Probing the soft rescattering parameters in B decays

Based on Physical Review D 111, 016017 (2025)

祁敬娟a

合作者: 张振华、王振洋、魏科伟、郭新恒

a浙江万里学院

全国重味物理和CP破坏研讨会 北京 2025年10月25日

- Background and Motivation
- 2 End-point divergency in QCDF
- 3 LCPA, FBA and FBA-CPA
- 4 Summary and Outlook

- 1 Background and Motivation
- 2 End-point divergency in QCDF
- 3 LCPA, FBA and FBA-CPA
- 4 Summary and Outlook

Background

In 2013 and 2014, LHCb found evidence of inclusive integrated CP asymmetries in B decays, using an integrated luminosity of 3.0 fb⁻¹ (Fig 1);

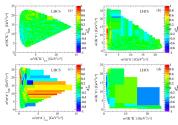


图 1 Measured A_{raw}^{7} in Dalitz plot bins of background-subtracted and acceptance-corrected events for B three-body decays, Phys. Rev. D 90, 112004 (2014).

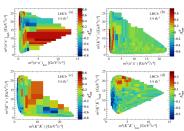
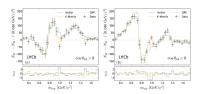



图 2 Asymmetry distribution in bins of the Dalitz plot for B three-body decays, Phys. Rev. D 108, 012008 (2023).

 In 2024, LHCb conducted more refined investigations, using an integrated luminosity of 5.9 fb⁻¹ (Fig 2); In 2020, LHCb found a large CP asymmetry related to the interference between the S- and P- wave contributions in $B^{\pm} \longrightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decays:

图 3 The abstract of Phys.Rev.D 101, 012006 (2020).

LCPA, FBA and FBA-CPA

图 4 Raw difference in the number of B^- and B^+ candidates in the low- $m_{\pi\pi}$ region, for (a) positive, and (b) negative cosine of the helicity angle. Phys.Rev.D 101, 012006 (2020).

Consider the interfenence of the $\rho(770)^0$ and S- wave resonance (such as $f_0(500)$), thus the total ampitude can be written as

$$egin{aligned} A_{total} &= A_{
ho} + A_f e^{i\delta_{f_0(500)}}, \ &= rac{A_{
ho}^{ ext{weak}} A_{
ho}^{ ext{strong}}}{S_{
ho}} + rac{A_f^{ ext{weak}} A_f^{ ext{strong}}}{S_f} e^{i\delta_{f_0(500)}} \end{aligned}$$

where A_q^{weak} and A_f^{weak} can be addressed with the QCDF.

Motivation

In order to test the relationships between the X_{ι}^{SP} and X_{ι}^{PS} for $B \to \sigma/f_0(500)$ decay

• ?
$$X_k^{SP} = X_k^{PS}$$
.

• ?
$$\rho_k^{SP/PS} \le 1$$
.

- Background and Motivation
- 2 End-point divergency in QCDF
- 3 LCPA, FBA and FBA-CPA
- 4 Summary and Outlook

A review of theoretical approaches

- Factorization Approach: H. Y. Cheng, C. K. Chua, Y. Li,...
- PQCD: H. n. Li, C. D. Lü, Z. J. Xiao, W. Wang, W. F. Wang, R. Zhou, Y. Li ...
- Symmetry: X. G. He, G. N. Li, D. Xu, J. L. Rosner, M. Gronau...
- Sum rules: Ulf-G. Mei β ner, Y. M. Wang, Y. L. Sheng, S. Cheng, A. Khodjamirian...
- QCD Factorization: M. Beneke, M. Neubert, A. Furman, B. El Bennich, R. Kaminski, T. Mannel, H.Y. Cheng, X. H. Guo, Y. D. Yang, Q. Chang, J. F. Sun, X.Q. Li, Z. H. Zhang...

