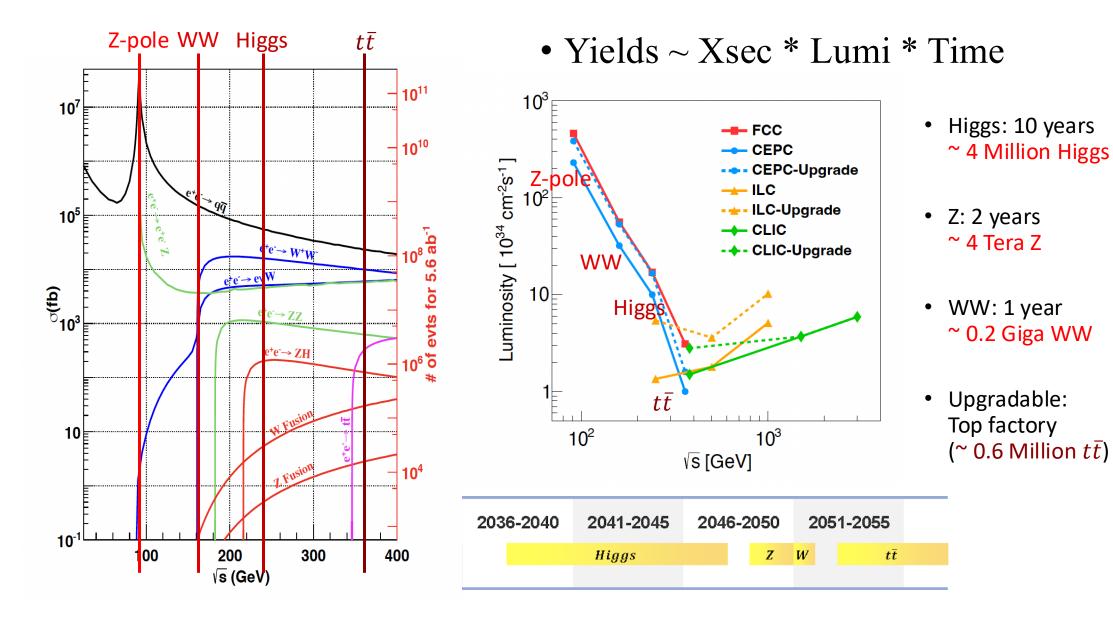
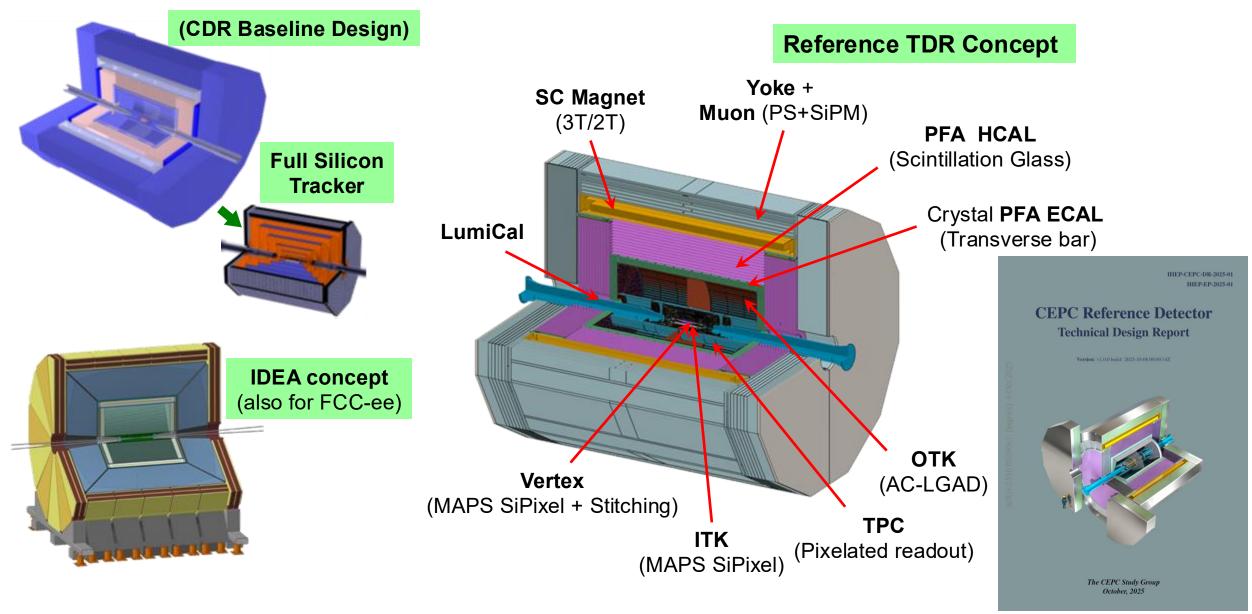
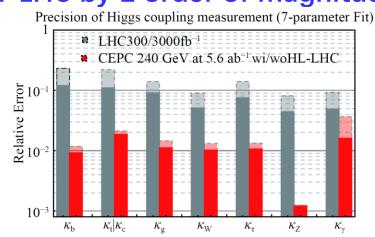

