

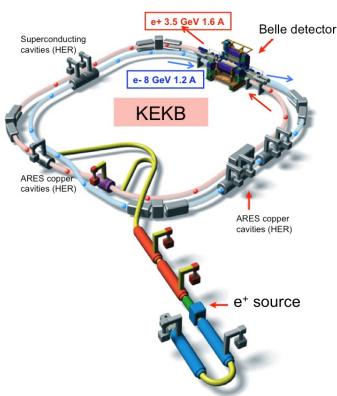
Review of charmonium(-like) results at Belle and Belle II

姬清平 (jiqingping@htu.edu.cn)

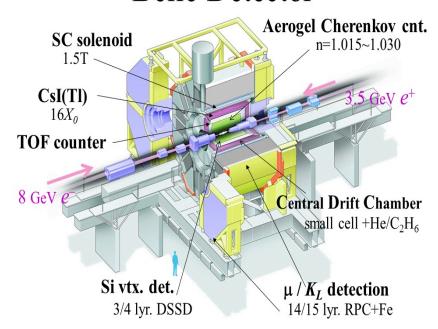
On behalf of the Belle and Belle II Collaborations

HFCPV2025, 2025.10.24-10.28, Beijing

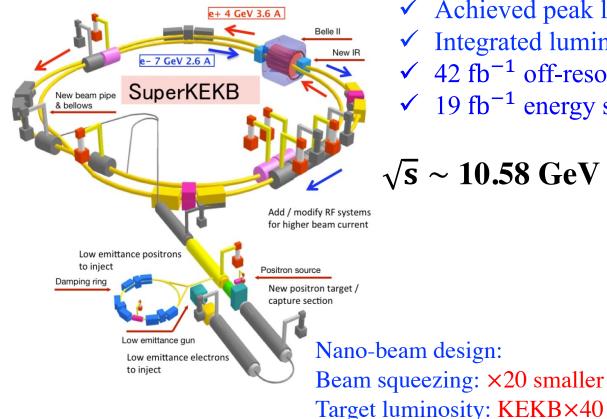
KEKB and Belle


 $\sqrt{s} \sim 10.6 \text{ GeV}$

✓ Peak luminosity: $2.11 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$


✓ Integrated luminosity (~980 fb⁻¹ in total):

 $\Upsilon(5S)$: 121 fb⁻¹, $\Upsilon(4S)$: 711 fb⁻¹, $\Upsilon(3S)$: 3 fb⁻¹,


Υ(2S): 25 fb⁻¹, Υ(1S): 6 fb⁻¹, continuum: 90 fb⁻¹

Belle Detector

SuperKEKB and Belle II

KEKB

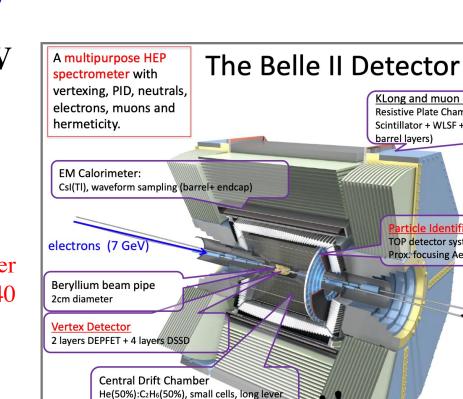
SuperKEKB

- ✓ Achieved peak luminosity: 0.5×10^{35} cm⁻²s⁻¹
- ✓ Integrated luminosity: 577/fb
- ✓ 42 fb⁻¹ off-resonance, 60 MeV below $\Upsilon(4S)$
- ✓ 19 fb⁻¹ energy scan between 10.6 to 10.8 GeV for exotic hadron studies

KLong and muon detector:

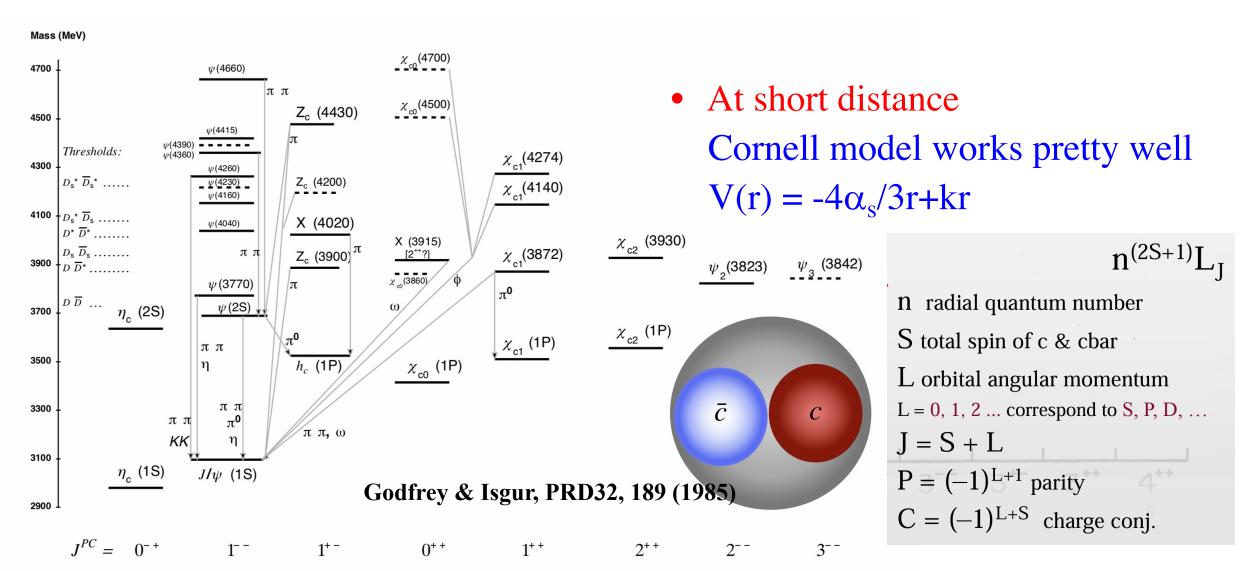
Particle Identification

TOP detector system (barrel)

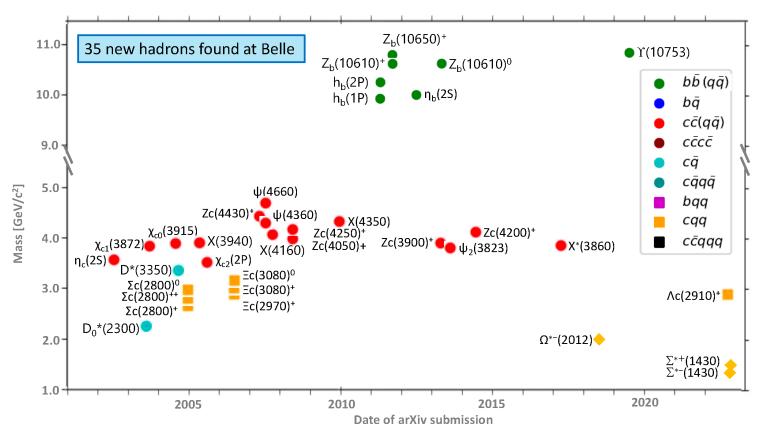

Prox. focusing Aerogel RICH (fwd)

positrons (4 GeV)

barrel layers)


Resistive Plate Chambers (barrel outer layers)

Scintillator + WLSF + SiPM's (end-caps, inner 2



arm, fast electronics (Core element), dE/dx

Charmonium(-like) Spectrum

35 new hadrons found at Belle

https://qwg.ph.nat.tum.de/exoticshub/

35 new hadrons were found at Belle. **10 of these are "exotic"** and cannot be explained in the conventional quark model while the nature of 8 of them are still under investigation. The remaining 17 states are consistent with the quark model. Measurements of all these states will provide critical insights for QCD.

