Observation of a family of all-charm tetraquarks at CMS

Speaker

Yilin Zhou

(Fudan University & Nanjing Normal University)

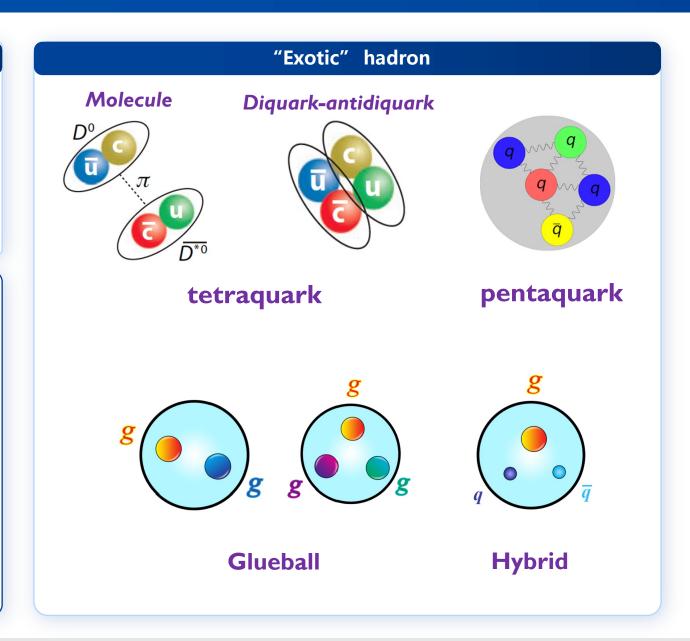
HFCPV2025 第二十二届全国重味物理和CP破坏研讨会

北京·西郊宾馆 2025.10.24-10.28

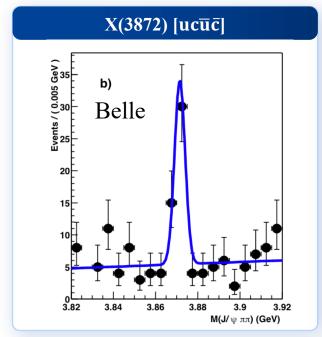
Beijing, October 26, 2025

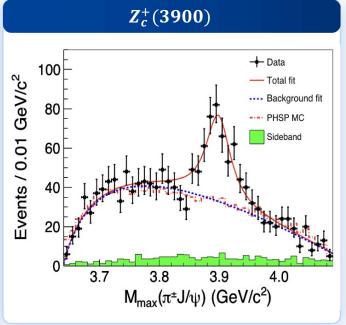
Outline

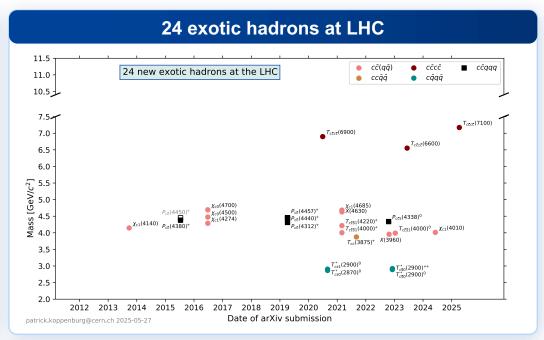
- I. $J/\psi J/\psi$ spectroscopy in the four-muon final state using Run 3 data PAS
- II. Search for X(6900) in the $J/\psi\psi$ (2S) channel at CMS PAS
- III. Determination of the spin and parity of all-charm tetraquarks


 PAS
 PAPER

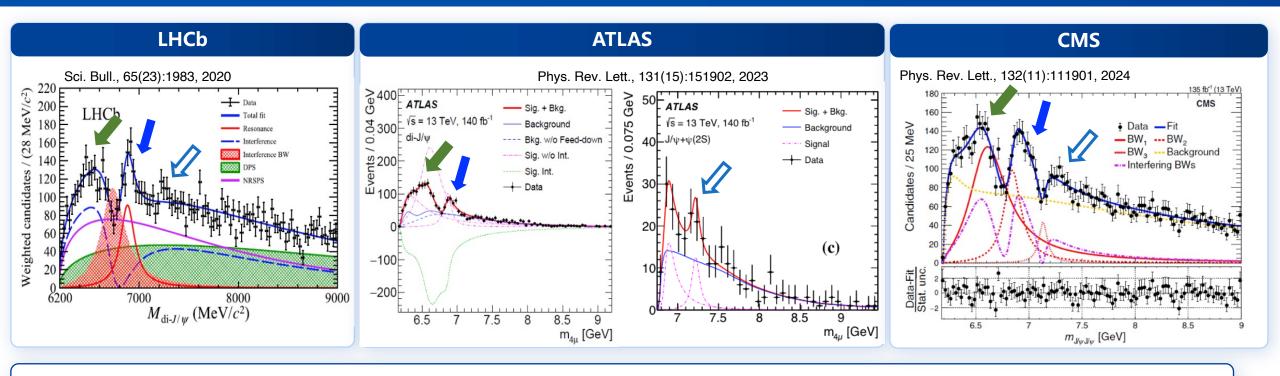
The quark model


Color Charge Meson Baryon GR B Q Q Q


- > 60 years of classical quark model
 - Experimentally tested at high energies;
 asymptotic freedom → Nobel Prize 2004
- Success of Conventional Hadrons at low energies: non-perturbative quark model (confinement) → Nobel Prize 1969
- Exotic hadrons (Non-Conventional), no definitive conclusion yet