HFCPV2025 第二十二届全国重味物理和CP破坏研讨会 THE 22nd NATIONAL SYMPOSIUM ON HEAVY FLAVOR PHYSICS AND CP VIOLATION 北京·西郊宴馆 2025.10.24-10.28

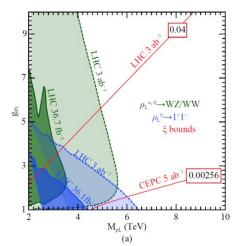
Flavour opportunities @ CEPC

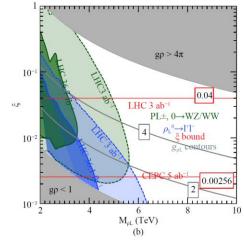

Shanzhen Chen
IHEP
27 October 2025



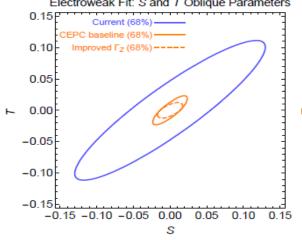
CEPC: a boson factory

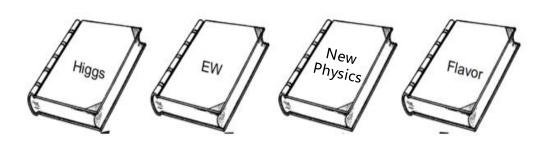

CEPC Conceptual Detector Designs

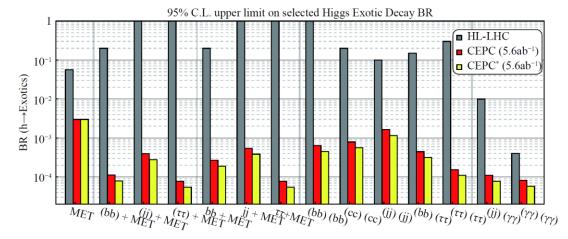



CEPC physics opportunity

Precision of Higgs coupling measurement higher than HL-LHC by 1 order of magnitude


Sensitive to NP up to 10 TeV





White paper for Higgs, Flavour, New Physics completed, White paper for EW in progress, +~300 Journal/AxXiv citables

Chinese Physics C Vol. 43, No. 4 (2019) 043002

CEPC Flavour physics white paper

• CEPC detectors not specifically designed for flavour physics, but we have demonstrated that it can do many flavour physics programs

- Phase II of CEPC flavour physics feasibility studies will focus on:
 - CKM elements
 - Weak phases
 - CP-violations

•

		•
(Chinese Phigh Energy and Nucle	
Cov Flavo Xiao	ume 49 October 2025 Number 10 er Story or Physics at CEPC: a General Perspective cong Ai. Wolfgang Altmannshofer, Peter Athron et al 10 1088/1674-1137/edf1f0	STES TEN
J GPG FC 81	CHINESE PHYSICAL SOCIETY	IOP Publishing

1	Introduction	
2	Description of CEPC Facility	
	2.1 Key Collider Features for Flavor Physics	
	2.2 Key Detector Features for Flavor Physics	
	2.3 Simulation Method	1
3	FCCC Semileptonic and Leptonic b -Hadron Decays	1
	3.1 Leptonic Modes	1
	3.2 Semileptonic Modes	1
4	FCNC b-Hadron Decays	2
	4.1 Di-lepton Modes	2
	4.2 Neutrino Modes	2
	4.3 Radiative Modes	2
	4.4 Tests of SM Global Symmetries	2
5	${\cal CP}$ Violation in $b\text{-Hadron Decays}$	3
6	Charm and Strange Physics	3
7	au Physics	3
	7.1 LFV in τ Decays	3
	7.2 LFU of τ Decays	3
	7.3 Opportunities with Hadronic τ Decays	4
8	Flavor Physics in Z Boson Decays	4
	8.1 LFV and LFU	4
	8.2 Factorization Theorem and Hadron Inner Structure	4
9	Flavor Physics beyond Z Pole	4
	9.1 Flavor Physics and W Boson Decays	4
	9.2 Flavor-Violating Higgs Boson Decays	4
	9.3 FCNC Top Quark Physics	5
10	Spectroscopy and Exotics	5
11	Light BSM States from Heavy Flavors	5
	11.1 Lepton Sector	5
	11.2 Quark Sector	5
12	Detector Performance Requirements	5
13	Summary and Outlook	6

CEPC Tera-Z mode

- CEPC 50 MW scenario: 4 Tera Z. Z decay modes: $c\overline{c}$ (12.03 \pm 0.21) % $b\overline{b}$ (15.12 \pm 0.05) %
- Heavy flavour particle yields
 - One of the largest heavy flavour samples from e^+e^- collider

