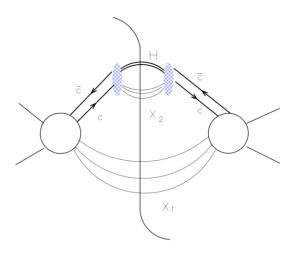
NLO Corrections to $J/\psi+c\overline{c}$ Photoproduction and Hadroproduction

冯麒铭 UCAS

Based on 2405.05683, 2507.20654, collaborating with Cong-Feng Qiao

HFCPV2025 2025.10.26



Motivation

Why Heavy Quarkonium?

- > Heavy quarkonia provide a unique window into strong interactions
- > As typical quark-antiquark bound states, they probe both **perturbative** and **nonperturbative** regions of QCD
- > Ideal laboratory for understanding color confinement and hadronic structure

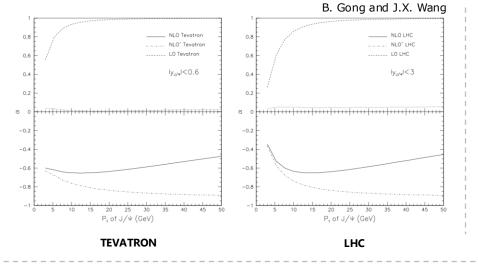
Challenges

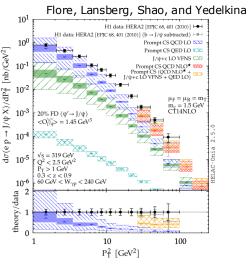
- 1. Perturbative & nonperturbative in production: **factorization hypothesis:** $d\sigma(H+X) = \sum_n d\hat{\sigma}(Q\bar{Q}[n]+X)\langle \mathcal{O}^H(n)\rangle$
- 2. Color singlet or color octet?

 Velocity scaling rule within Nonrelativistic QCD
- 3. In Long-distance matrix elements (**LDME**s) extraction: **Polarization puzzle** and **universality** of LDMEs
- 4. ...

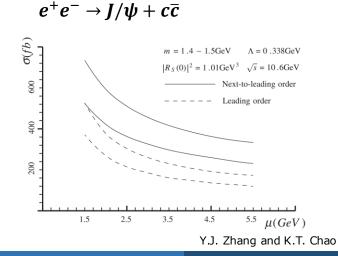
Onium	Order	States	
$J/\psi, \psi', \Upsilon$	1	${}^3S_1^{[1]}$	
	v^4	${}^{1}S_{0}^{[8]} {}^{3}S_{1}^{[8]} {}^{3}P_{J}^{[8]}$	
η_c, η_b	1	$^{1}S_{0}^{[1]}$	
	v^4	${}^{1}S_{0}^{[8]} {}^{3}S_{1}^{[8]} {}^{1}P_{1}^{[8]}$	
χ_{cJ}, χ_{bJ}	v^2	${}^{3}P_{J}^{[1]}$	
	v^2	${}^3S_1^{[8]}$	
h_c, h_b	v^2	$^{1}P_{1}^{[1]}$	
	v^2	${}^{1}S_{0}^{[8]}$	

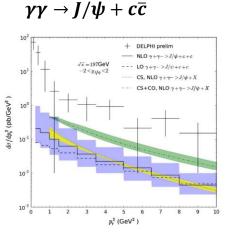
Motivation




The CS contribution may have been underestimated.

 $> J/\psi + c\bar{c}$ production at LO is among the most significant CS channels.


Left: polarization of hadroproduction process


Right: transverse momentum distribution of photoproduction process

> NLO corrections of $J/\psi + c\overline{c}$ processes are prominent.

