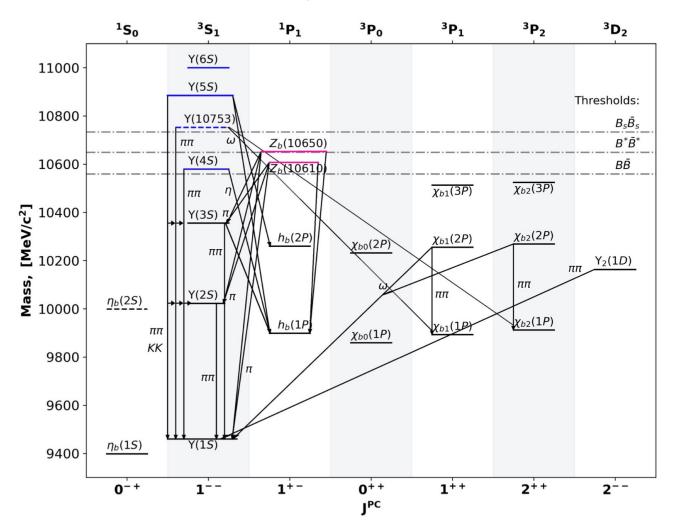


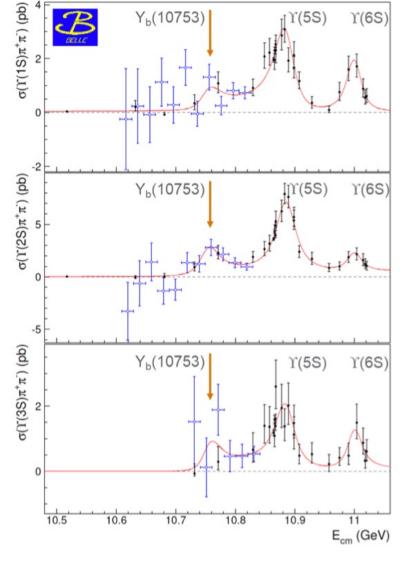

To date, no B decays into charmed baryon pairs containing both a sextet and an antitriplet have been observed.

$$\mathcal{B}(B^+ \to \Sigma_c^{++} \bar{\Xi}_c^{-}) = (5.74 \pm 1.11 \pm 0.42^{+2.47}_{-1.53}) \times 10^{-4}$$
$$\mathcal{B}(B^0 \to \Sigma_c^0 \bar{\Xi}_c^0) = (4.83 \pm 1.12 \pm 0.37^{+0.72}_{-0.60}) \times 10^{-4}$$

First observations!

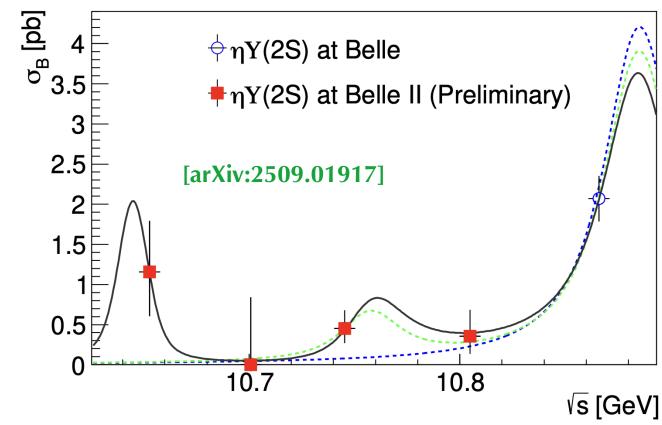
quarkoium

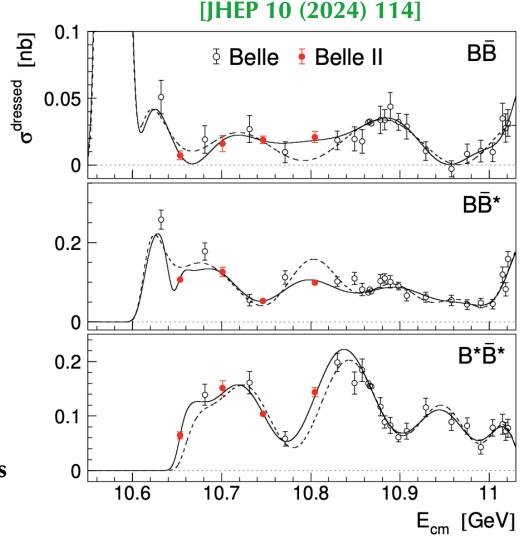

Bottomonium


The $\Upsilon(10753)$ was first discovered in $\pi^+\pi^-\Upsilon(nS)$ final states using scan data by Belle [JHEP 10, 220 (2019)].