Production of Charmonium(-like) states at B-factory

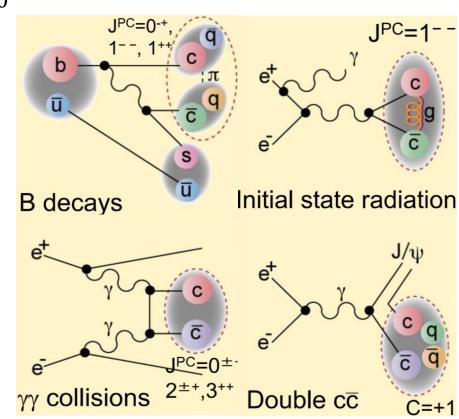
- lacktriangle B decay $(B \to KX_{c\bar{c}})$
 - ✓ CKM favored process, large branching fractions $10^{-3} \sim 10^{-4}$

$$\checkmark J^{PC} = 0^{-+}, 1^{--}, 1^{++}, \dots$$

◆ Initial-state radiation (ISR)

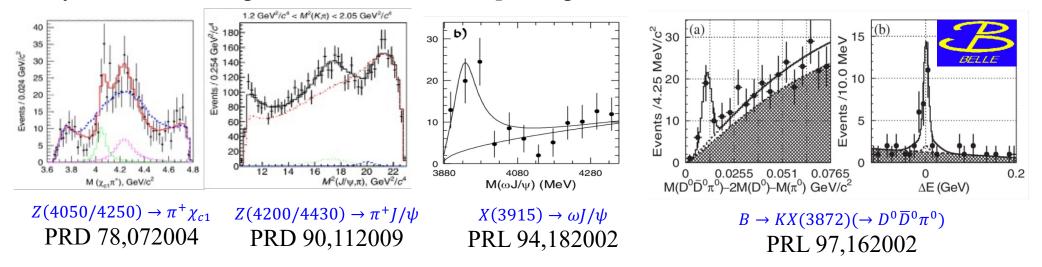
$$\checkmark J^{PC} = 1^{--}$$

♦ Two-photon process


$$\checkmark I^{PC} = 0^{-+}, 0^{++}, 2^{++}, 2^{-+}, \dots$$

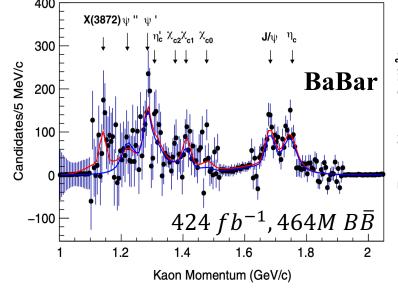
◆ Double charmonium

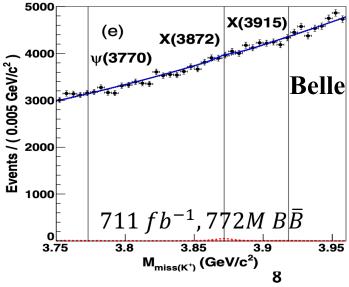
✓ e.g.
$$e^+e^- \rightarrow J/\psi X(3940)$$
 [PRL 98,082001(2007)]