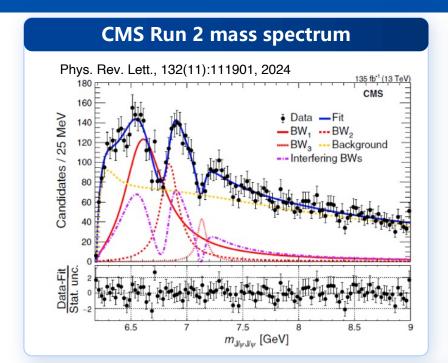

- currently a hot topic

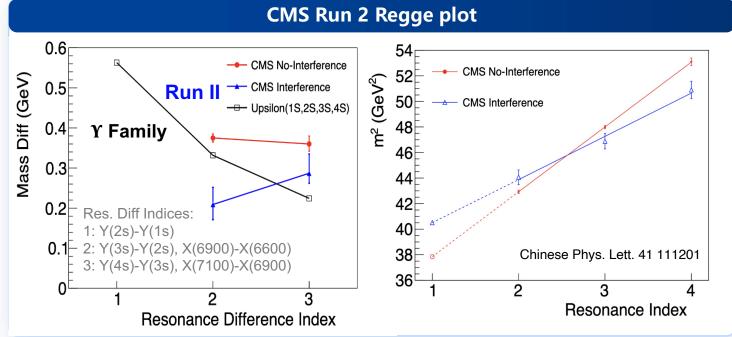
Heavy-Flavor Exotic Hadron States (XYZ Particles)



- Light exotics likely exist, but light-meson sector too messy for clear identification
- Heavy-flavor exotics: larger quark mass relative to Λ_{QCD} , theoretical treatments more reliable
- •X(3872), kicked off a boom in (heavy-flavor) exotic hadron, dozens of XYZ found
- Zc(3900), carries charge and couples to charmonium
- Fully-heavy exotic hadrons, promising and accessible for theoretical exploration

Status of of all-charm tetraquark




ALL exp observe X(6900) + additional structure

Hump @ 6.6 GeV: Different modeling

Hint @ 7.2 GeV: LHCb not consider; ATLAS 3 σ hint in $J/\psi\psi(2S)$

- CMS first observed X(6600) & evidence of X(7100)
- **All exp use interference, but in diff ways**

Run 2 result:

- X(7100): 4.7σ
- Interference < 4σ

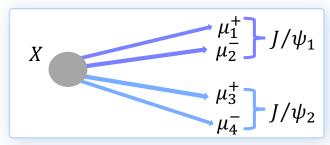
With 3.6X statistics:

- \circ ALL states over 5 σ ?
- \circ Interference over 5σ ?

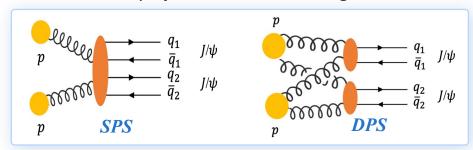
- \triangleright Interference imply same J^{PC} quantum numbers
- > 200 MeV mass splittings ==> Radial excitations?

Cornell Model:
$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + \sigma r + ...$$

A radial FAMILY of all-charm tetraquark states with same J^{PC} ?


$J/\psi J/\psi$: Datasets, MC, trigger, and event selection

❖ Data samples [3|5 fb⁻¹]


- Run 2: 135 fb⁻¹ data taken in 2016, 2017 and 2018.
- Run 3: 180 fb⁻¹ data taken in 2022, 2023 and 2024.

❖ Signal and Background simulated events:

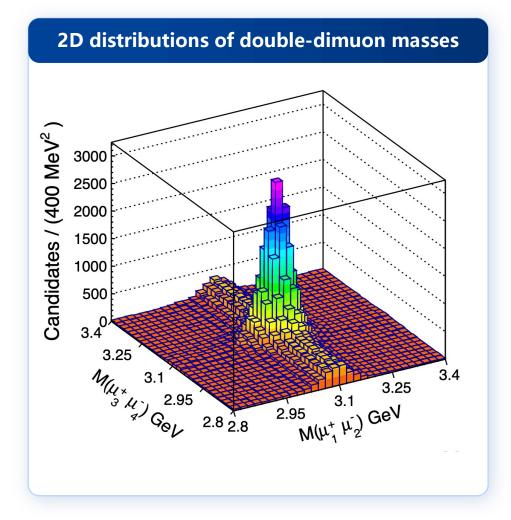
• Signal $X \to J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$ by **JHUGen**

NRSPS, DPS by Pythia8 or event-mixing

• Feeddown by **Pythia8**: $X(6900) \rightarrow J/\psi \psi(2S) \rightarrow J/\psi J/\psi + anything$ Feeddown from X(7100) in systematics

❖ Trigger of Run 3

HLT_Dimuon0_Jpsi3p5_Muon2


- Level 1 requirements: 3 muons
- $2.95 < M(\mu^+\mu^-) < 3.25 \text{ GeV}$
- $p_T(\mu) > 3.5 \, GeV$

HLT_DoubleMu4_3_LowMass [new trigger for Run 3 Parking data]