Particle	BESIII	Belle II (50 ab^{-1} on $\Upsilon(4S)$)	LHCb (300 fb^{-1})	CEPC $(4 \times \text{Tera-}Z)$
$B^0,ar{B}^0$	-	5.4×10^{10}	3×10^{13}	4.8×10^{11}
B^\pm	-	5.7×10^{10}	3×10^{13}	4.8×10^{11}
$B_s^0,ar{B}_s^0$	-	$6.0 \times 10^8 \ (5 \ {\rm ab^{-1}} \ {\rm on} \ \Upsilon(5S))$	1×10^{13}	1.2×10^{11}
B_c^\pm	-	-	1×10^{11}	$7.2 imes 10^8$
$\Lambda_b^0,ar{\Lambda}_b^0$	-	-	2×10^{13}	1×10^{11}
$D^0,ar{D}^0$	1.2×10^8	4.8×10^{10}	1.4×10^{15}	8.3×10^{11}
D^\pm	1.2×10^8	4.8×10^{10}	6×10^{14}	4.9×10^{11}
D_s^\pm	1×10^7	1.6×10^{10}	2×10^{14}	1.8×10^{11}
Λ_c^{\pm}	0.3×10^7	1.6×10^{10}	2×10^{14}	6.2×10^{10}
$ au^+ au^-$	3.6×10^8	4.5×10^{10}		1.2×10^{11}
·	·	· · · · · · · · · · · · · · · · · · ·		

Tera Z collider as a flavour factory

Luminosity

• L=100/ab, O(10¹²) Z decays \Rightarrow O(10¹¹) bb, cc, and $\tau\tau$ pairs

Energy

• besides producing states inaccessible at Belle II $M_Z \gg 2m_b, 2m_\tau, 2m_c \Rightarrow$ surplus energy, boosted decay products (better tracking and tagging, lower vertex uncertainty etc.)

Cleanliness

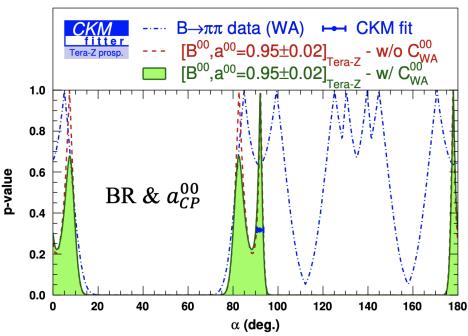
• as for any leptonic machine, full knowledge of the initial state (e.g. Z mass constraint on invariant masses more powerful) ⇒ it enables searches involving neutral/invisible particles

CEPC detector as a flavour experiment

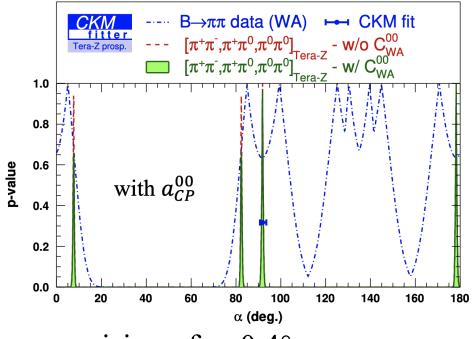
- Large acceptance
 - solid angle coverage of at least $|\cos \theta| < 0.99$.
 - low energy and momentum thresholds at the 100 MeV level to record and recognize low energy objects
- Able to identify the relevant physics objects including neutrals
 - and to precisely reconstruct their properties especially their energies and momenta
- High efficiency/purity PID
 - not only suppresses the combinatorial background, but also separates decays with similar topologies in the final states
- High-precision and low-material vertex system
 - critical for determining the decay time or lifetime

Performance of CEPC detectors & some suggested objectives

Item	CDR [2]	$4^{\rm th}$ concept $[42]$	Comments			
Basic Performance						
Acceptance	$ \cos \theta < 0.99$ [2]					
Threshold	200 MeV [43, 44]	$100~{ m MeV}$	For tracks & photons			
Beam energy spread	$\mathcal{O}(0.1\%)$ [2]					
Tracker momentum resolution	$\mathcal{O}(0.1\%)$ [2]					
ECAL energy resolution	$17\%/\sqrt{E({ m GeV})} \oplus 1\%$ [2]	$3\%/\sqrt{E({ m GeV})}$ [32]				
HCAL energy resolution	$60\%/\sqrt{E({ m GeV})} \oplus 1\%$ [2]	$30\%/\sqrt{E({ m GeV})}$ [45]				
Vertex resolution	$10-200 \ \mu m \ [2]$	$5-100~\mu\mathrm{m}$				
Jet energy resolution	$3-5\% \ [2,\ 46]$		For $20–100~{ m GeV}$			
$\ell-\pi$ mis-ID	< 1% [47]		${\rm In jet, } \vec{p} > 2 {\rm GeV}$			
$\pi - K$ separation	$> 2\sigma$ [2]	$> 3\sigma \ [36]$	In jet, $ \vec{p} > 1$ GeV, TOF+ dE/dx			
Fl	avor Physics Benchmarks (I	Depending on the Abo	ve)			
$\sigma(m_{H,W,Z})$	3.7% [2]		Hadronic decays			
b-jet efficiency $ imes$ purity	$\sim 86\% \ [33]$		In Z hadronic decays			
c-jet efficiency $ imes$ purity	$\sim 64\%$ [33]		In Z hadronic decays			
b-jet charge tagging $\epsilon_{\rm eff} = \epsilon (1-2\omega)^2$	$\sim 37\%$ [33]					
c-jet charge tagging $\epsilon_{\rm eff} = \epsilon (1 - 2\omega)^2$	$\sim 58\% \ [33]$					
π^0 efficiency×purity	$\gtrsim 70\%$ [44]	$\gtrsim 80\%$ [32]	In Z hadronic decays, $ \vec{p}_{\pi^0} > 5$ GeV			
K_S^0,Λ efficiency	60% - 85% [48]		In Z hadronic decays, all tracks			
au efficiency $ imes$ purity	70% [49]		In $WW \to \tau \nu q \bar{q}'$, inclusive			
au mis-ID	$\mathcal{O}(1\%)$ [49]		In $WW \to \tau \nu q \bar{q}'$, inclusive			