Conventional bottomonium (pure $b\bar{b}$ states)

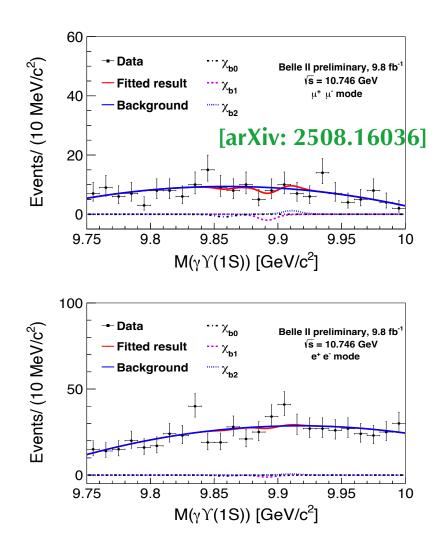
Bottomonium-like states (mix of $b\bar{b}$ and $B\bar{B}$)


Exotic charged states (Z_b⁺)

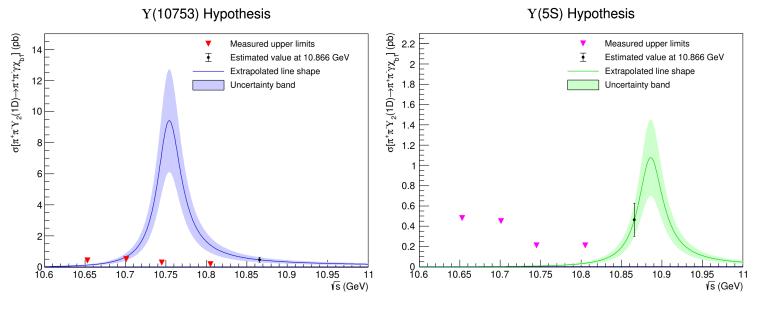


Belle II collected 19 fb⁻¹ of unique data around $\sqrt{s} \sim 10.75$ GeV to study the nature of the $\Upsilon(10753)$.

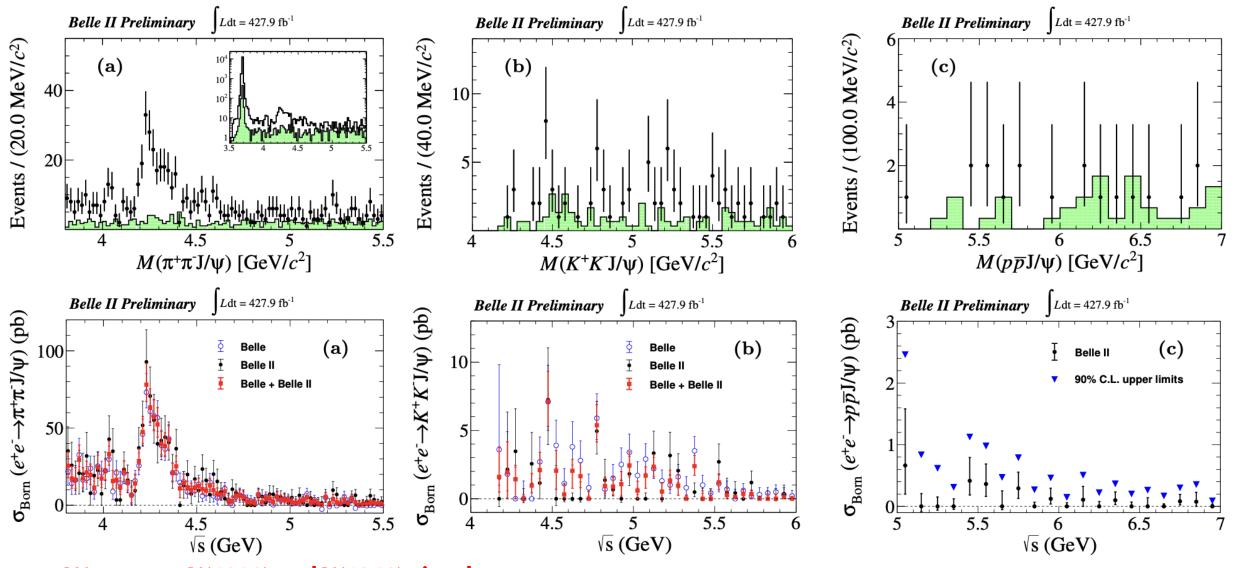
$e^+e^- \to \eta \Upsilon(2S)$ and $e^+e^- \to B^{(*)} \overline{B}^{(*)}$