- Level 1 requirements: 2 muons
- $0.2 < M(\mu^+\mu^-) < 8.5 \, GeV$
- one muon $p_T(\mu) > 4 \; GeV$ and the other $p_T(\mu) > 3 \; GeV$
- $p_T(\mu^+\mu^-) > 4.9 \; GeV$
- \triangleright Compared to only Dimuon trigger, LowMass trigger increase 30% $J/\psi J/\psi$ statistics

Event selection of Run 3

Follow PRL cuts + A new trigger for Run 3

Luminosity

Run 2: 135 fb-1

Run 3: 180 fb-1

J/ψJ/ψ yield

Run 2 ~12622 ± 165

Run 3 ~31802 ± 476

J/ψJ/ψ yield per unit luminosity

Run 2 ~93 events / fb-1

Run 3 ~177 events / fb-1

- \triangleright Run 2+3 J/ ψ J/ ψ yield is 3.6 \times of Run 2
- ➤ Run 2+3 luminosity is 2.3X of Run 2

Baseline mass variable

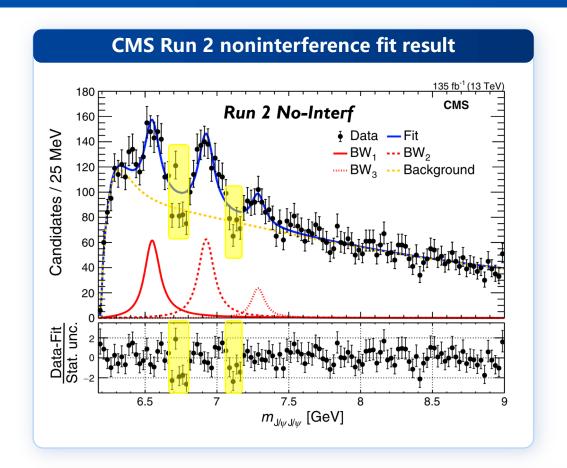
– invariant mass of two constrained J/ ψ candidates

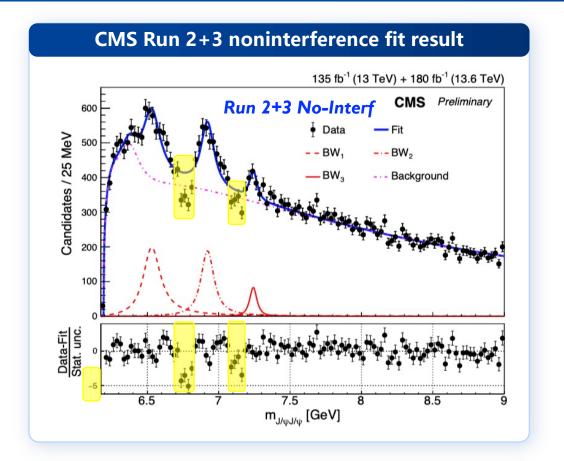
$J/\psi J/\psi$: Signal and Background models

- Signal shape: Relativistic Breit-Wigner
- Background component:

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)},$$

$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \frac{m_0}{m} \left(B'_L(q, q_0, d)\right)^2,$$

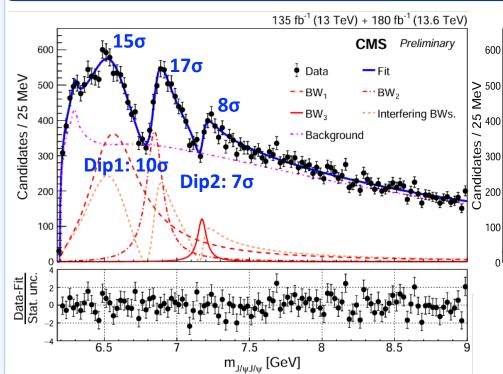

- Non-interference model:
 - Signal-hypothesis: NRSPS+NRDPS+Comb+Feeddown+BW0+BW1+BW2+BW3

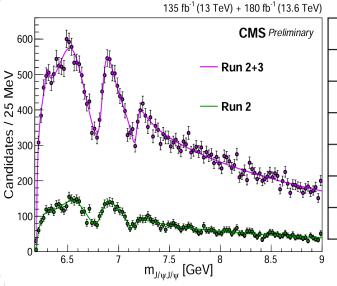

$$Pdf(m) = \sum N_{X_i} \cdot |BW(m, M_i, \Gamma_i)|^2 \otimes R(M_i) + N_{NRSPS} \cdot f_{NRSPS}(m)$$
$$+N_{NRDPS} \cdot f_{NRDPS}(m) + N_{Comb} \cdot f_{Comb}(m) + N_{Feedown} \cdot f_{Feeddown}(m)$$

- Interference model:
 - Signal-hypothesis: NRSPS+NRDPS+Comb+Feeddown+BW0+BW123 Interf.Term

$$\begin{aligned} Pdf(m) &= N_{X_0} \cdot |BW_0|^2 \otimes R(M_0) \\ &+ N_{X \ and \ interf} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2 \\ &+ N_{NRSPS} \cdot f_{NRSPS}(m) + N_{DPS} \cdot f_{DPS}(m) \\ &+ N_{Feeddown} \cdot f_{Feeddown}(m) + N_{Comb} \cdot f_{Comb}(m), \end{aligned}$$

$J/\psi J/\psi$: Run 2+3 noninterference fit result





- Dips poorly described no-Interf. model no longer sufficient!
 - > Let's now look at the fit results including interference