Physics Goal 1: Ultra-Precise Standard Model Tests

- CKM matrix elements measurements:
 - CKM matrix universality test by combining the measurements of CP violating phases.
- CP violation searches:
 - Direct / indirect CP violation searches with large statistics.
- Lepton universality:
 - Measure $R(D^{(*)}, R(J/\psi))$ ratios in B decays and $Z \rightarrow \ell\ell$ branching fractions to 10^{-4} precision, probing anomalies hinting at new physics.

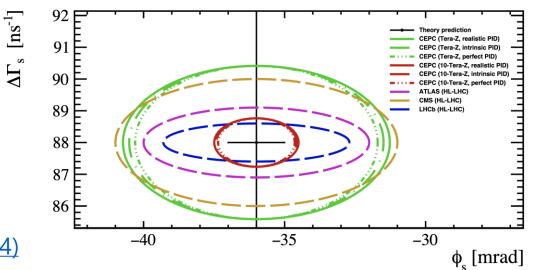

α measurements with $B \to \pi\pi$

- Studied with $B \to \pi^0 \pi^0$, $B_S \to \pi^0 \pi^0$, $B \to \eta \eta$, $B_S \to \eta \eta$ samples
 - Only $B \to \pi^0 \pi^0$ used in the estimation of CKM phase α
- Scenario 1, only use $B \to \pi^0 \pi^0$

Scenario 2, projected to three $B \to \pi \pi$ modes

• precision of α : $2\sim3^{\circ}$

precision of α: 0.4°


Theoretical systematic uncertainties $\sim 1-2^{\circ}$ not considered

ϕ_S measurements with $B_S \rightarrow J/\psi \phi$

- Estimated resolution with 1 Tera Z
 - And comparison with LHCb 300 fb⁻¹

Table 1: Parameters table of factors to calculate the precision of ϕ_s , Γ_s and $\Delta\Gamma_s$. The terms with * means that the factor is insensitive to the resolution of Γ_s and $\Delta\Gamma_s$.

	LHCb (HL-LHC)	CEPC (Tera-Z)	CEPC/LHCb
$b ar{b}$ statics	43.2×10^{12}	0.152×10^{12}	1/284
$Acceptance \times efficiency$	7%	75%	10.7
Br	6×10^{-6}	12×10^{-6}	2
Flavour tagging*	4.7%	17.3%	3.7
Time resolution* $(\exp(-\frac{1}{2}\Delta m_s^2 \sigma_t^2)^2)$	0.52	1	1.92
$\sigma_t(\mathrm{fs})$	45	4.7	
scaling factor ξ	0.0015	0.0021	1.4
$\sigma(\phi_s)$	$3.3 \mathrm{mrad}$	$4.6 \mathrm{\ mrad}$	

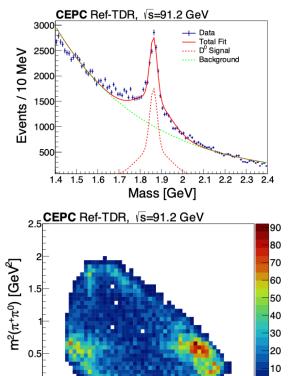
γ measurements with $B_S \rightarrow D_S K$

- Inputs: central values of current measurements / calculations:
- Outputs: fitted results with MC sample (preliminary)

Table 1. The latest results of parameters

Table 1. The latest results of parameters				
Parameters	Value			
$\tau(B_s^0) = 1/\Gamma_s$	$1.520 \pm 0.005 \ [ps] \ [4]$			
$\Delta\Gamma_s$	$+0.084 \pm 0.005 \ [ps^{-1}] \ \ [4]$			
Δm_s	$17.765 \pm 0.006 \ [ps^{-1}] \ \ [4]$			
eta_s	$0.01882^{+0.00026}_{-0.00028} [rad] [5]$			
γ	$(66.2^{+3.4}_{-3.6})^{\circ}$ [4]			
δ	$(347.6^{+6.2}_{-6.1})^{\circ}$ [3]			
r_{D_sK}	$0.318^{+0.035}_{-0.033}$ [3]			