Methodology

1. Amplitude:

Spinor-helicity formalism

and

2. Loop reduction:

Integrand reduction

and

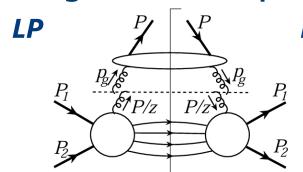
conventional squared-amplitude

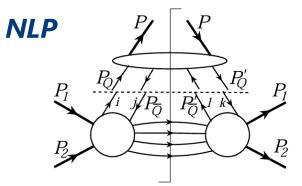
integration-by-parts (IBP)

Specifically for loop diagrams with Coulomb divergences

3. Infrared poles in real corrections:

Phase space slicing and subtraction


$$\sigma_{\rm tot} = \int_{\rm 3-body} \left(d\sigma^{\rm LO} + d\sigma^{\rm Virtual} + d\sigma^{\rm Real}_{\rm S} + d\sigma^{\rm Real}_{\rm HC} \right) + \int_{\rm 4-body} d\sigma^{\rm Real}_{\rm H\overline{C}}$$


$$\sigma_{\rm tot} = \int_{\rm 3-body} (d\sigma_{\rm LO} + d\sigma_{\rm Virtual} + d\sigma_{C} + d\sigma_{\hat{A}}) + \int_{\rm 4-body} (d\sigma_{\rm Real} - d\sigma_{A})$$

Methodology

Fragmentation processes

Z.B. Kang, J.W. Qiu et al.

Factorization:

$$d\sigma_{A+B\to H+X}(p_T) = \sum_f d\hat{\sigma}_{A+B\to f+X}(p_T/z, \mu_F) \otimes D_{f\to H}(z, m_Q, \mu_F)$$

$$+ \sum_{\kappa} d\hat{\sigma}_{A+B\to[Q\bar{Q}(\kappa)]+X}(P_{[Q\bar{Q}(\kappa)]} = p_T/z, \mu_F) \otimes \mathcal{D}_{[Q\bar{Q}(\kappa)]\to H}(z, m_Q, \mu_F)$$

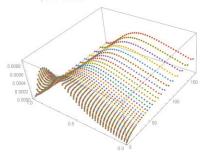
$$+ \mathcal{O}(m_Q^4/p_T^4),$$

Fragmentation functions:

$$D_{f\to H}(z, m_Q, \mu_0) = \sum_n \hat{d}_{f\to Q\bar{Q}[n]}(z, m_Q, \mu_0, \mu_\Lambda) \langle \mathcal{O}_n^H(\mu_\Lambda) \rangle ,$$

$$\mathcal{D}_{[Q\bar{Q}(\kappa)]\to H}(z, m_Q, \mu_0) = \sum_n \hat{d}_{[Q\bar{Q}(\kappa)]\to Q\bar{Q}[n]}(z, m_Q, \mu_0, \mu_\Lambda) \langle \mathcal{O}_n^H(\mu_\Lambda) \rangle .$$

CS $c \rightarrow J/\psi$ fragmentation contribution at NLO:

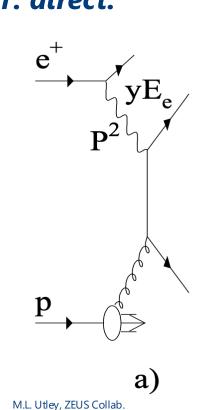

$$d\sigma_{LP}^{NLO} = d\hat{\sigma}_{A+B\to c+X}^{NLO} \otimes D_{c\to J/\psi}^{LO} + d\hat{\sigma}_{A+B\to c+X}^{LO} \otimes D_{c\to J/\psi}^{NLO}$$

DGLAP evaluation:

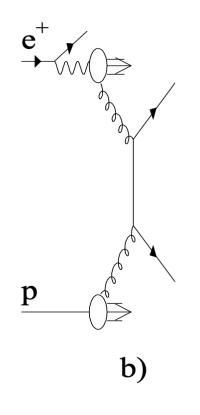
$$\mu^2 \frac{d}{d\mu^2} D_{c \to J/\psi}(z, \mu_f) = \frac{\alpha_s(\mu)}{2\pi} P_{cc}(z) \otimes D_{c \to J/\psi}(z, \mu_f)$$

Evaluated FFs:

NLO


Photoproduction process

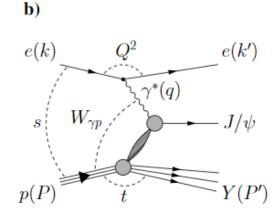
Typical J/ψ production mechanisms at ep colliders


Inelastic process:

1. direct:

Brussels, 1995, eds. J. Lemonne et al

2. resolved:

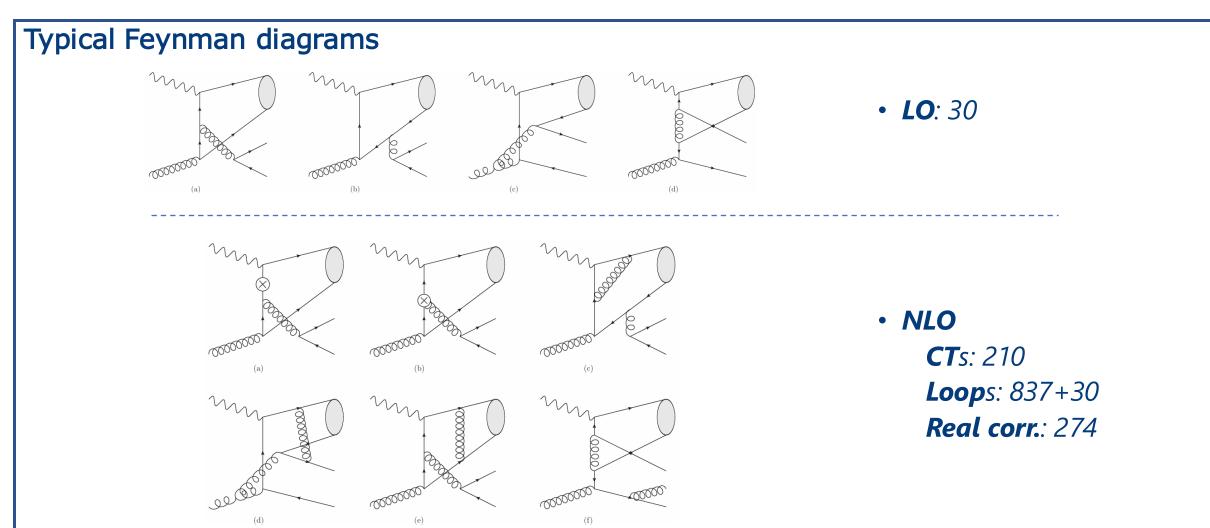


Diffractive process:

1. elastic:

a) $e(k) Q^{2} e(k')$ $s W_{\gamma p} J/\psi$ p(P) t p(P')

2. proton dissociative:



Regge Theory

Photoproduction process

Process: $\gamma(k_1) + g(k_2) \to J/\psi(p_0) + c(p_1) + \bar{c}(p_2)$

Total cross sections:

HERA:
$$\sigma_{NLO(LO)} = 0.118^{+0.141}_{-0.056} (0.074^{+0.087}_{-0.039})$$
 nb, K-factor: ~ 1.60

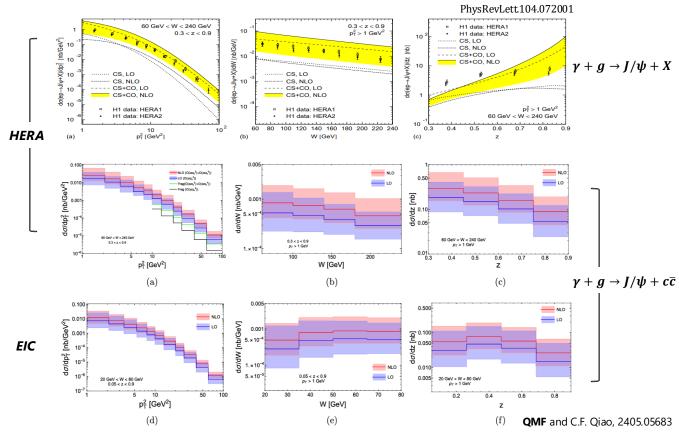
EIC: $\sigma_{NLO(LO)} = 0.046^{+0.069}_{-0.026} (0.027^{+0.063}_{-0.017})$ nb, K-factor: ~ 1.67

Theoretical uncertainties (charm quark mass and scales, in nb):

- ➤ The cross sections show strong sensitivity to both charm quark mass and scales, particularly to scales.
- > NLO results show reduced dependence on scales compared to LO results.