End-point divergency QCDF

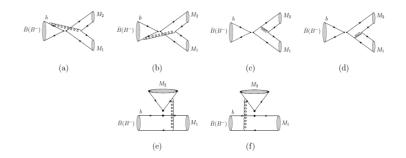


图 5 The lowest order diagrams of weak annihilation (a-d) and spectator scattering (e,f) [from Phys.Rev.D 90 (2014) 5, 054019].

End-point divergency QCDF

Regulation Scheme(parameterization)

for the hard-spectator scatterings:

$$\int_0^1 \frac{dx}{\bar{x}} \to X_H;$$

for the weak-annihilation parts:

$$\int_0^1 \frac{dx}{x} \to X_A, \quad \int_0^1 dx \frac{\ln x}{x} \to -\frac{1}{2} (X_A)^2,$$

and

$$X_H = X_A = X_k = (1 + \rho_k e^{i\phi_k}),$$

Traditional scenarios

$$\rho_k \le 1, \quad \text{and} \quad \phi_k \in [0, 2\pi].$$

Brief summary of the "new" treatment

More detailed analysis

- the values of ρ and ϕ for $B \to PV/PV$ are different $X^{PV} \neq X^{VP}$:
 - H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).....
- X_A^i is possibly non-universal for $B_{u,d}$ and B_s decays, but X_A^f is universal, since the flavor asymmetry-breaking effects.

```
Guo-Huai Zhu, Phys. Lett. B 702 (2011) 408; Kai Wang and Guo-Huai Zhu, Phys. Rev. D 88 (2013) 014043.....
```

• $X_A^i \neq X_A^f$ is possible due to gluon emission from the initial and final state quarks, respectively.

```
Qin Chang, Junfeng Sun, Yueling Yang, Xiaonan Li Phys.Rev.D 90 (2014) 5, 054019......
```


Test the relationships between X_{k}^{SP} and X_{k}^{PS}

In order to test the relationships between the X_{ι}^{SP} and X_{ι}^{PS} for $B \to \sigma/f_0(500)$ decay

- ? $X_k^{SP} = X_k^{PS}$.
- ? $\rho_k^{SP/PS} \leq 1$.

The inner structure of the scalar (S) mesons

The structure of the S meson has been studied for a long time, and now it is still a hot topic.

 There are several explanations, e.g., qq̄ state, tetraquark states, molecule states, glueball and hybrid states, while there is still no general agreement.

图 6 The possible interpretations of scalar mesons, (a-c) are $q\bar{q}$, tetraquark state, molecular state and (e-f)) are glueball state and hybrid state from left to right, respectively.

The inner structure of the scalar (S) mesons

For the light scalar mesons

In the 2-quark mode

- the scalar mesons with mass below 1 GeV are form a SU(3) nonet, such as $\sigma/f_0(500)$, $f_0(980)$, $a_0(980)$, $K_0^*(700)/\kappa$;
- the ones with mass above 1 GeV are classified into another SU(3) nonet, such as $f_0(1370)$, $f_0(1500)$, $a_0(1450)$, $K_0^*(1430)$.

In the tetraquark mode (favored by lattice calculations)

- the former are predominately the $qq\bar{q}\bar{q}$ states without introducing a unit of orbital angular momentum;
- the latter are treated as the lowest lying $q\bar{q}$ p-wave states.

LCPA, FBA and FBA-CPA 0000000

- 1 Background and Motivation
- 2 End-point divergency in QCDF
- 3 LCPA, FBA and FBA-CPA
- 4 Summary and Outlook

LCPA, FBA and FBA-CPA

The definition of θ

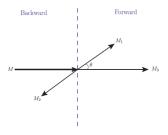


图 7 The definition of θ in the c.m. frame of the $M_1 M_2$ system (M is chosen to be the B meson).

$$\cos \theta = \frac{\vec{\rho}_1^* \cdot \vec{\rho}_3^*}{|\vec{p}_1^*| |\vec{p}_3^*|} \tag{1}$$

LCPA, FBA and FBA-CPA

where \vec{p}_i^* is the momentum of M_i in the c.m. frame of the M_1M_2 system.