- The Born cross section of $e^+e^-\to \eta\Upsilon(2S)$ around $B^*\overline B{}^*$ mass is relatively large.
- The significance of $B^*\overline{B}^*$ bound state is larger than 3.2σ .

Rapid increase of $\sigma_{R^*\bar{R}^*}$ just above the threshold.


A new bottomonium-like state around B* \overline{B} * threshold? The $Y_b(10650)$ is predicted in Refs. [arXiv:2505.02742, arXiv:2508.11127, arXiv:2505.03647].

$e^+e^- \to \gamma \chi_{bJ}$ and $e^+e^- \to \pi^+\pi^- Y_J(1D)$

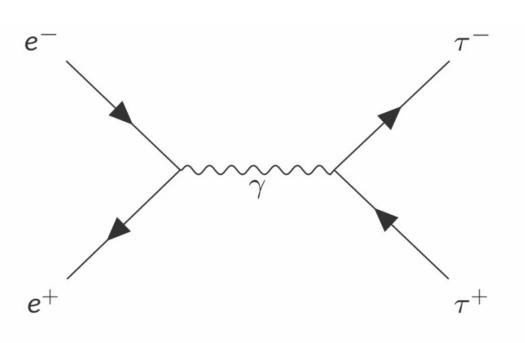

[Belle II Preliminary]

Inverted triangles: the 90% C.L. upper limits on the product $\sigma(e^+e^- \to \pi^+\pi^- Y_2(1D)) \mathcal{B}(Y_2(1D) \to \gamma \chi_{b1}))$ as a function of C.M. energy.

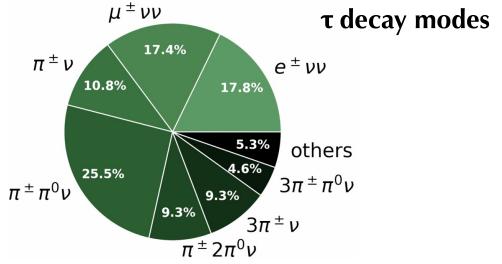
- A pronounced suppression in the coupling of the $\Upsilon(10753)$ resonance to $\Upsilon_{J}(1D)$ states via dipion transitions.
- The upper limits do not conflict with the $\Upsilon(10860)$ line shape.
- No clear signal of $e^+e^- \rightarrow \gamma \chi_{bJ}$ can be seen.
- $\sigma_{Born}^{UL}(e^+e^- \to \gamma \chi_{b1})$ at 90% C.L. at $\sqrt{s} = 10.746$ GeV is 0.25 pb
- This measurement indicates that the $Y_b(10753)$ maybe not a $Y_2(2D)$ state

$e^+e^- \rightarrow h^+h^-J/\psi$ (h = π , K, p) via initial-state radiation at Belle II

- We can see Y(4008) and Y(4260) signals.
- No clear signals were found in K⁺K⁻J/ψ and pp̄J/ψ systems.


Tau

τ physics


SuperKEKB as a τ factory

 $\gg \tau$ mass and lifetime, lepton flavor violation, CKM unitarity, CP violation, ...

• e^+e^- collider produce τ lepton pairs at high rate

$$\sigma(e^+e^- \to \tau^+\tau^-) = 0.92 \text{ nb}$$

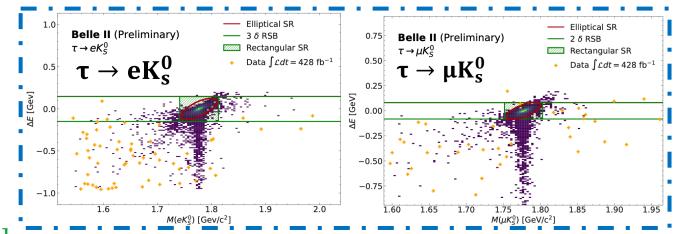
 $\sigma(e^+e^- \to B\bar{B}) = 1.05 \text{ nb}$