$m_c \setminus \mu$ (GeV)	$\frac{1}{2}m_T$	m_T	$2m_T$
1.4	0.258(0.161)	0.164(0.097)	0.114(0.061)
1.5	0.189(0.123)	0.118(0.074)	0.081(0.046)
1.6	0.136(0.095)	0.086(0.056)	0.061(0.035)

Transverse momentum distributions:

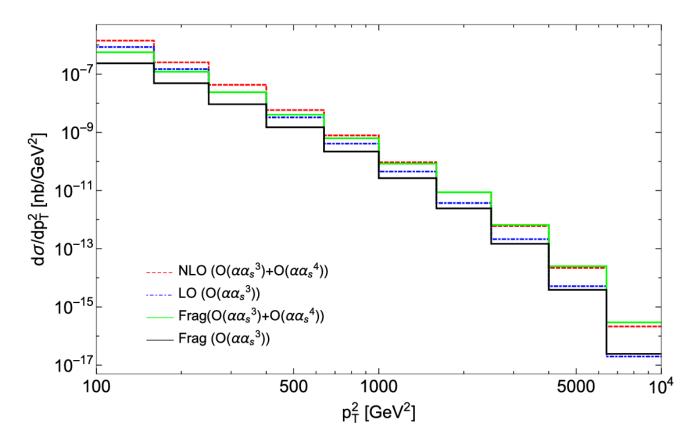

 $> J/\psi + c\bar{c}$ process shows milder falloff than inclusive $J/\psi + X$ in CSM.

W distribution:

> consistent in shape but smaller in normalization.

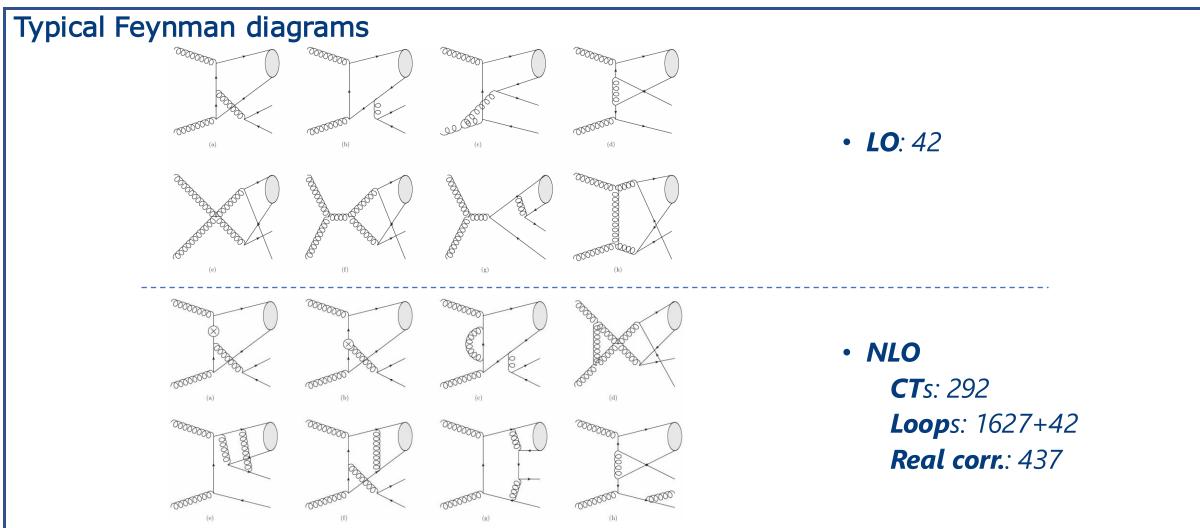
z distribution:

> steep decrease—distinct from inclusive channel.


HERA cut: $p_T > 1 \text{GeV}$, 60 GeV < W < 240 GeV, 0.3 < z < 0.9.

EIC cut: $p_T > 1 \text{GeV}$, 20 GeV < W < 80 GeV, 0.05 < z < 0.9.

Transverse momentum distribution at high p_T :


> the fragmentation contribution approaches and eventually exceeds the corresponding fixed-order direct production results.

