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U(2)5 flavor symmetry

CKMfitter 2023

Re(ϵ) = 0 (2.75)

Re(ϵ
2) = ϵ2




0 ϵeϵµϵ2τ
ϵ2µ−ϵ2e

ϵeϵτ
ϵeϵµϵ2τ
ϵ2e−ϵ2µ

0 ϵµϵτ

ϵeϵτ ϵµϵτ 0


 (2.76)

Pe =



−1 0 0

0 −1 0

0 0 1


 (2.77)

L†
e = P †

eL
′ †
e Te,

Re = RePe (2.78)

ϵ̃ = ϵe/ϵµ, ϵµ = ϵ̃ϵµ, ϵτ = ϵ̃ϵτ expand ϵ up to O(ϵ2), we get Le and Re:

Le =




1
2
ce(2− λ2ϵ2τ ϵ̃

2) −1
2
se(2 + c2eϵ

2
τ ϵ̃

2) 0
1
2
se(2− s2eϵ

2
τ ϵ̃

2) 1
2
ce[2− (s2e + 1)ϵ2τ ϵ̃

2] ϵτ ϵ̃

−seϵτ ϵ̃ −ceϵτ ϵ̃ 1
2
(2− ϵ2τ ϵ̃

2)


+O(ϵ̃3), (2.79)

The Le may be like in ref [6]:

Le ≈




ce −se 0

se ce sτ
−sesτ −sτce 1


 (2.80)

Re =



1 0 0

0 1 sτ ϵµϵτ ϵ
2

0 sτ ϵµϵτ ϵ
2 1


 (2.81)

2.3 CKM

Wolfstein parameterization
From paper PDG, to O(λ4) one can write VCKM as

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4), (2.82)
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“the success of the CKM picture be due to the existence of a
suitable flavour symmetry appropriately broken in some definite
direction, thus allowing a scale of new flavour physics phenomena
sufficiently near to the Fermi scale to leave room for relatively
small but nevertheless observable deviations from the SM in the
flavour sector.”

U(2)q ⊗ U(2)u ⊗ U(2)d: act on the first two generations of quarks

U(2)` ⊗ U(2)e: act the first two generations of leptons

A. Pomarol and D. Tommasini, hep-ph/9507462

R. Barbieri, G. R. Dvali and L. J. Hall, hep-ph/9512388

We choose free parameter

su = λ, sd = λ, ϵbt = ϵb − ϵt =
Aλ2

cd
, (2.105)

ϵ̃bt = ϵb + ϵt, ϵb =
1

2
(ϵbt + ϵ̃bt), ϵt =

1

2
(ϵ̃bt − ϵbt) (2.106)

λ =
√
(cdsu + cusdcαd

)2 + (cusdsαd
)2, (2.107)

χ =
√

(cdcu − susdcαd
)2 + (susdsαd

)2, (2.108)

cαd
=

(ρ− 1)sucd
sd

, sαd
= −ηsucd

sd
, (2.109)

cθ =
cdsu + cusdcαd

λ
, sθ =

cusdsαd

λ
(2.110)

From paper [8]
The CKM matrix is VCKM = L†

uLd. To match this structure with the standard CKM
parametrization, we rephase it by imposing real Vud, Vus, Vcb, Vtb and Vcs (which is
real at the level of approximation we are working, namely up to corrections of O(λ2)

relative to the leading term for each of CKM entry), obtaining [8]

VCKM =




1− λ2/2 λ suse
−iδ

−λ 1− λ2/2 cus

−sdsei(δ+αu−αd) −scd 1


 , (2.111)

where the phase δ and the real and positive parameter λ, are defined by

λeiδ = sucd − cusde
−i(αu−αd). (2.112)

Hence it follows that the three mixing angles s − u, sd, and s can be determined
completely in terms of three independent CKM elements:

s = |st − sbe
−i(αt−αb)| = |Vcb|,

sd
cd

= −|Vtd|
|Vts|

,
su
cu

=
|Vub|
|Vcb|

(2.113)

As far as the phases are concerned, we find

δ = − arg(Vub) = γ, αu − αd = arg(Vtd) + arg(Vub) ≈ −π/2 (2.114)

where the last relation follows, to a very good accuracy, from the numerical values
of the CKM inputs.

2.3.1 CKM
The CKM matrix is VCKM = L†

uLd, we use the form from ref. as in equations (2.130)-
(A.17), while neglecting O(s2b , s2t , sbst) terms:

VCKM =




cdcu + sdsue
iϕ eiαu(−cusde−iϕ + cdsu) e

iαu(sb − ste
−iϕq)su

e−iαu(cusde
iϕ − cdsu) cdcu + sdsue

−iϕ cu(sb − ste
−iϕq)

sd(−sb + ste
iϕq)e−i(αu−ϕ−ϕq) cd(−sbe−iϕq + st) e−iϕq




(2.115)
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Figure 7. Upper-left plot: current constraints from B(B+ → K+νν̄), B(K+ → π+νν̄), EWPO and
collider observables on the Wilson coefficient C(3)[3333]ℓq (with all other WCs set to zero) as a function
of the flavor-alignment parameter ε

F
. Upper-right plot: constraints from the same set of observables

in the C(1)[3333]ℓq –C(3)[3333]ℓq plane, setting ε
F
= 1. Lower plots: possible evolution of the corresponding

upper plots using future projections for flavor and colliders observables (see text). In all plots the
colored bands denote 68% CL intervals (from one or more observables), while the black lines denote
1, 2, (3)σ contours from the global fit.