Fit results with 5.3% statistics


values	
$(66.43 \pm 3.01)^{\circ}$	
$(349.64 \pm 2.39)^{\circ}$	
0.314 ± 0.007	

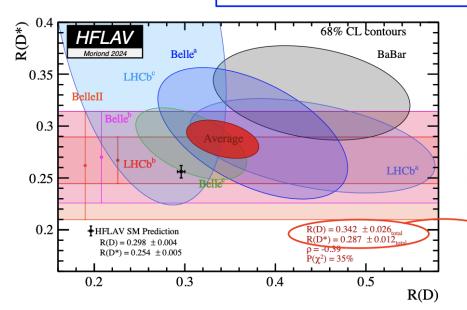
Projected to full statistics, all final states: uncertainty of γ : 0.7°

CPV searches with charm hadrons

- CEPC generally do not have advantages in statistics for charm hadrons compare to LHCb
- However, CEPC can have much higher efficiency with π^0 s

Decays	LHCb (6 fb^{-1})	LHCb (300 fb^{-1})	CEPC (4 Tera Z)
D^{*+}	4.7×10^{12}	2.4×10^{14}	4.6×10^{11}
D^0 from D^{*+}	3.2×10^{12}	1.6×10^{14}	3.1×10^{11}
$D^{*+} \to (D^0 \to K^- K^+) \pi^+$	1.6×10^{10}	6.5×10^{11}	1.3×10^{9}
$D^{*+} ightarrow (D^0 ightarrow \pi^- \pi^+) \pi^+$	$4.6 imes 10^9$	$2.3 imes 10^{11}$	4.5×10^{8}
$D^{*+} \to (D^0 \to K^- \pi^+) \pi^+$	1.6×10^{11}	6.3×10^{12}	1.2×10^{10}
$D^{*+} \to (D^0 \to \pi^- \pi^+ \pi^0) \pi^+$	4.8×10^{10}	$2.4 imes 10^{12}$	4.6×10^{9}
$D^{*+} \to (D^0 \to K^- \pi^+ \pi^0) \pi^+$	4.6×10^{11}	2.3×10^{13}	4.4×10^{10}
Reco. & Sel. $D^0 \to K^-K^+$	$5.8 \times 10^7 [147]$	2.9×10^{9}	1.3×10^{8}
Reco. & Sel. $D^0 \to \pi^- \pi^+$	$1.8 \times 10^7 [147]$	9×10^8	4.5×10^7
Reco. & Sel. $D^0 \to K^-\pi^+$	$5.2 \times 10^8 [147]$	$2.6 imes 10^{10}$	1.2×10^9
Reco. & Sel. $D^0 \to \pi^- \pi^+ \pi^0$	$2.5 \times 10^6 [148]$	$1.2 imes 10^8$	4.6×10^8
Reco. & Sel. $D^0 \to K^- \pi^+ \pi^0$	$1.9 \times 10^7 [148]$	9.6×10^{8}	4.4×10^{9}

1 1.5 2 2. $m^2(K^{-}\pi^0)$ [GeV²]


LFU tests in B decays

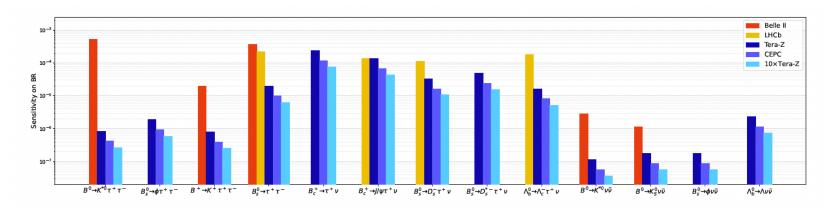
• Gauge interactions are flavour blind: the SM predicts Lepton Flavour Universality (LFU) EW interactions ⇒ any deviation from LFU would be a clear indication of NP

Example: LFU tests in semileptonic (charged-current) B decays

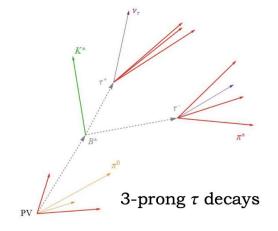
$$R_{D^{(*)}} \equiv \frac{\text{BR}(B \to D^{(*)} \tau \nu)}{\text{BR}(B \to D^{(*)} \ell \nu)}, \ \ell = e, \mu$$

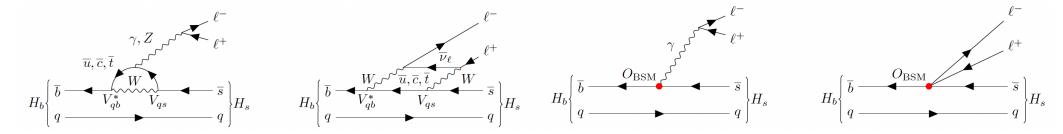
CEPC can achieve a precision below 1%

R_{H_c}	SM Value	$\operatorname{Tera-}Z$	$4 \times \text{Tera-} Z$	$10 \times \text{Tera-}Z$
$R_{J/\psi}$	0.289	4.3×10^{-2}	2.1×10^{-2}	1.4×10^{-2}
R_{D_s}	0.393	4.1×10^{-3}	2.1×10^{-3}	1.3×10^{-3}
$R_{D_s^*}$	0.303	3.3×10^{-3}	1.6×10^{-3}	1.0×10^{-3}
R_{Λ_c}	0.334	9.8×10^{-4}	4.9×10^{-4}	3.1×10^{-4}