$J/\psi J/\psi$: Run 2+3 interference fit result

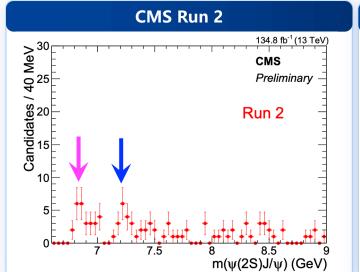
Params [MeV]	Run II&III Interf.	Run II Interf.
M(BW1)	$6593^{+15}_{-14}\pm25$	6638+43+16
Γ(BW1)	$446^{+66}_{-54}\pm87$	440+230+110
M(BW2)	$6847 \pm 10 \pm 15$	6847 ⁺⁴⁴⁺⁴⁸ ₋₂₈₋₂₀
Γ(BW2)	$135^{+16}_{-14}\pm14$	191+66+25
M(BW3)	$7173^{+9}_{-10}\pm13$	7134+48+41
Γ(BW3)	$73^{+18}_{-15}\pm 10$	97 ⁺⁴⁰⁺²⁹ ₋₂₉₋₂₆

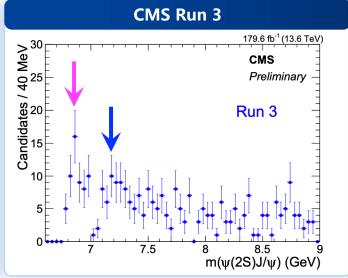
- VS. Run II result:
 - Statistical uncertainty reduced by a factor of 3
 - Systematic uncertainty reduced by about a factor of 2

- \triangleright All states and dips well above 5σ !
- > Quantum interference among structures validated!
- > With improved precision, large mass splittings persist

$J/\psi\psi$ (2S): Run 2+3 interference fit result

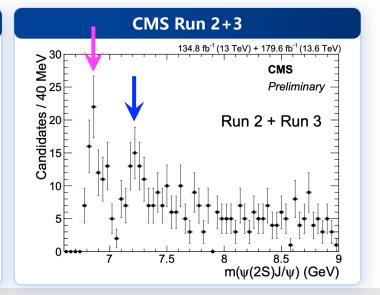
Motivation


- Seen in $J/\psi J/\psi$, probably in $J/\psi \psi(2S)$?
- CMS $J/\psi\psi(2S)$ analysis started at the same time as $J/\psi J/\psi$ in 2020
- A background suppression with FOM value:


S: number of X(6900) in signal MC B: number of background in data

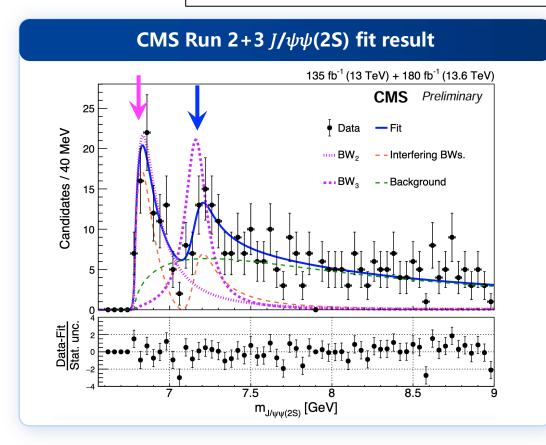
$$S/(463/13+4\sqrt{B}+5\sqrt{25+8\sqrt{B}+4B})$$

• $J/\psi\psi(2S)$ yield:


Run 2 ~109 ± 14 Run 3 ~281 ± 22

$$\begin{split} p_T(J/\psi) > 11.0 \text{ GeV} \\ p_T(\psi(2S)) > 13.5 \text{ GeV} \\ p_T(\mu_{\,\mathrm{in}\,}\psi(2S)) > 2.5 \text{ GeV} \\ \mu_{\,\mathrm{in}\,}\psi(2S) \text{ ID: Loose muon} \end{split}$$
 Mass window for J/ψ and $\psi(2S)$: 2.5 σ window

Run $2+3 \sim 386 \pm 26$



❖ Interference model:

Signal-hypothesis: NRSPS+NRDPS+Comb +BW23 Interf.Term

Consider resolution and efficiency

$$Pdf(m) = N_{X-\text{interf}} \cdot \left| \sum_{k} \left(r_k \cdot \exp(i\phi_k) \cdot BW(m, M_k, \Gamma_k) \right) \right|^2 \otimes R(M_j) \cdot \epsilon(M_j) + N_{SPS} \cdot f_{SPS}(m) + N_{DPS} \cdot f_{DPS}(m) + N_{Combinatorial} \cdot f_{Combinatorial}(m),$$

• Constrain mass & width within $I\sigma$ of $J/\psi J/\psi$ values

$$X(6900) = 7.9\sigma$$

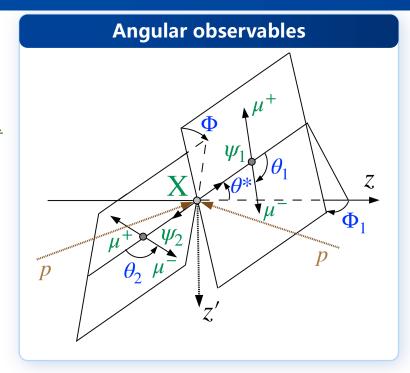
 $X(7100) = 4.0\sigma$ Dip = 2.5 σ

• An independent measurement with $J/\psi J/\psi$ mass/width constraints removed

Params	<i>J/ψψ</i> (2S) [MeV]	<i>J/ψJ/ψ</i> [MeV]
M(BW2)	$6876^{+46+110}_{-29-110}$	$6847 \pm 10 \pm 15$
Γ(BW2)	$253^{+290}_{-100}{}^{+120}_{-120}$	$135^{+16}_{-14}\pm14$
M(BW3)	7169^{+26+74}_{-52-70}	$7173^{+9}_{-10}\pm13$
Γ(BW3)	$154^{+110+140}_{-82-160}$	$73^{+18}_{-15}\pm10$