.

– 23 –

L. Allwicher, C. Cornella, G. Isidori and B. A. Stefanek, 2311.00020
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There are strong similarities between charge-parity (CP) violating observables in hadronic B decays
(in particular ΔA−

CP in B → Kπ) and direct CP violation in kaon decays (ϵ0): All these observables are very
sensitive to new physics (NP) which is at the same time CP and isospin violating (i.e., NP with complex
couplings which are different for up quarks and down quarks). Intriguingly, both the measurements of ϵ0

and ΔA−
CP show deviations from their Standard Model predictions, calling for a common explanation

(the latter is known as the B → Kπ puzzle). For addressing this point, we parametrize NP using a gauge
invariant effective field theory approach combined with a global Uð2Þ3 flavor symmetry in the quark sector
(also known as less-minimal flavor violation). We first determine the operators which can provide a
common explanation of ϵ0 and ΔA−

CP and then perform a global fit of their Wilson coefficients to the data
from hadronic B decays. Here we also include e.g., the recently measured CP asymmetry in Bs → KK as
well as the purely isospin violating decay Bs → ϕρ0, finding a consistent NP pattern providing a very good
fit to data. Furthermore, we can at the same time explain ϵ0=ϵ for natural values of the free parameters
within our Uð2Þ3 flavor approach, and this symmetry gives interesting predictions for hadronic decays
involving b → d transitions.

DOI: 10.1103/PhysRevD.101.015022

I. INTRODUCTION

Even though the Standard Model (SM) of particle
physics has been tested to an astonishing precision within
the last decades, it cannot be the ultimate theory describing
the fundamental constituents and interactions of matter. For
example, in order to generate the matter antimatter asym-
metry of the universe, the Sakharov criteria [1] must be
satisfied. One of these requirements is the presence of CP
violation, which is found to be far too small within the SM
[2–7] whose only source of CP violation is the phase of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. Therefore,
physics beyond the SM with additional sources of CP
violation is needed.
Thus, CP violating observables are promising probes of

new physics (NP) as they could test the origin of the matter
anti-matter asymmetry of the universe. In this respect,

direct CP violation in kaon decays (ϵ0=ϵ) is especially
relevant, as it is very suppressed in the SM, extremely
sensitive to NP and can therefore test the multi TeV scale
[8]. Furthermore, recent theory calculations from lattice
and dual QCD [9–12] show intriguing tensions between the
SM prediction and the experimental measurement. In order
to explain this tension,1 NP must not only violate CP but
in general also isospin [18] (i.e., couple differently to up
quarks as to down quarks) in order to give a sizeable effect
in ϵ0=ϵ [19].
Interestingly, there are also tensions between theory and

data concerning CP violation in hadronic B meson decays,
including the long-standing B → Kπ puzzle [20–25].
Recently, LHCb data [26] increased this tension [27,28],
and also the newly measured CP asymmetry in Bs →
KþK− [26] points towards additional sources of CP
violation, renewing the theoretical interest in these decays
[29,30]. Like for ϵ0=ϵ, both CP and isospin violation are inPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Calculations using chiral perturbation theory [13–17] are
consistent with the experimental value but have large errors.

PHYSICAL REVIEW D 101, 015022 (2020)

2470-0010=2020=101(1)=015022(8) 015022-1 Published by the American Physical Society
IV. CONCLUSIONS AND OUTLOOK

In this article we pointed out intrinsic analogies between
ϵ0=ϵ and CP violation in hadronic B decays, in particular
ΔA−

CP: These observables are all sensitive to 4-quark
operators with flavor changing neutral currents in the down
sector and test the combined effects of CP and isospin
violation. Therefore, the B → Kπ puzzle increases the
interest in ϵ0=ϵ and vice versa, calling for a combined
explanation.
After identifying the two operators which are capable of

explaining the ϵ0=ϵ anomaly within an Uð2Þ3 flavor setup
we performed a global fit to the data from hadronic B
decays. We find that both operators provide a consistent
pattern in hadronic B decays resulting in a very good fit

which is more than 3σ better than the one of the SM.
Furthermore, the Uð2Þ3 flavor symmetry is consistent with
a common explanation of the anomalies in ϵ0=ϵ and
hadronic B decays, providing at the same time interesting
predictions for hadronic decays involving b → d transitions
(such as B → KþK− and B → ππ) which can be tested
experimentally in the near future by LHCb. However,
further progress of the theory side is crucial in order to
improve the precision of the theoretical results.
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FIG. 2. Predictions for differences of direct CP asymmetries.
The first four involve b → d transitions, predicted via the Uð2Þ3
flavor symmetry, while the last observable involves a b → s CP
transition (no experimental result is available yet).