Expected statistics $@50 \ ab^{-1}$ of XYZ

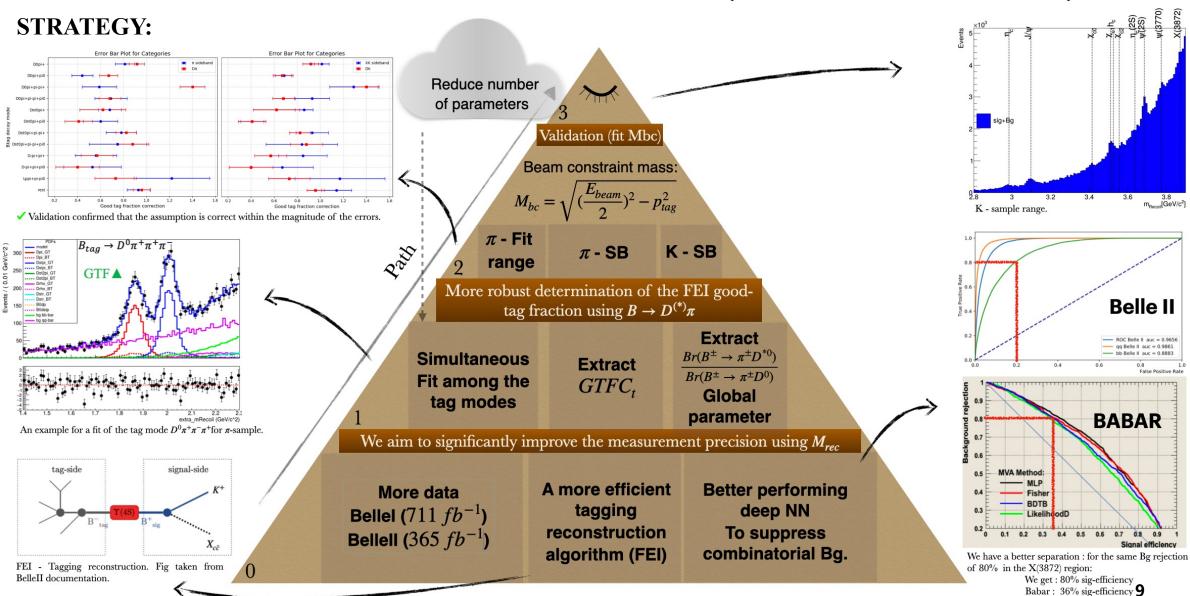
State	Production and Decay	N
X(3872)	$B \rightarrow KX(3872), X(3872) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 14400$
Y(4260)	ISR, $Y(4260) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 29600$
Z(4430)	$B \to K^{\mp} Z(4430), Z(4430) \to J/\psi \pi^{\pm}$	$\simeq 10200$

Charmonium(-like) states via B decays


- Confirm Z_c states $Z(4050)^+$, $Z(4200)^+$, $Z(4250)^+$ and search for neutral partners
- ♦ Full amplitude analysis to $B \to K\omega J/\psi$ and $B \to K\omega \chi_{c1}$ to determine the spin-parties of X(3915), $Z(4050)^+$ and $Z(4250)^+$.
- Confirmation of X(3872) width measurement with $D^0 \overline{D}{}^0 \pi^0$ mode, search for more open-flavor decay modes, e.g., $B \to K(D\overline{D})$, $B \to K(D\overline{D}^*)$, $B \to K(D^*\overline{D})$, $B \to K(D^*\overline{D})$... with more B mesons
- ◆ Absolute branching fractions are unique for Belle II
- igoplus Systematic investigations of charmonium plus light hadron final states: $B \to K(c\bar{c}+h)$



Inclusive measurement of $Br(B^{\pm} \to K^{\pm}X(3872))$


- Determination of the Br(B[±] \rightarrow $X(3872)K^{\pm}$) leads to Br($X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi$), bringing useful information regarding complex nature of the X(3872)
- Experimental measurements:
 - ✓ Belle: $Br(B^+ \to K^+ X) < 2.6 \times 10^{-4}$ [PRD 97,012005 (2018)]
 - ✓ BABAR: $Br(B^+ \to K^+ X) = (2.1 \pm 0.6 \pm 0.3) \times 10^{-4} [PRL 124, 152001 (2020)]$
- Theoretical calculations: $Br(B^+ \to K^+ X)$
 - ✓ $Br(B^+ \to K^+ X_{c\bar{c}}) = (7.88^{+4.87}_{-3.76} \text{ or } 3.8^{+0.9+0.6+0.3}_{-0.8-0.5-0.2}) \times 10^{-4}, [\text{ CPC 41.1(2017):03101 }]$
 - $\checkmark Br(B^+ \to K^+ X_{tetrag}) = (2.1 \pm 1.0) \times 10^{-4} [arXiv:2208.07990 (2022)]$
 - $\checkmark Br(B^+ \to K^+ X_{mol}) = (0.07 \sim 1) \times 10^{-4}$

Branching fraction	Structure
$\mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-)$ $\sim 50\%$	Tetraquark State [PRD 71, 014028 (2005)]
$\mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-)$ < 10%	Molecular state [PRD 72, 054022 (2005), PRD 69, 054008 (2004)]