Advantages at Belle II:

- ✓ High luminosity
- ✓ Good vertexing and tracking capabilities
- ✓ Good trigger system and particle ID

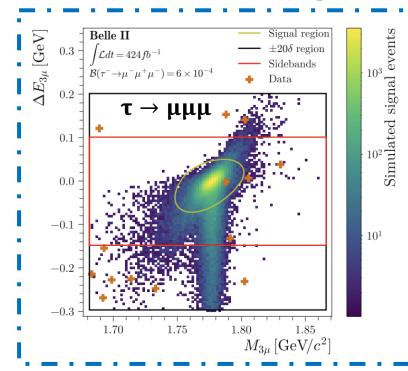
Lepton-flavor violation in τ physics

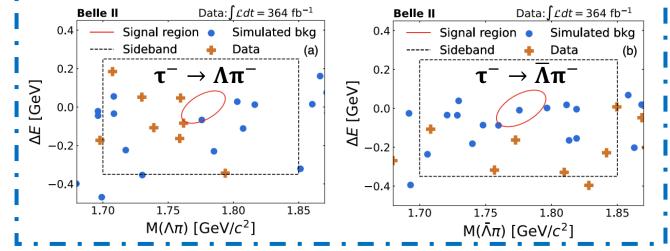
[JHEP 08 (2025) 092]


Lepton flavour violation is only allowed by:

• Neutrino oscillations $\mathcal{O}(10^{-55})$

far beyond current experimental sensitivities


• New Physics models $\mathcal{O}(10^{-8})$


e.g. Leptoquarks for $\tau^- \to \ell^- V^o$ deals with $R(K^{*o})$ anomalies

[JHEP 09 (2024) 062]

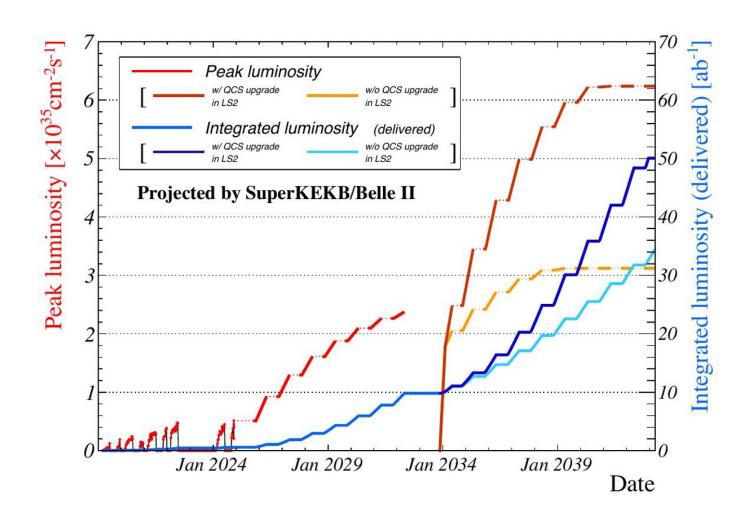
[PRD 110, 112003 (2024)]

 $\mathcal{B}^{UL}(\tau \to e(\mu) K_s^0) < 0.8(1.2) \times 10^{-8} \qquad \text{The most stringent constraints}$ $\mathcal{B}^{UL}(\tau \to \mu \mu \mu) < 1.9 \times 10^{-8} \qquad \text{Less data, more restrictive than Belle}$ $\mathcal{B}^{UL}(\tau^- \to \Lambda \pi^-(\overline{\Lambda} \pi^-)) < 4.7(4.3) \times 10^{-8} \qquad \text{The most stringent constraints}$

 $\Delta E_{3\mu} = E_{\tau}^* - \sqrt{s/2}$

26

Summary


- Belle II: new data + new vertex detectors + new software tools
 - B CPV/semi-leptonic/rare, charm CPV/BF/ α /spectrum \Leftarrow recoiling/ $\gamma/\pi^0/K_s^0/\nu$ etc.
 - Exotic states, τ physics, dark sectors \Leftarrow special data at e^+e^- collider

- Only 1% of target luminosity collected so far. Until 2026, about 1 ab^{-1} data at Belle II. Stay tuned for more exciting results from Belle II.

Thanks for your attention!