Spin-parity: Concept of Analysis---All Input

☐ Framework


- $m_{4\mu}$ spectrum $X o 4\mu$ identical to Phys. Rev. Lett. 132 (2024) 111901
- p_T and p_Z of $X o 4\mu$ match MC to data
- Polarization of X assume unpolarized

Production angles [for data test]

- ϑ^* : angle between beam line and J/ψ momentum in X rest frame
- Φ_1 : azimuthal angle between production plane and decay plane in X rest frame

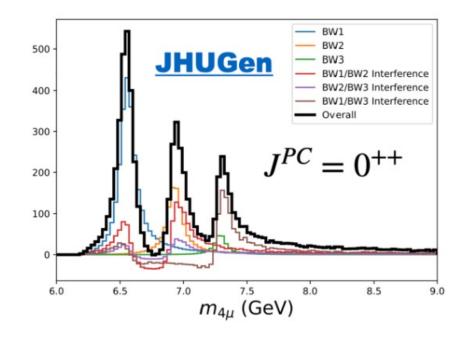
Decay angles [for data analysis]

- Φ : azimuthal angle between two l^+l^- decay planes defined in X rest frame
- ϑ_1 : helicity angle between opposite of J/ψ_2 momentum and l momentum defined in J/ψ_1 rest frame
- θ_2 : helicity angle between opposite of J/ψ_1 momentum and l momentum defined in J/ψ_2 rest frame

Spin-parity: Simplification in Angular Analysis

 \diamond After symmetries conditions, 8 models of J_x^P to test:

$$0^-, 0_m^+, 0_h^+, 1^-, 1^+, 2_m^-, 2_h^-, 2_m^+$$


m: minimal dimension operators **h**: higher-dimension operators

Full model possible, but complex

$$\mathcal{P}(\Phi, \vartheta_1, \vartheta_2; m_{4\mu})$$

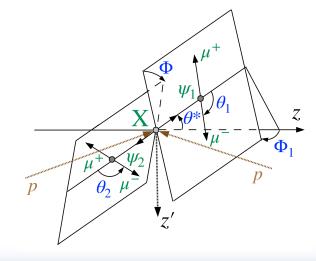
Same properties of 3 resonances:

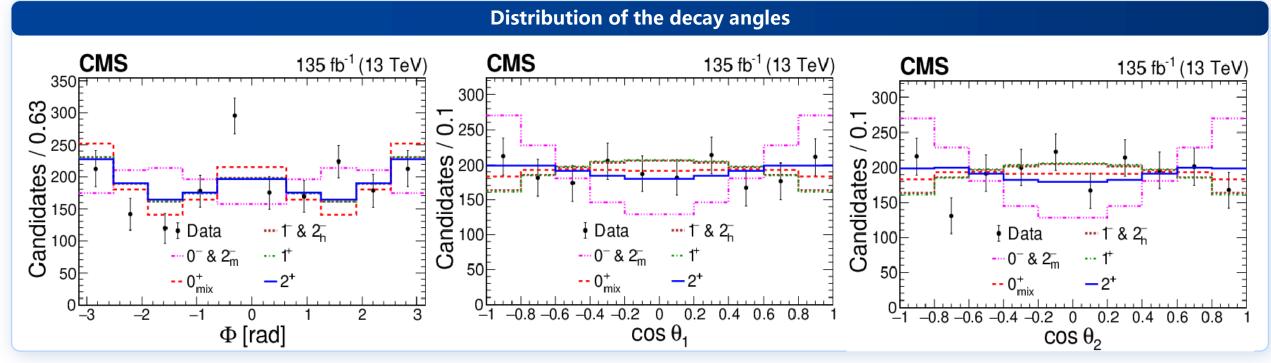
$$\mathcal{P}\big(m_{4\mu}, \overrightarrow{\Omega}\big) = \mathcal{P}\big(m_{4\mu}\big) \cdot T\big(\overrightarrow{\Omega} \mid m_{4\mu}\big) \,, \, \, \overrightarrow{\Omega} = (\Phi, cos\theta_1, cos\theta_2)$$
 empirical angular

• Pairwise test of J_x^P hypotheses i and j

1 optimal observable
$$\mathcal{D}_{ij}(\overrightarrow{\Omega} \mid m_{4\mu}) = \frac{\mathcal{P}_{i}(\overrightarrow{\Omega} \mid m_{4\mu})}{\mathcal{P}_{i}(\overrightarrow{\Omega} \mid m_{4\mu}) + \mathcal{P}_{j}(\overrightarrow{\Omega} \mid m_{4\mu})}$$