Inclusive measurement of $Br(B^{\pm} \to K^{\pm}X(3872))$

Inclusive measurement of $Br(B^{\pm} \rightarrow K^{\pm}X(3872))$

INCLUSIVE MEASUREMENT OF $Br(B^{\pm} \to K^{\pm}X(3872))$

Fit
$$M_{rec}$$
 distribution for K-sample: $M_{rec} = \sqrt{(p_{ee}^{\mu} - p_{B_{tag}}^{\mu} - p_{K}^{\mu})^2}$

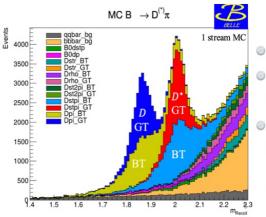
$$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{sig}^+ B_{tag}^- \rightarrow FEI$$
 $K^+ X_{c\bar{c}} \leftarrow$

FIT STRATEGY:

- Use MC template (hist. shapes)
- Divide the signal into events coming from correct (GoodTag) or wrong (BadTag) B_{tag} reconstruction:

Good Tag Fraction (GTF):
$$R_{s,t} = \frac{N_{s,t}^{GT}}{(N_{s,t}^{GT} + N_{s,t}^{BT})}$$

- Signal fit structure : $P_{s,t} = G_s P_{s,t}^{GT} + (1 G_s) P_{s,t}^{BT}$
- $G_{s,t} = R_{s,t}C_t$
- GTF Correction: $C_t = \frac{R_{s,t}^{data}}{R_{s,t}^{MC}}$
- Simultaneous fit between the tag modes:


e.g difference between signal reco. with good/bad Btag reco. (Mrss distribution)

$$D^0\pi^+, D^0\pi^+\pi^0, D^0\pi^+\pi^-\pi^+, D^0\pi^+\pi^-\pi^+\pi^0, D^{*0}\pi^+, D^{*0}\pi^+\pi^0, D^{*0}\pi^+\pi^-\pi^+, D^{*0}\pi^+\pi^-\pi^+\pi^0, D^-\pi^+\pi^+, D^-\pi^+\pi^+\pi^0, \text{rest.}$$

 $\frac{Br(B^{\pm} \to K^{\pm}X_{c\bar{c}})}{Br(B^{\pm} \to K^{\pm}J/\psi)}$ as a global floating parameter.

MORE ROBUST DETERMINATION OF THE FEI **GOOD-TAG FRACTION USING** $B \rightarrow D^{(*)}\pi$

Anzats: GTFC per tag mode doesn't depend on the signal mode. Use π - sample (fit M_{rec} distribution) to determine $GTFC_t$

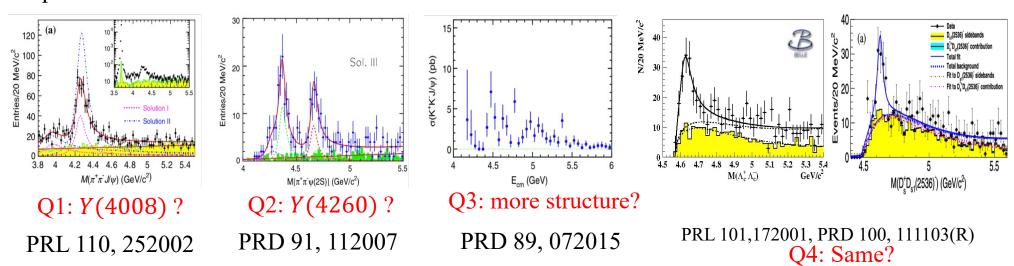
π -SAMPLE FIT

- \circ Similar to the K-sample, but $K \to \pi$
- Idea: extract $GTFC_t$ from π -fit and insert in K-fit
- Along the way we also obtain a lowsystematics measurement of the BR ratio $Br(B^{\pm} \rightarrow \pi^{\pm}D^{*0})$

$$Br(B^{\pm} \to \pi^{\pm}D^0)$$

 π sample - M_{rec} distribution.