Backup slides

Data-taking plan at Belle II

- Until 2026, about 1
 ab⁻¹ data, comparable
 to Belle
- Until 2029, about 4 ab^{-1} data.

Search for CPV in $B^0 o ho^+ ho^-$

Table VI. Systematic uncertainties for \mathcal{B} and f_L . Relative uncertainties are shown for \mathcal{B} .

Source	B [%]	$f_L[10^{-2}]$
Tracking	± 0.54	
π^0 efficiency	± 7.67	
PID	± 0.08	_
\mathcal{T}_C	± 2.87	_
MC sample size	± 0.24	± 0.2
Single candidate selection	± 0.55	± 0.3
SCF ratio	$^{+2.97}_{-2.45}$	$^{+0.2}_{-0.3}$
B's of peaking backgrounds	$^{+0.94}_{-0.98}$	± 0.1
$\tau^+\tau^-$ background yield	$-0.98 \\ +0.65 \\ -0.69$	± 0.0
Signal model	$^{+1.14}_{-2.02}$	± 0.2
$qar{q}$ model	$^{+0.49}_{-0.51}$	$^{+0.1}_{-0.2}$
$B\bar{B}$ model	$^{+1.00}_{-0.40}$	$^{+0.3}_{-0.1}$
$\tau^+\tau^-$ model	$-0.40 \\ +0.17 \\ -0.26$	$^{-0.1}_{+0.0}_{-0.1}$
Peaking model	$-0.26 \\ +1.37 \\ -1.01$	$^{-0.1}_{+0.3}_{-0.5}$
Interference	± 1.20	± 0.5
Data-MC mis-modeling	$^{+3.51}_{-1.70}$	$^{+0.8}_{-0.3}$
Fit bias	± 1.03	± 1.2
f_{00}	$^{+1.67}_{-1.50}$	_
$N_{\Upsilon(4S)}$	± 1.45	_
Total systematic uncertainty	$^{+10.10}_{-9.51}$	$+1.7 \\ -1.5$
Statistical uncertainty	$ \begin{array}{r} -9.51 \\ +7.95 \\ -7.61 \end{array} $	$\begin{array}{r} -1.5 \\ +2.4 \\ -2.5 \end{array}$

Table VII. Systematic uncertainties for S and C.

Source	$S[10^{-2}]$	$C[10^{-2}]$
\mathcal{B} 's of peaking backgrounds	$^{+0.6}_{-0.5}$	± 0.1
au au background yield	± 0.9	$^{+0.0}_{-0.1}$
Data-MC mis-modeling	$^{+0.6}_{-1.1}$	$^{+1.5}_{-0.6}$
Single candidate selection	± 1.3	± 1.9
SCF ratio	$^{+0.5}_{-0.4}$	$^{+0.7}_{-0.0}$
Signal model	+1.1	+0.3
· ·	$^{-1.4}_{+2.2}$	$^{-0.4}_{\pm 0.2}$
$qar{q}$ model	-1.0	
$B\bar{B} \; \mathrm{model}$	± 0.9	$^{+0.7}_{-0.5}$
$ au^+ au^-$ model	± 0.1	± 0.0
Peaking model	$^{+0.8}_{-0.4}$	$^{+0.2}_{-0.4}$
Fit bias	± 2.0	± 0.6
Interference	± 2.8	± 1.7
Resolution	$^{+3.4}_{-4.4}$	$^{+1.9}_{-1.4}$
Δt PDF for $qar q$ and $Bar B$	$+3.8 \\ -1.8$	$^{+0.7}_{-0.1}$
Tag side interference	± 0.5	± 2.1
Wrong tag fraction	$^{+0.2}_{-0.3}$	± 0.5
Background CP violation	+3.8	+4.2
· ·	$-3.6 \\ +0.8$	$-3.7 \\ +0.2$
CP violation in TP signal	-0.2	-0.4
Tracking detector misalignment	± 1.4	± 0.5
$ au_{B^0}$ and Δm_d	$^{+1.4}_{-1.6}$	±0.3
Total systematic uncertainty	$^{+8.2}_{-7.8}$	+6.1 -5.3
Statistical uncertainty	± 18.8	± 12.1

Table II. Summary of the systematic uncertainties on $R(D^{(*)})$ and their correlation. The description of each source is provided in the text.