MELA Higgs discovery and spin-parity

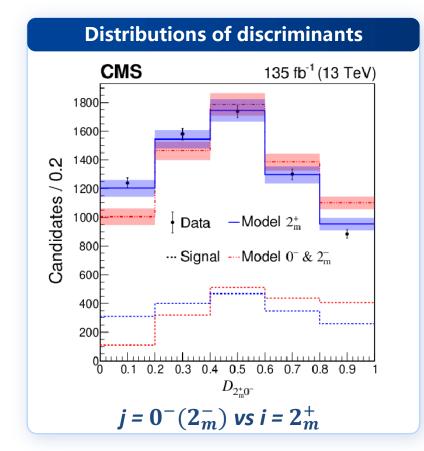

Final 2D model:


$$\mathcal{P}_{ijk}(m_{4\mu}, \mathcal{D}_{ij}) = \mathcal{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathcal{D}_{ij} \mid m_{4\mu})$$

Results of spin-parity measurement

❖ Decay angles background-subtracted

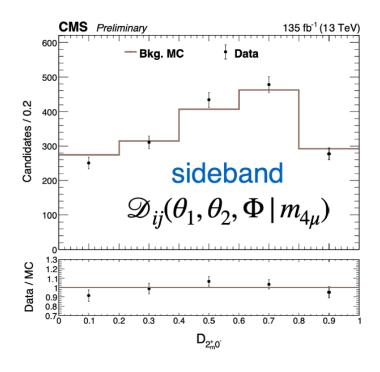
- ID projections
- Limited information
 - see 0 not align
 - hard distinguish 1^{\mp}



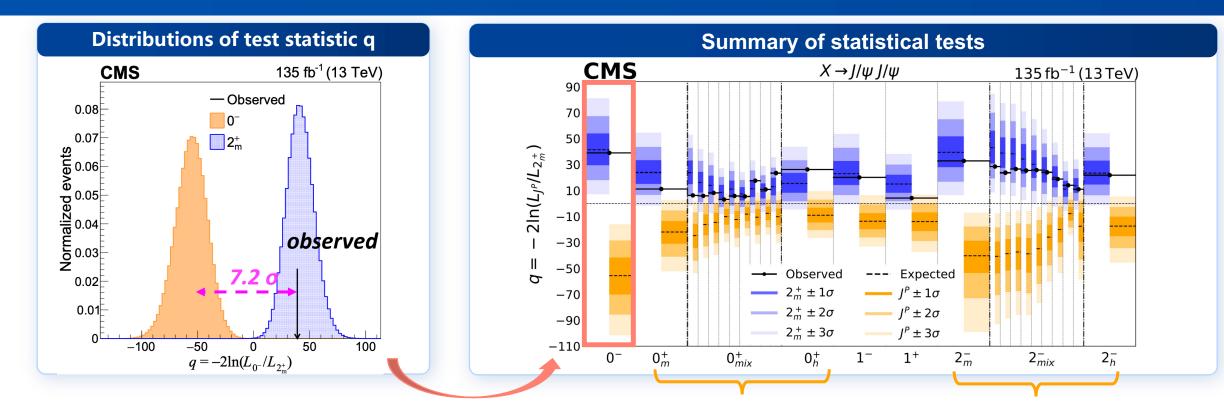
Optimal Observable

ID projection of data

$$\mathcal{D}_{ij}(\overrightarrow{\Omega} \mid m_{4\mu}) = \frac{\mathcal{P}_{i}(\overrightarrow{\Omega} \mid m_{4\mu})}{\mathcal{P}_{i}(\overrightarrow{\Omega} \mid m_{4\mu}) + \mathcal{P}_{j}(\overrightarrow{\Omega} \mid m_{4\mu})}$$



1 optimal observable


MELA Higgs discovery and spin-parity

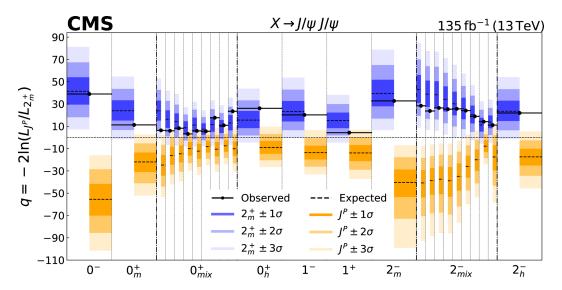
Background ID projection

Control Background MC using Data sideband

Results of spin-parity measurement

		Observed		Expec	ted
		p-value	Z-score	p-value	Z-score
0- vo 2+	0-	2.7×10^{-13}	7.2	6.5×10^{-14}	7.4
$0^{-} \text{ vs } 2_{m}^{+}$	2_m^+	$4.2 imes 10^{-1}$	0.2	0.50	0.0

• Scan mixture of two 0^{++} , 2^{-+} amplitudes


✓ Data are consistent with 2^{++} model, inconsistent with others

Results of spin-parity measurement

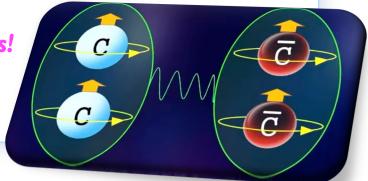
\Leftrightarrow Combine 2D fit $\mathcal{P}_{ijk}(m_{4\mu}, \mathcal{D}_{ij})$

- $PC = + + \text{ very certain}, P \neq -1 \text{ very certain} = > L \neq 1$
- $J \neq 1$ at 99% CL
- $J \neq 0$ at 95% CL
- J > 2 unlikely, require $L \ge 2$, L = 0 most likely