Current precision: ~5-10% World average still somewhat in tension with the SM prediction

Physics Goal 2: Rare & Forbidden Decays


CEPC's clean environment and particle-flow detectors excel at reconstructing elusive processes:

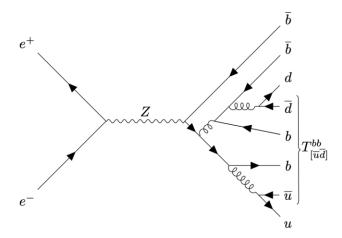

- Flavour-changing neutral currents (FCNC):
 - Search for $b \rightarrow s$ transitions suppressed in the Standard Model, e.g., $B_s \rightarrow \phi vv$ (aiming for 2% precision), $B \rightarrow K\tau\tau$, and $B_s \rightarrow \tau\tau$. Sensitivity to branching ratios as low as 10^{-7} .
- Lepton flavour violation (LFV):
 - Hunt for absolute forbidden decays like $\tau \rightarrow \mu \gamma$ (target: BR 10^{-10}), $Z \rightarrow e\mu$. These "smoking guns" for new physics are inaccessible at hadron colliders due to backgrounds.
- Baryon/lepton number violation:
 - Probe decays like $B^+ \to \pi^- \ell^+ \ell^+$ or $\Lambda_b \to \pi^- \ell^+$ that challenge fundamental symmetries.

FCNC b hadronic decays

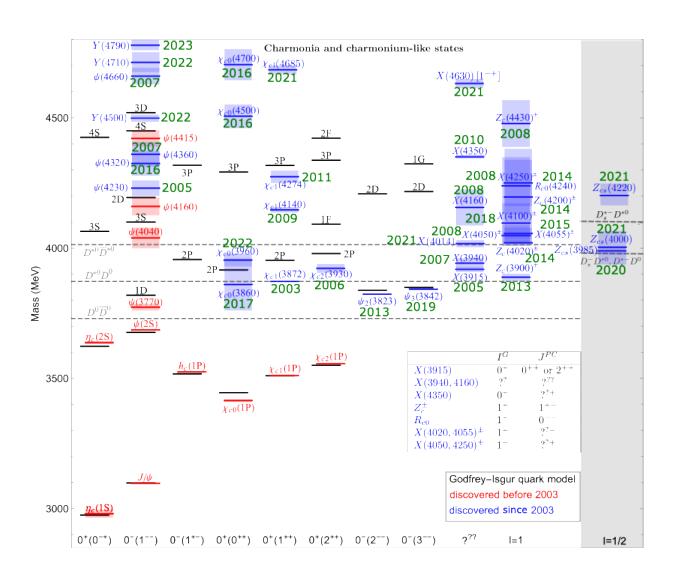
Figure 16: Projected sensitivities of measuring the $b \to s\tau\tau$ [85], $b \to s\nu\bar{\nu}$ [36, 86] and $b \to c\tau\nu$ [39, 68] transitions at the Z pole. The sensitivities at Belle II @ 50 ab⁻¹ [7, 87] and LHCb Upgrade II [18, 57] have also been provided as a reference. Note that LHCb sensitivities are generated by combining the analyses of $\tau^+ \to \pi^+\pi^-\pi^-(\pi^0)\nu$ and $\tau \to \mu\nu\bar{\nu}$. This plot is taken from Ref. [39], with additional $b \to s\nu\bar{\nu}$ modes included.

prospects of LFV sensitivity in the τ and Z decays

Measurement	Current [126]	FCC [115]	Tera- Z Prelim. [127]	Comments
Lifetime [sec]	$\pm 5\times 10^{-16}$	$\pm 1\times 10^{-18}$		from 3-prong decays, stat. limited
$BR(\tau \to \ell \nu \bar{\nu})$	$\pm 4\times 10^{-4}$	$\pm 3\times 10^{-5}$		$0.1\times$ the ALEPH systematics
$m(\tau) \ [MeV]$	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\rm track})$ limited
$BR(\tau \to 3\mu)$	$<2.1\times10^{-8}$	$\mathcal{O}(10^{-10})$	same	bkg free
$BR(\tau \to 3e)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau^{\pm} \to e\mu\mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau^{\pm} \to \mu ee)$	$<1.8\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau \to \mu \gamma)$	$<4.4\times10^{-8}$	$\sim 2\times 10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_\gamma)$ limited
$BR(\tau \to e\gamma)$	$<3.3\times10^{-8}$	$\sim 2 \times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_{\gamma})$ limited
$\mathrm{BR}(Z \to \tau \mu)$	$<1.2\times10^{-5}$	$\mathcal{O}(10^{-9})$	same	$\tau\tau$ bkg, $\sigma(p_{\rm track})$ & $\sigma(E_{\rm beam})$ limited
$\mathrm{BR}(Z \to \tau e)$	$<9.8\times10^{-6}$	$\mathcal{O}(10^{-9})$		$\tau\tau$ bkg, $\sigma(p_{\rm track})$ & $\sigma(E_{\rm beam})$ limited
$BR(Z \to \mu e)$	$< 7.5 \times 10^{-7}$	$10^{-8} - 10^{-10}$	$\mathcal{O}(10^{-9})$	PID limited