Hadroproduction process

Process: $g(k_1) + g(k_2) \to J/\psi(p_0) + c(p_1) + \bar{c}(p_2)$

Hadroproduction process

The polarization of the J/ψ is determined by its dilepton decay angular distribution in the J/ψ rest frame:

$$\frac{d\sigma(J/\psi \to \ell^+\ell^-)}{d\cos\theta} \propto 1 + \lambda_\theta \cos^2\theta$$

 \triangleright λ_{θ} characterizes the reconstructed J/ψ polarization:

$$\lambda_{ heta}
ightarrow 1$$
: Transverse $\lambda_{ heta}
ightarrow -1$: Longitudinal

 \triangleright Expression of λ_{θ} :

$$\lambda_{\theta} = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}$$

> The spin density matrix is built from helicity amplitudes:

$$d\hat{\sigma}_{s_z s_z'} \propto \sum_{s_i, s_j, s_c, s_{\bar{c}}} \mathcal{A}^{s_i s_j s_z s_c s_{\bar{c}}} (\mathcal{A}^{s_i s_j s_z' s_c s_{\bar{c}}})^*$$

Polarized cross section calculation:

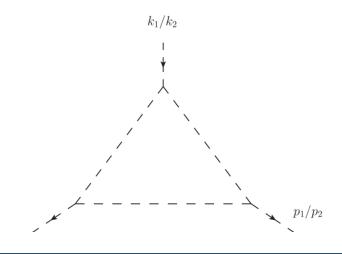
- > Spinor helicity formalism:
 - lacktriangle separate s_z component
- Conventional squared-amplitude:
 - ◆ Longitudinal polarization squaring:

$$\Pi_L^{\mu\nu} = \varepsilon_L^{\mu}(p_0)\varepsilon_L^{*,\nu}(p_0) = \frac{1}{M^2} \left(p_0^{\mu} - \frac{M^2}{k_1 \cdot p_0} k_1^{\mu} \right) \left(p_0^{\nu} - \frac{M^2}{k_1 \cdot p_0} k_1^{\nu} \right)$$

◆ Transverse cross section:

$$d\sigma_T = d\sigma_{11} + d\sigma_{-1,-1} = d\sigma - d\sigma_0$$

Hadroproduction process

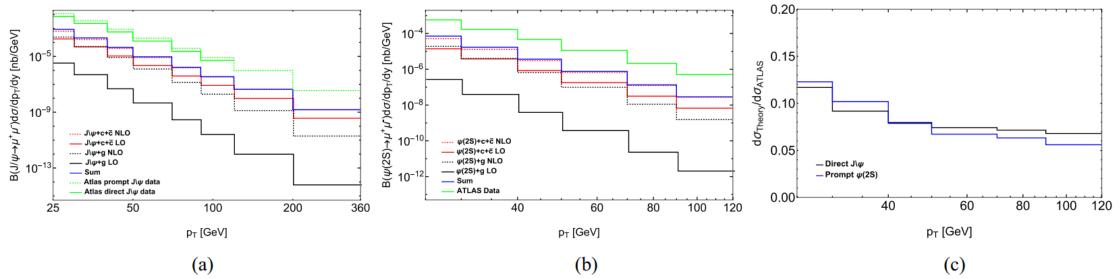

Simplification in the calculation

For loop diagrams, the calculation can be greatly simplified by removing the contributions that are related by symmetric permutations of the initial gluons and the final (anti-)charm quarks.

$$k_1 \leftrightarrow k_2, \quad p_1 \leftrightarrow p_2$$

For example, diagrams with the following triangle loops yield identical cross sections.