LCPA, FBA and FBA-CPA

The introductions of the concepts

• LCPA: Localized CP asymmetry,

$$\mathcal{A}_{CP}^{L} = \frac{N_{B^{-}}(\text{Forward} + \text{Backward}) - N_{B^{+}}(\text{Forward} + \text{Backward})}{N_{B^{-}}(\text{Forward} + \text{Backward}) + N_{B^{+}}(\text{Forward} + \text{Backward})}, \quad (2)$$

FBA: Forward-backward asymmetry,

$$\mathcal{A}_{FB} = \frac{N_{B^{\mp}}(\text{Forward}) - N_{B^{\mp}}(\text{Backward})}{N_{B^{\mp}}(\text{Forward}) + N_{B^{\mp}}(\text{Backward})},$$
(3)

• FBA-CPA: Forward-backward asymmetry induced CP asymmetry,

$$\mathcal{A}_{FB}^{CP} = \frac{1}{2} (\mathcal{A}_{FB} - \bar{\mathcal{A}}_{FB}), \tag{4}$$

Advantage of the FBA-CPA

Supplement

 One is that can isolate CPV caused by the interference from the nearby resonances,

```
arXiv:2410.08539v2, Eur.Phys.J.C 83 (2023) 2, 133, Phys.Rev.D 106 (2022) 11, 113002, Phys.Rev.D 105 (2022) 9, 093007......
```

for example: Phys. Rev. D 105 (2022) 9, 093007, Rui Hu and Zhang Zhen-Hua, $m_{KK}\approx 1.5$ GeV, the large FBA can be explained by the interference of the resonances with even and odd spins, such as $\rho(1450)^0$ and $f_0(1500)$.

 Another is that can investigate the contributions of the real and imaginary parts in the interference term to the relevant physical quantities,

```
Phys.Rev. D 110 (2024) 11, L111301......
```


For example

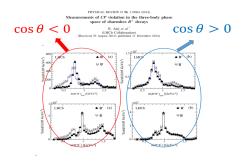
• Consider the interference of the V and S mesons, such as $\rho(770)^0$ and $f_0(500)$, the amplitude is

$$A_{total} = A_{\rho} + A_{f}e^{i\delta_{f_{0}(500)}} \propto F(\rho_{k}^{SV}, \phi_{k}^{SV}, \rho_{k}^{VS}, \phi_{k}^{VS}, \delta_{f_{0}(500)}),$$

• The event yield of each bin i, $N_{B^{\pm},i}$ has the following form

$$N_{B^{\pm},i} = \eta \int_{\cos\theta \geqslant 0} R |A_{total}|_{m_{12} = m_{12,i}}^2 d\cos\theta,$$

where η is the ratio of the total number of events to the total decay width and R is the phase-space factor with the form


$$R = \sqrt{(m_{12}^2 - 4m_{M_2}^2)[m_B^2 - (m_{12} - m_{M_3})^2][m_B^2 - (m_{12} + m_{M_3})^2]}.$$

Thus.

$$N_{B^{\pm},i} \propto F'(\eta, \rho_k^{SV}, \phi_k^{SV}, \rho_k^{VS}, \phi_k^{VS}, \delta_{f_0(500)}).$$

For example

LCPA, FBA and FBA-CPA 00000000

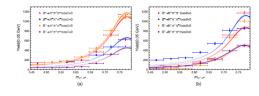
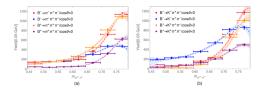