Physics Goal 3: Exotic Hadrons & Spectroscopy

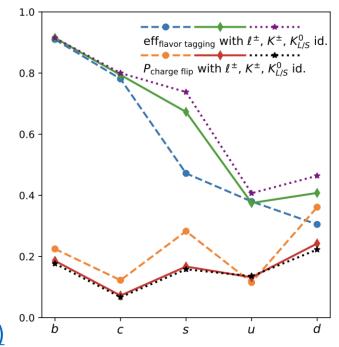
With 10¹¹ *b*-hadrons and charm particles, CEPC will map the "heavy-flavour zoo":

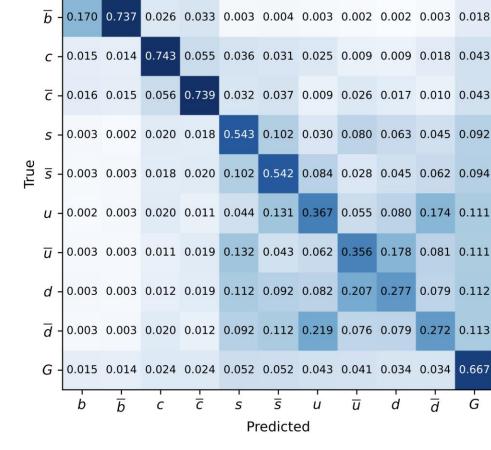

- Discover tetraquarks (T_{cc}, T_{bb}) pentaquarks (P_c) , and doubly heavy baryons (Ξ_{cc}, Ξ_{bb}) , predicted by QCD but rarely observed.
- Study production mechanisms of charmonium-like states (e.g., X(3872)) via $Z \rightarrow qq$ or B-decay chains.
- Precision spectroscopy of conventional b/c-mesons and baryons (e.g., Λ_b, B_c), including excited states.

Spectroscopy and Exotics - prospects

- A lot of states, guaranteed discovery at CEPC?
- Z→bbbb, bbcc, cccc processes may give rise to highly exotic species

 Need more theory inputs for simulation


Physics Goal 4: WW & Higgs & Top Quark Flavour Physics


Higher-energy CEPC runs extend flavour studies:

- Higgs flavour violation:
 - Search for $H \rightarrow bs$, $H \rightarrow c\bar{u}$, or $H \rightarrow \tau\mu$ decays at the Higgs factory (240 GeV). Jet-origin identification via ML could constrain branching ratios to 10^{-3} .
- Top quark FCNC:
 - At the $t\bar{t}$ threshold (360 GeV), probe anomalous $t \rightarrow cZ$ or $t \rightarrow cH$ decays, sensitive to new physics in top-Higgs couplings.
- CKM elements from WW threshold:
 - Resolve long-standing tensions in CKM matrix elements (e.g., $|V_{cb}|$, $|V_{ub}|$) by combining data from B/D meson decays and on-shell W boson decays at the WW threshold. Target precision for $|V_{cb}|$ reaches 0.1–0.4%.

Jet origin identification

- Full Simulated vvH, Higgs to two jets sample at CEPC baseline configuration, reconstructed with deep learning techniques
- Jets identified as the category with highest likelihood
- 5 quarks+antiquarks + gluon

b - 0.745 0.163 0.033 0.025 0.004 0.003 0.002 0.003 0.002 0.002 0.017

PRL.132.221802 Eur. Phys. J. C 84, 152 (2024)

Flavour violating Higgs decay & Top FCNC

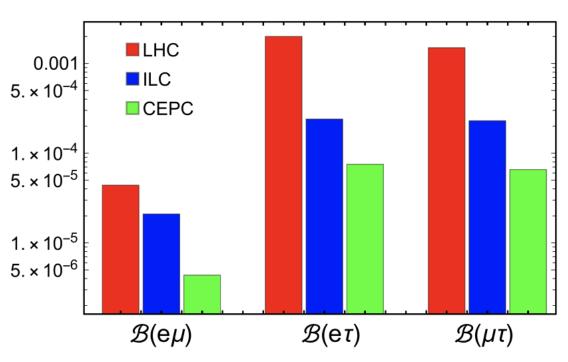


Fig. 34. (color online) Projected upper limits on the LFV Higgs decays at the LHC, ILC and CEPC. The figure is updated from [255].