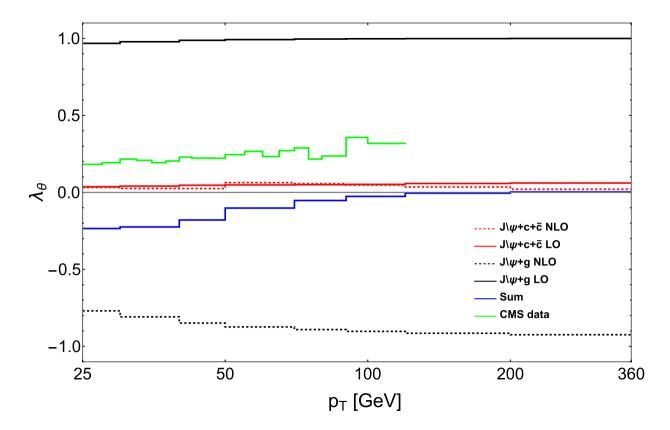
$$\begin{split} \frac{1}{q^2(q-k_1)^2(q-k_1-p_1)^2} & \leftrightarrow \frac{1}{q^2(q-k_2)^2(q-k_2-p_1)^2} \\ & \leftrightarrow \frac{1}{q^2(q-k_1)^2(q-k_1-p_2)^2} & \leftrightarrow \frac{1}{q^2(q-k_2)^2(q-k_2-p_2)^2} \end{split}$$


Feed-down contributions:

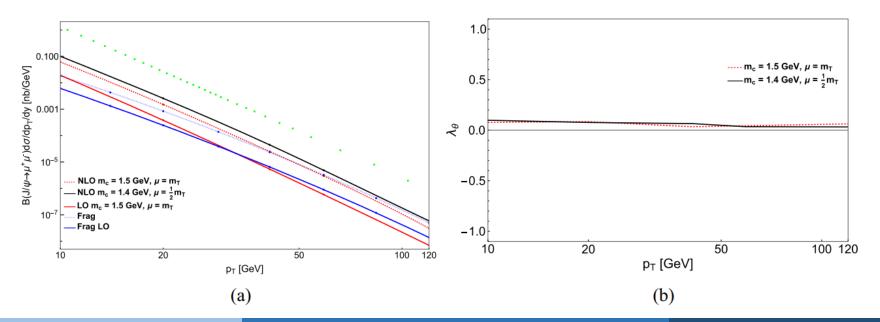
- $\psi(2S) \rightarrow J/\psi$: fitted using distribution data from ATLAS, 2023
- $\lambda \chi_{cI} \rightarrow J/\psi$: ~26% (from ATLAS, 2014)

Transverse momentum distribution (at $\sqrt{S} = 13 \text{ TeV LHC}$):

- 1. The NLO QCD corrections are substantial and may enhance the LO contribution by several times.
- 2. Despite being higher order in α_s , the associated $J/\psi + c\bar{c}$ production dominates over $J/\psi + g$.
- 3. The shape of the $J/\psi + c\bar{c}$ process matches the direct J/ψ data well, though a normalization gap remains.
- 4. $\psi(2S)$ provides a clean probe of short distance dynamics. The similar p_T dependence of J/ψ and $\psi(2S)$ ratios suggests


analogous behavior in the CS channel.

Polarization distribution (at $\sqrt{S} = 13 \text{ TeV LHC}$):


The $J/\psi + c\bar{c}$ channel yields nearly unpolarized J/ ψ at both LO and NLO, improving agreement with experimental measurements. The polarization tends toward unpolarized as p_T increases.

$J/\psi + c\bar{c}$ vs fragmentation contribution vs the CMS measurement (at $\sqrt{S} = 7$ TeV LHC):

- > The fragmentation contribution cannot adequately describe the associated process at fixed order in QCD, and the discrepancy is expected to be mitigated by re-summation of higher-order logarithmic terms.
- > Considering mass and scale uncertainties, the cross section increases roughly twofold, yet a gap with experimental data persists.
- > The polarization parameter shows little sensitivity with varied charm mass and scale.

Summary

$J/\psi + c\bar{c}$ photoproduction:

- 1. The NLO QCD corrections are prominent.
- 2. Not negligible in the evaluation of photoproduction processes in ep colliders, particularly at high- p_{T} .

$J/\psi + c\overline{c}$ hadroproduction:

- 1. The NLO QCD corrections enhance the LO contribution by several times.
- 2. Dominant among CS production schemes.
- 3. The p_T spectrum exhibits a **similar shape** to the experimental data , though an obvious **discrepancy in magnitude** remains.
- 4. Nearly unpolarized, consistent with the recent CMS measurement.

Thanks.