	$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$				$B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$			
Bin (GeV)	$N_i(\cos\theta > 0)$	$N_i(\cos\theta < 0)$	$\bar{N}_i(\cos\theta>0)$	$\tilde{N}_i(\cos\theta < 0)$	$N_i(\cos\theta > 0)$	$N_i(\cos\theta < 0)$	$\tilde{N}_i(\cos\theta > 0)$	$\bar{N}_i(\cos\theta < 0)$
0.445-0.495	139 ± 12	112 ± 11	108 ± 10	48 ± 7	89 ± 9	197 ± 14	20 ± 4	34 ± 6
0.495-0.545	153 ± 12	152 ± 12	148 ± 12	38 ± 6	49 ± 7	226 ± 15	20 ± 4	64 ± 8
0.545-0.595	159 ± 13	165 ± 13	182 ± 13	48 ± 7	89 ± 9	244 ± 16	20 ± 4	76 ± 9
0.595-0.645	196 ± 14	263 ± 16	265 ± 16	60 ± 8	158 ± 13	358 ± 19	89 ± 9	128 ± 11
0.645-0.695	368 ± 19	302 ± 17	446 ± 21	130 ± 11	227 ± 15	539 ± 23	236 ± 15	202 ± 14
0.695-0.745	721 ± 27	473 ± 22	813 ± 29	321 ± 18	719 ± 27	815 ± 29	660 ± 26	388 ± 20
0.745-0.795	1140 ± 34	472 ± 22	1089 ± 33	623 ± 25	1172 ± 34	856 ± 29	1005 ± 32	496 ± 22

图 7 The event yields for $B^\pm \to \pi^\pm \pi^+ \pi^-$ and $B^\pm \to K^\pm \pi^+ \pi^-$ decays with $m_{\pi\pi}$ ranging from 0.445 GeV to 0.795 GeV based on Figs. 4 and 5 in Ref. Phys. Rev. D 108, 012008 (2023), where $N_i(\cos\theta \geqslant 0)$ and $\bar{N}_i(\cos\theta \geqslant 0)$ for $B^- \to \pi^-(K^-)\pi^+\pi^-$ and $B^+ \to \pi^+(K^+)\pi^+\pi^-$ decays, respectively, and the

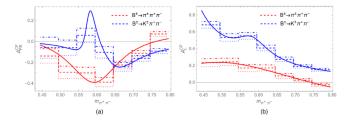

uncertainties are statistical only.

Fitted results

LCPA, FBA and FBA-CPA 00000000

 \blacksquare 8 The fitted curves for the (a) $B^\pm\to\pi^\pm\pi^+\pi^-$ and (b) $B^\pm\to K^\pm\pi^+\pi^-$ decays, the event yields are from the data of LHCb. The contribution only from the $\rho(770)^0$ resonance.

 \blacksquare 9 The fitted curves for the (a) $B^\pm\to\pi^\pm\pi^+\pi^-$ and (b) $B^\pm\to K^\pm\pi^+\pi^-$ decays, the event yields are from the data of LHCb. The contribution from the $\rho(770)^0$ and $f_0(500)$ are considered in our theoretical calculations. 4 D > 4 A > 4 B > 4 B >



Fitted results and comparisons

Fitted results

$$\left\{ \begin{array}{l} |\rho_k^{SP}| = 3.29 \pm 1.01, \quad |\phi_k^{SP}| = 0.85 \pm 0.31; \\ |\rho_k^{PS}| = 2.33 \pm 0.73, \quad |\phi_k^{PS}| = 0.15 \pm 0.08; \\ \delta_{f_0(500)} = 0.85 \pm 0.39, \quad \eta = (2.47 \pm 0.83) \mathrm{GeV}^{-1}. \end{array} \right.$$

• Consistency check (for \mathcal{A}^{CP}_{FB} and \mathcal{A}^{CP}_{L} for $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \to \mathcal{K}^{\pm}\pi^{+}\pi^{-}$ decays, respectively)

 $|\rho_k|>1$ means the contributions from the annihilation and hard-scattering processes are relatively significant.

- 1 Background and Motivation
- 2 End-point divergency in QCDF
- 3 LCPA, FBA and FBA-CPA
- 4 Summary and Outlook

- End-point divergency parameters X_k in QCDF require non-traditional treatments;
- The interference between different resonance (such as S- and P- wave, P- and D-wave) should not be overlooked in the studies of LCPVs, FBAs and FBA-CPAs.

Thanks!