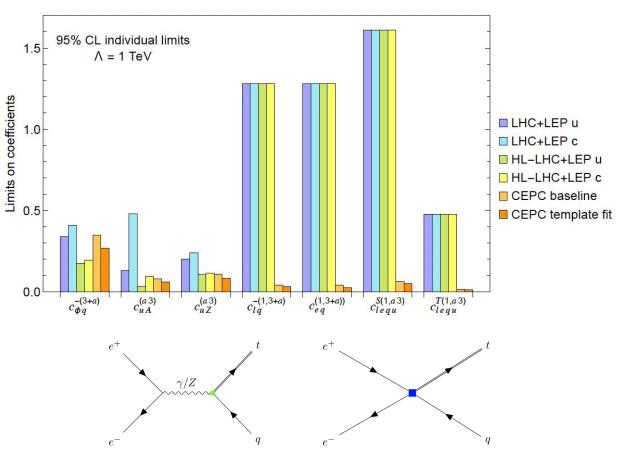


Fig. 35. (color online) Illustrative Feynman diagrams for the FCNC single top production $e^-e^+ \rightarrow t(\bar{t})j$. The green dot and blue square represent two-fermion FCNC and four-fermion (two-lepton two-quark) contact operators, respectively.

CKM element from W decay

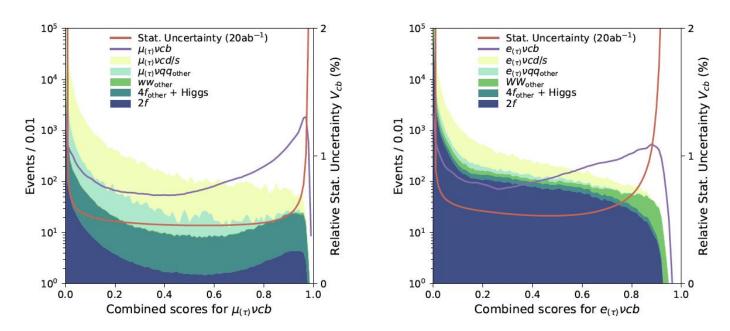
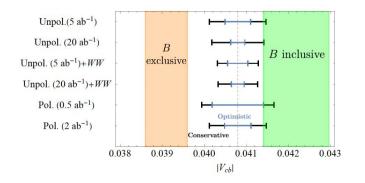
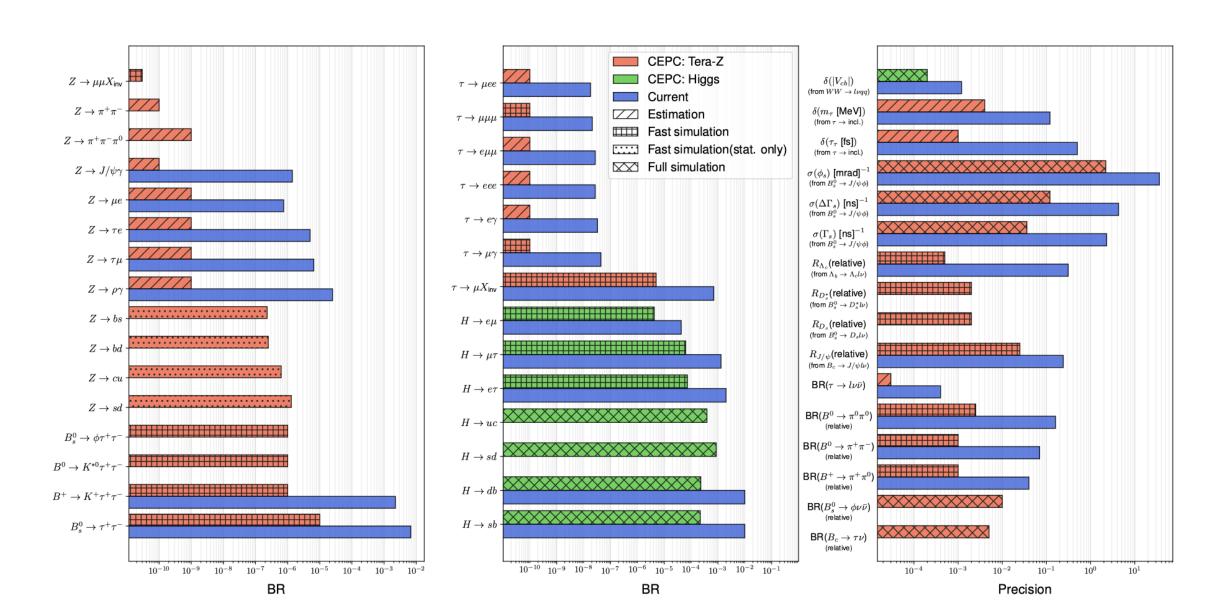




Figure 4. The BDT score distribution of signal and backgrounds in: the muon channel (left) and electron channel (right). The red curve indicates the projected statistical relative sensitivity estimated from eq. (4.1) assuming a luminosity of 20 ab^{-1} .

Summary of flavour benchmark channels

Summary

- We demonstrated the potential of studying flavour physics @ CEPC
- O(10¹²) Z decays would enable us to study many processes with a much higher precision than (or inaccessible to) other experiments
- WW, Higgs, top runs extended the flavour program
- Extremely rich physics program results in stringent requirements on the detector performance, to be addressed by intensive study on detector design, key tech R&D, and algorithms development

• Will explore more possibilities in the next stage feasibility studies

Thanks!