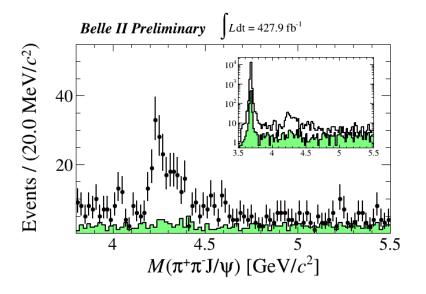
VALIDATION

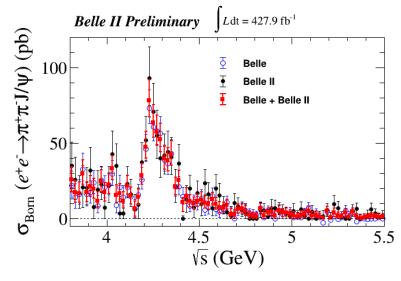

$$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{sig}^+ B_{tag}^- \qquad M_{bc} = \sqrt{(\frac{E_{beam}}{2})^2 - p_{tag}^2}$$

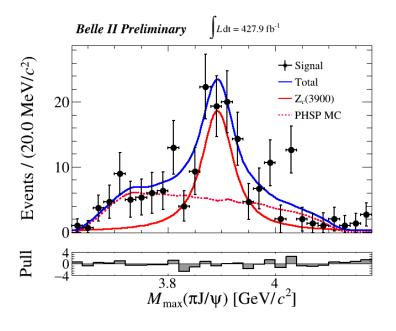
$$M_{bc} = \sqrt{(\frac{E_{beam}}{2})^2 - p_{tag}^2}$$

- For the anzats validation fit to Mbc distribution.
- Executed in 3 different ways:
 - 1. Check the use of Mbc at the π -fit range
 - 2. π -side band (SB)
 - 3. K-SB

Charmonium(-like) states via ISR processes

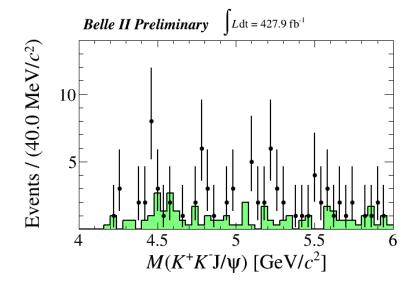

- $igoplus Confirm Z_c$ states and search for neutral partners
- ◆ Measure more precisely the line-shapes of more final state, including open-charm final states.
- ♦ Search for more Y states in more process, such as Y →charmed baryon pairs, charmed strange meson pairs.

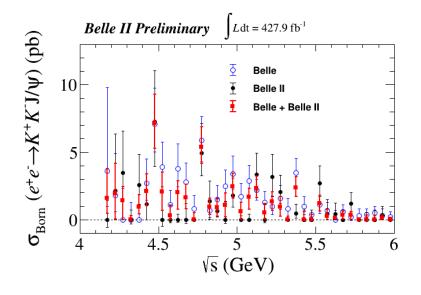


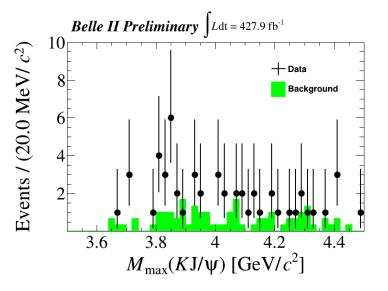

- Perform the analysis of $e^+e^- \to \pi^+\pi^-h_c$, $\omega\chi_{c0}$, and $(D^*\overline{D}^*)^{\pm}\pi^{\mp}$ to confirm the results with BESIII.
- Study the processes $e^+e^- \to \pi^+\pi^-\psi_2(1D)$, $K^+K^-\psi(2S)$, $\phi\chi_{cJ}$, $\eta J/\psi$, $\eta'J/\psi$, $\eta\psi(2S)$, $\omega\chi_{cJ}$, etc to search for more charmonium-like states and new decay modes.