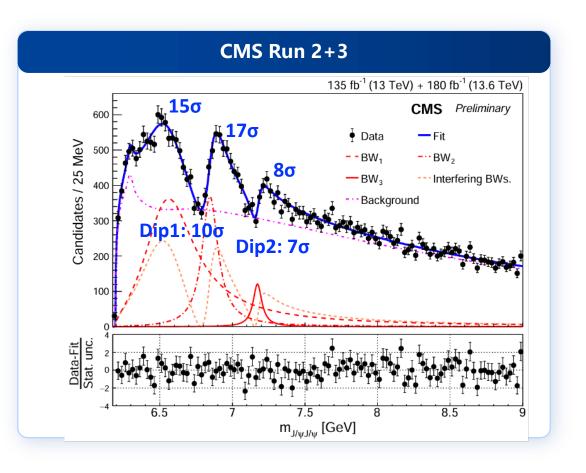
$> J^P = 2_m^+$ model survives

$J_{\mathbf{X}}^{P}$	p-value	Z-score	=
- 7	•	reject J_X^P	
0-	2.7×10^{-13}	7.2	
0_m^+	4.3×10^{-5}	3.9	_
$0^+_{ m mix}$	1.4×10^{-2}	2.2	mix
0_h^+	3.1×10^{-9}	5.8	
1-	8.0×10^{-8}	5.2	_
1+	4.7×10^{-3}	2.6	
2_m^-	4.1×10^{-12}	6.8	
2^{-}_{mix}	6.5×10^{-4}	3.2	mix
2_h^-	2.2×10^{-8}	5.5	_

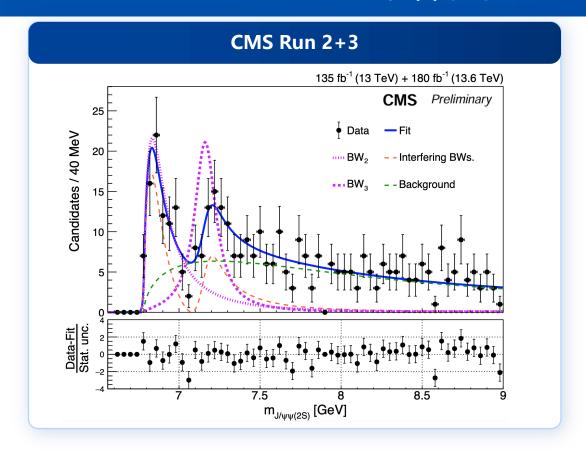
<u>arXiv:2506.07944</u> [hep-ex]


A family of all-charm tetraquarks with $J^{PC} = 2^{++}$

- X(6600), X(6900), and X(7100) well above 5σ
 - ==> Multiple states makes comparisons possible
- Quantum interference among structures validated well above 50
 - ==> States have common J^{PC} , measured as 2^{++}
- Large mass splittings, more precisely
 - ==> radial family of states


CMS is painting a coherent picture of all-charm tetraquark structures!

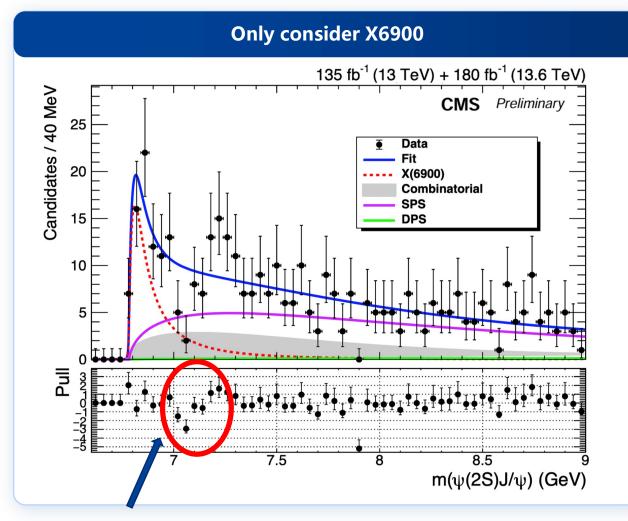
THANKS!


BACKUP

$J/\psi J/\psi$ Run II & III interference fit result

Dominant sources	Δm_{BW_1}	$\Delta\Gamma_{\mathrm{BW}_1}$	Δm_{BW_2}	$\Delta\Gamma_{\mathrm{BW}_2}$	$\Delta m_{\mathrm{BW_3}}$	$\Delta\Gamma_{BW_3}$
Signal shape	25	52	2	11	3	5
NRSPS shape	3	7	<1	1	<1	5
DPS shape	<1	5	<1	<1	<1	1
Combinatorial bkg shape	<1	22	<1	2	<1	4
Feeddown	<1	1	<1	<1	<1	<1
Mass resolution	4	58	15	7	12	5
Efficiency	<1	4	<1	<1	<1	<1
Without BW ₀	<1	29	2	3	2	1
Total uncertainty	25	87	15	14	13	10