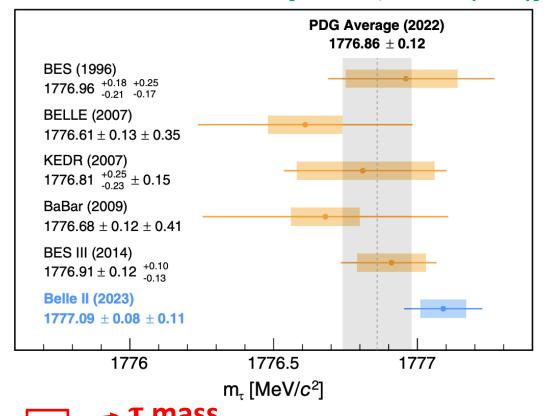
Source	$R(D^*)$	R(D)	ρ
Simulation sample size	4.8%	8.4%	-0.44
gap-mode branching fraction	2.6%	2.6%	0.00
$\bar{B} \to D^{**}\tau^-/(\ell^-)\bar{\nu}_\ell$ branching fractions	0.3%	1.3%	0.25
Hadronic B decay branching fractions	1.6%	1.5%	-0.26
Form factors	0.5%	0.9%	-0.70
Fraction of misreconstructed $D^{(*)}$	0.5%	1.2%	0.00
Continuum background	2.4%	2.1%	0.93
Fit biases	0.3%	1.2%	0.00
Low-momentum π^0, γ efficiency	2.2%	2.4%	0.99
Other efficiency corrections	0.7%	1.4%	0.92
B-tagging efficiency of data	0.9%	1.8%	-1.00
B-tagging efficiency of $B \to D\tau\nu$	0.1%	1.8%	1.00
$M_{ m miss}^2$ resolution	0.5%	0.8%	0.48
Total systematic uncertainty	6.7%	10.2%	-0.20
Statistical uncertainty	8.3%	16.3%	-0.40

Table V. Fractional contributions to the total uncertainty the extracted value of $|V_{cb}|$. The sizes of the contributions ε given relative to the central value.

Source	Uncertainty [%]
Statistical	0.9
Systematic	1.5
$B^{0/+}$ lifetime	0.1
Signal form factor	0.1
$B \to D^* \ell \nu$ form factor	0.1
${\cal B}(B o X_c\ell u)$	0.3
$\mathcal{B}(D \to K\pi(\pi))$	0.5
Tracking efficiency	0.5
$N_{\Upsilon(4S)}$	0.7
f_{00}/f_{+-}	0.1
f_{B}	0.4
Background w modelling	0.3
(E_Y^*, m_Y) reweighting	0.3
Lepton identification	0.3
Kaon identification	0.6
Vertex fit χ^2 correction	0.3
Simulation sample size	0.5
Theoretical	1.3
Lattice QCD inputs	1.2
Long-distance QED	0.5
Total	2.1

$B \to X_s \nu \nu$

Source	Impact on $\sigma_{\mathcal{B}}$ [10 ⁻
Simulated-sample size	6.0
Background normalization	5.7
Branching ratio of major B meson decay	2.3
Non-resonant $X_s \nu \bar{\nu}$ generation point	2.1
$\mathcal{O}_{\mathrm{BDT}}$ selection efficiency	2.0
Photon multiplicity correction	1.8
$q\bar{q}$ background efficiency	1.8
Other subdominant contributions	3.0
Total systematic sources	11.7

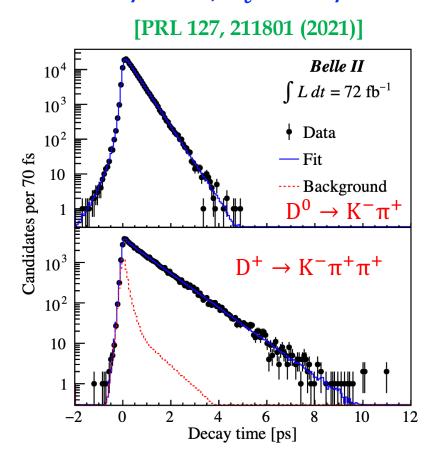

au mass

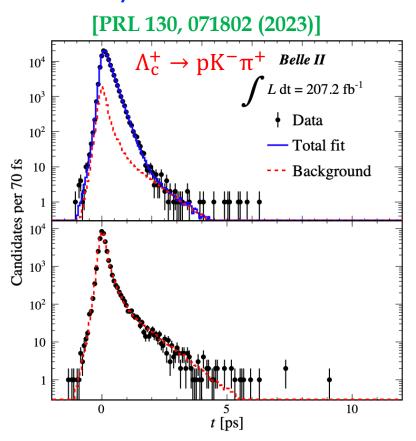
Fit the distribution with a Heaviside step function:

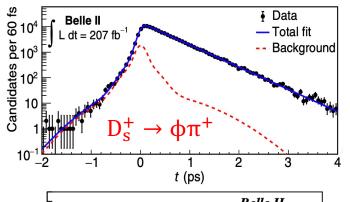
$$F(M_{\min}) = 1 - P_3 \arctan(\frac{M_{\min}}{P_2})$$

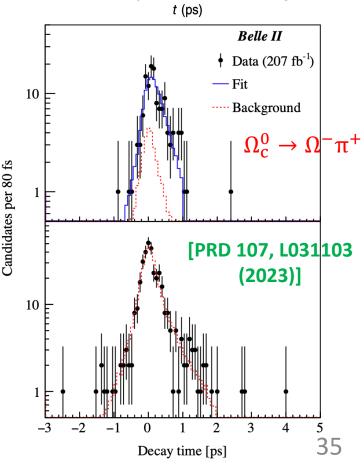
$M(\tau) = (1777.09 \pm 0.08 \pm 0.11) \text{ MeV/c}^2$ Most precise to date.

Systematic uncertainty (0.11), dominant by beamenergy correction and charged-particle momentum correction. [PRD 108, 032006 (2023)]

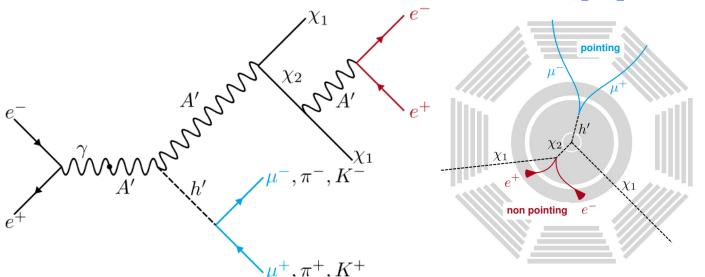

Charm Meson and Charmed Baryon Lifetimes

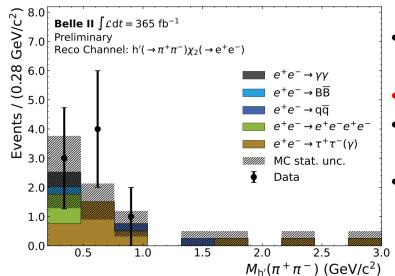

[PRL 131, 171803 (2023)]


• PDF Model:


$$PDF(t, \sigma_t) = (1 - f_b) \int_0^\infty e^{-t_{true}/\tau} R(t - t_{true} | b, s\sigma_t) dt_{true} PDF_{sig}(\sigma_t) + f_b PDF_{bkg}(t, \sigma_t)$$

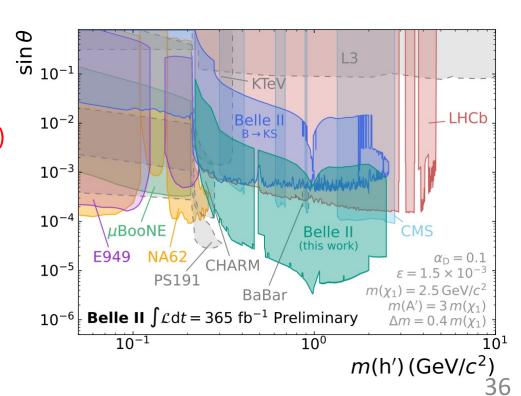
t: decay-time; σ_t : decay-time uncertainty