Study of $e^+e^- o h^+h^-J/\psi$ ($h=\pi/K/p$) via ISR at Belle II

- New!
- ♦ Based on the data sample with $L_{int} = 427.9 \text{ fb}^{-1}$ at Belle II, Born cross of $e^+e^- \to \pi^+\pi^- J/\psi$ via ISR is measured.
- lacklose The measured results on the cross sections are consistent with Belle and BESIII, within 2σ .
- Clear $Z_c(3900)$ signal with significance of 3.7 σ is seen, with fixed mass and width [PRL 110, 252002(2013)]

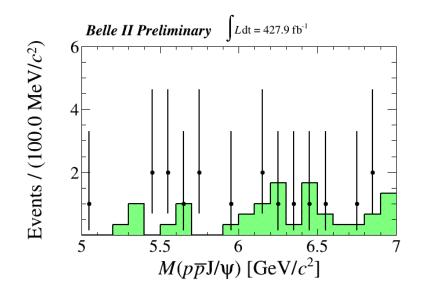


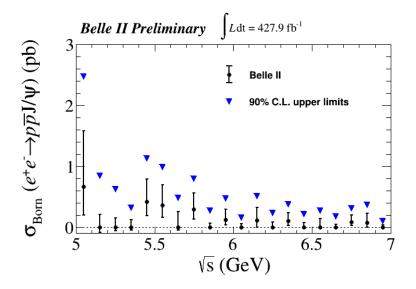




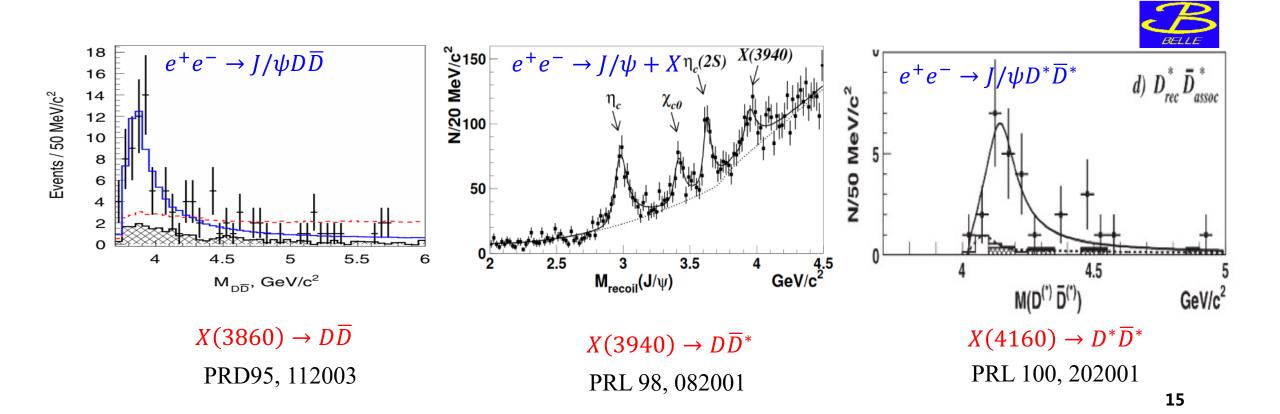
Study of $e^+e^- o h^+h^-J/\psi$ $(h=\pi/K/p)$ via ISR at Belle II

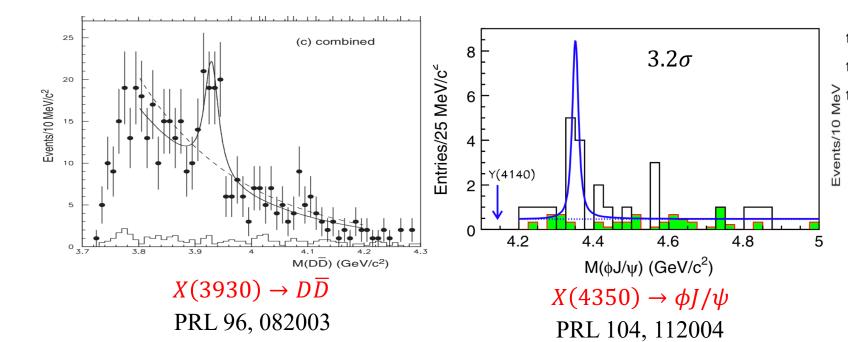
- New!
- ♦ Based on the data sample with $L_{int} = 427.9 \text{ fb}^{-1}$ at Belle II, Born cross of $e^+e^- \rightarrow K^+K^-J/\psi$ via ISR is measured.
- lackloangle The measured results on the cross sections are consistent with Belle and BESIII, within 2σ .
- lacktriangle No obvious Z_{cs} signal is observed.