$J/\psi\psi$ (2S) Run II & III interference fit result

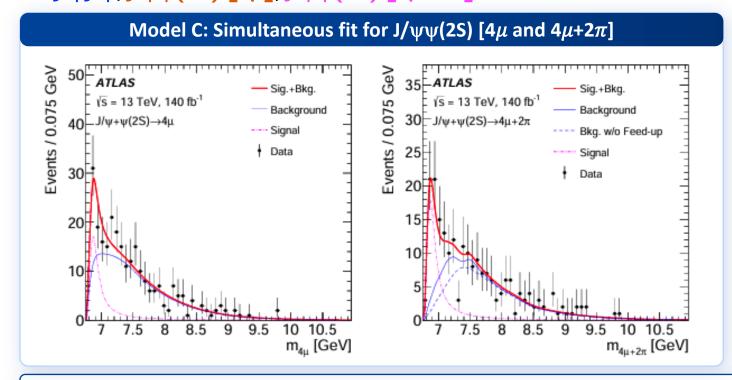

	Significance of X	(6900)	$= 7.9\sigma$
--	-------------------	--------	---------------

 \triangleright Significance of X(7100) = 4.0 σ

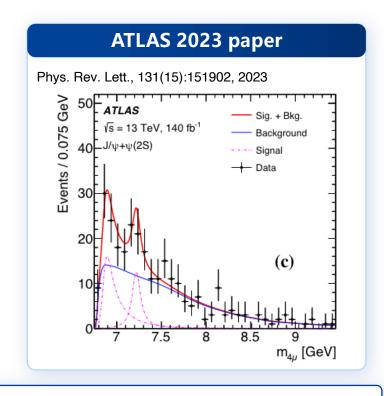
ATLAS only claim X(6900) 4.7 σ in $J/\psi\psi(2S)$ channel

Dominant sources	$M_{X(6900)}$	$\Gamma_{X(6900)}$	$M_{X(7100)}$	$\Gamma_{X(7100)}$
Signal shape	±29	±79	±22	±131
NRSPS shape	± 14	± 54	± 14	± 29
Combinatorial background shape	±15	± 51	± 15	± 20
Mass resolution	±5	± 7	± 5	± 9
Efficiency	±7	± 27	± 7	± 10
Add X(6600) peak	± 104	± 14	± 61	± 31
Fitter bias	+9 -11	$^{+43}_{-37}$	$^{+29}_{-14}$	$^{0}_{-80}$
Total	+110	+120	+74	+140
iotai	-110	-120	-70	-160

Params	<i>J/ψψ</i> (2S) [MeV]	<i>J/ψJ/ψ</i> [MeV]
M(BW2)	$6876^{+46+110}_{-29-110}$	$6847 \pm 10 \pm 15$
Γ(BW2)	$253^{+290+120}_{-100-120}$	$135^{+16}_{-14}\pm14$
M(BW3)	7169^{+26+74}_{-52-70}	$7173^{+9}_{-10}\pm13$
Г(ВW3)	$154^{+110+140}_{-82-160}$	$73^{+18}_{-15}\pm 10$


$$M(X(6900)) = 6841 \pm 14 \text{ MeV}$$

 $\Gamma(X(6900)) = 150 \pm 28 \text{ MeV}$


Significance of $X(6900) = 7.5 \sigma$

Deviations from fit: something more?

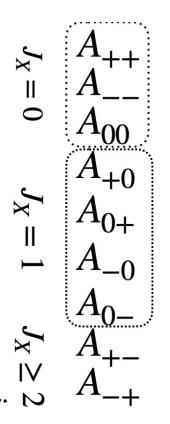
■ Simultaneous fit of 3 channels: arXiv:2509.13101

 $J/\psi J/\psi$, $J/\psi \psi$ (2S) [4 μ], $J/\psi \psi$ (2S) [4 μ +2 π]

- X(6900) 8.9 σ from model C
- Set a upper limit of **0.41 @95%CL** for X(7200)
- In ATLAS 2023 paper, X(7200) 3σ in J/ $\psi\psi$ (2S) [4 μ]

Spin-parity: Simplification in Angular Analysis

Symmetries:


- angular momentum: $|\lambda_1 \lambda_2| \leq J$
- identical J/ψ bosons $A_{\lambda_1\lambda_2}=(-1)^JA_{\lambda_2\lambda_1}$

— P & C conserved in QCD:

X with definite J^{PC}

$$C = +1$$

$$A_{\lambda_1 \lambda_2} = P (-1)^J A_{-\lambda_1 - \lambda_2}$$

Test 8+ J_X^P models:

$$\begin{array}{llll} 0^{-+} & 0^{-} & A_{++} = -A_{--} & & \text{_m : minimal } \\ 0^{++} & 0^{+}_{m} \text{ and } 0^{+}_{h} & A_{++} = A_{--} \text{ and } A_{00} & \leftarrow \text{ note 2 d.o.f.} & \text{_h : high complexity } \\ 1^{-+} & 1^{-} & A_{+0} = -A_{0+} = A_{-0} = -A_{0-} & & \\ 1^{++} & 1^{+} & A_{+0} = -A_{0+} = -A_{-0} = A_{0-} & & \\ 2^{-+} & 2^{-}_{m} \text{ and } 2^{-}_{h} & A_{++} = -A_{--} \text{ and } A_{+0} = A_{0+} = -A_{-0} = -A_{0-} \leftarrow \text{ note 2 d.o.f.} \\ 2^{++} & 2^{+}_{m} & A_{++} = A_{--}, A_{00}, A_{+0} = A_{0+} = A_{-0} = A_{0-}, \text{ and } A_{+-} = A_{-+} & & \end{array}$$

note 4 d.o.f. for 2^{++} , test one model