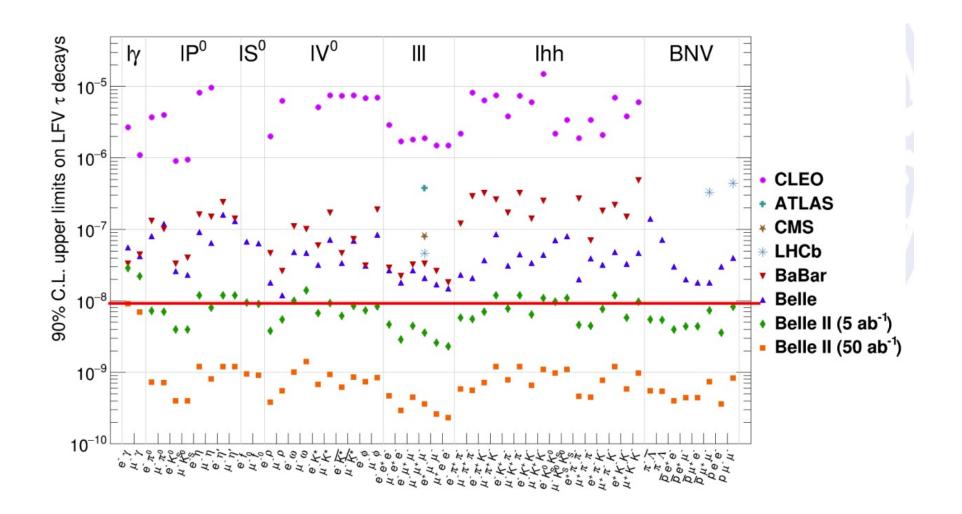




A dark Higgs boson in association with inelastic dark matter [Preliminary results]

Dark photon A', dark Higgs h', and two dark matter states χ_1 , χ_2

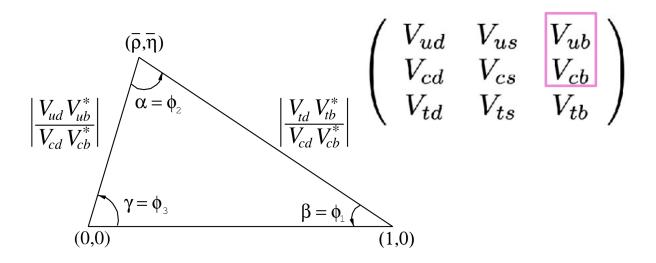


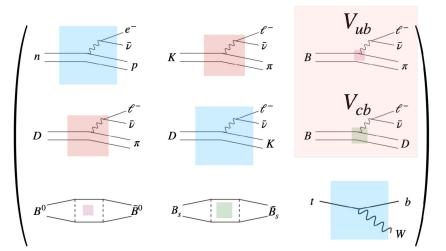


- cut-and-count strategy in $M_{h'}(x^+x^-)$ distributions
- No signicant excess found
- 8 events observed consistent with expected background
- Convert UL at 90% C.L. of $\sigma(e^+e^- \rightarrow \chi_1\chi_2h')\times\mathcal{B}(\chi_2 \rightarrow \chi_1e^+e^-)\times$ $\mathcal{B}(h' \to x^+x^-)$ to mixing angle θ

Looking for simultaneous production of A' and h'

- 4 tracks in the final state
- 2 forming a pointing dispaced vertex
- mising energy

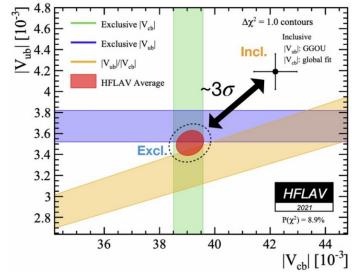




CKM matrix element

Belle II important task:

Constrain CKM unitarity triangle & test SM



Exclusive: $B \to \pi l \nu, B \to \rho l \nu, B \to D^{(*)} l \nu, etc$ $\frac{dB}{dq^2} \propto |V_{xb}|^2 \times \frac{|FF(q^2)|^2}{|FF(q^2)|^2}$ Form factor from LCSR, LQCD

Inclusive:
$$B \to X_u l \nu, B \to X_c l \nu$$

$$\mathcal{B} \propto |V_{xb}|^2 \times \left[\Gamma(b \to q l \bar{\nu}_l) + \frac{1}{m_b} + \alpha_s + \cdots \right] \quad \text{From OPE}$$

Several measurements carried out by Belle and Belle II:

$ V_{cb} $	- Angular coefficients of $B o D^* l \nu$ Belle: PRL 133, 131801 (2024)
$ V_{ub} $	- $ V_{ub} $ from $B \to (\pi, \rho) l \nu$ simultaneous analysis New from Belle II - Simultaneous inclusive and exclusive $ V_{ub} $ Belle: PRL 131, 211801 (2023)
$\frac{ V_{ub} }{ V_{cb} }$	- Ratio of inclusive $b \to c$ and $b \to u$ decays Belle: arXiv: 2311.00458