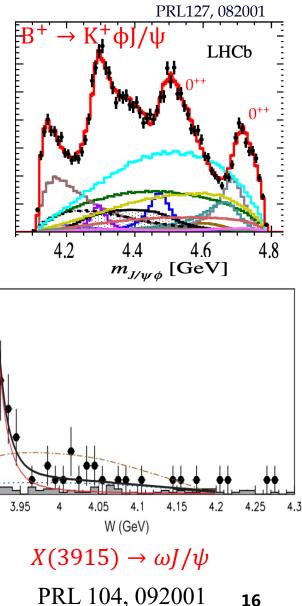




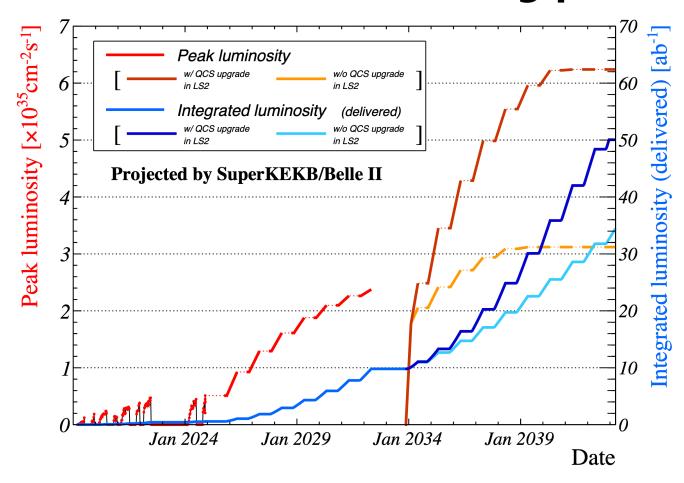
Study of $e^+e^- o h^+h^-J/\psi$ $(h=\pi/K/p)$ via ISR at Belle II


- Based on the data sample with $L_{int} = 427.9 \text{ fb}^{-1}$ at Belle II, Born cross of $e^+e^- \to p\bar{p}J/\psi$ via ISR is measured.
- ◆ No obvious signal is observed, and the born cross at 90% C.L. is given.
- ◆ The U.L of born cross at 6 GeV (< 0.15 pb) is consistent with the theoretical prediction (~ 4 fb) [arxiv:2508.08694].


Charmonium(-like) states via Double charmonium processes


- \bullet $e^+e^- \rightarrow (c\bar{c})_{I=1}(c\bar{c})_{I=0}$ production rule.
- lacktriangle Rediscovery of X(3940, 4160)
- igoplus Expand to other $c\bar{c}$ (h_c , η_c , η_c (2S), ψ (2S), χ_{cI} , etc.), search for new states

Charmonium(-like) states via two photons collisions


- lacktriangle Determine I^P values for some confirmed states, like X(3930)
- lack Confirm some states with evidence ? like X(4350)
- lack Search for X(4500) and X(4700) via two photons processes
- ♦ With smaller boost at Belle II, the efficiency in two photon process may be a little higher.

16

Data-taking plan and Prospects

Charmonium-like states:

- $B \operatorname{decay}(B \to KX_{c\bar{c}})$
- Initial-state radiation (ISR)
- Two-photon process
- Double charmonium

- Until 2026, about 1 ab^{-1} data, comparable to Belle
- Until 2029, about $4 ab^{-1}$ data.

Summary

- Belle II started operation in 2019, and the peak luminosity has achieved $L_{peak} \sim 0.5 \times 10^{35} cm^{-2} s^{-1}$.
- ◆The Belle dataset has not been surpassed by Belle II, and now analyses combine the two data from the two experiments.
- ◆Many charmonium-like states related works are in progress.
- ◆Stay tuned for many results on the charmonium-like states from Belle II in the next few years.

Thanks for your attention!