FIG. 1. Preferred regions from hadronic B decays in the xB × ðϵ0=ϵÞNP=10−3 vs ϕ plane for the color singlet case (1) on the left and
the color triplet case (3) on the right. The preferred regions are obtained by marginalizing over −0.12 < zð1Þ < 0.12, and
−0.04 < zð3Þ < 0.04. Note that all regions overlap at the 1σ level, resulting in a very good global fit (black bounded regions).
Furthermore, one can explain the tensions in hadronic B decays for an effect around 10−3 in ϵ0=ϵ (as suggested by the tension between
SM and experiment) for xB being of order one (as required by Uð2Þ3 flavor).

CORRELATING ϵ0=ϵ … PHYS. REV. D 101, 015022 (2020)
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Some issues need further research!
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glect all entries in the Yukawa couplings but for third generation 
masses [17–19]. Under this symmetry, the first two SM fermion 
families transform as doublets of a given U (2) subgroup,

U (2)5 ≡ U (2)q × U (2)� × U (2)u × U (2)d × U (2)e , (1)

while third-generation quarks (leptons) are only charged under 
U (1)B3(L3) . The largest breaking of this symmetry in the complete 
SM Lagrangian is controlled by the small parameter

ε =
[

Tr(Yu Y †
u) − Tr(Yu Y †

u YdY †
d)

Tr(YdY †
d)

]1/2

≈ yt |Vts| ≈ 0.04 . (2)

A minimal set of U (2)5 breaking terms (spurions) which lets us 
reproduce all the observable SM flavor parameters (in the limit of 
vanishing neutrino masses), without tuning and with minimal size 
for the breaking terms, is

Vq ∼ (2,1,1,1,1) , V� ∼ (1,2,1,1,1) ,

�u(d) ∼ (
2,1, 2̄(1),1(2̄),1

)
,�e ∼ (

1,2,1,1, 2̄
)

.
(3)

In terms of these spurions, the 3 × 3 Yukawa matrices can be de-
composed as

Yu(d) = yt(b)

(
�u(d) xt(b) Vq

0 1

)
,Ye = yτ

(
�e xτ V�

0 1

)
, (4)

where xt,b,τ and yt,b,τ are free complex parameters, expected to 
be of O(1).1 Note that �u,d,e are 2 × 2 complex matrices, while 
Vq,� are 2-dimensional complex vectors.

The precise size of the spurions is not known; however, we can 
estimate it by the requirement of no tuning in the O(1) param-
eters. This implies |Vq| = O (ε). In the limit of vanishing neutrino 
masses, the size of |V�| cannot be unambiguously determined. As 
discussed below (see also [20]), a good fit of the anomalies in 
semileptonic B decays is obtained for

|V�|, |Vq| = O (10−1) , (5)

which is perfectly consistent with: i) the estimate |Vq| = O (ε); 
ii) the hypothesis of a common origin for the two leading U (2)5

breaking terms in quark and lepton sectors. The entries in the 2 ×2
matrices �u,d,e are significantly smaller than |Vq,�|, with a maxi-
mal size of O (10−2) in the quark sector.

By appropriate field redefinitions and without loss of general-
ity, one can remove unphysical parameters in the Yukawa matrices 
in (4) (see App. A). Working in the so-called interaction basis, 
where the second generation in U (2)q(�) space is defined by the 
alignment of the leading spurions,

Vq,� = |Vq,�| × �n , �n =
(

0
1

)
, (6)

one can bring the Yukawa matrices to the following form

Yu = |yt |
(

U †
q O ᵀ

u �̂u |Vq| |xt | eiφq �n
0 1

)
,

Yd = |yb|
(

U †
q�̂d |Vq| |xb| eiφq �n
0 1

)
,

Ye = |yτ |
(

O ᵀ
e �̂e |V�| |xτ | �n

0 1

)
,

(7)

1 In models with more than one Higgs doublet, the smallness of yb,τ can be 
justified in terms of approximate flavor-independent U (1) symmetries.

where �̂u,d,e are 2 × 2 diagonal positive matrices, O u,e are 2 × 2
orthogonal matrices and Uq is of the form

Uq =
(

cd sd eiαd

−sd e−iαd cd

)
, (8)

with sd ≡ sin θd and cd ≡ cos θd .
The Yukawa matrices in (7) get diagonalized by means of ap-

propriate unitary transformations: L†
f Y f R f = diag(Y f ), with f =

u, d, e. The most general form for these unitary transformations is

Ld ≈
⎛
⎝ cd −sd eiαd 0

sd e−iαd cd sb

−sd sb e−i(αd+φq) −cd sb e−iφq e−iφq

⎞
⎠ ,

Rd ≈
⎛
⎝1 0 0

0 1 ms
mb

sb

0 − ms
mb

sb e−iφq e−iφq

⎞
⎠ ,

Ru ≈
⎛
⎝1 0 0

0 1 mc
mt

st

0 −mc
mt

st e−iφq e−iφq

⎞
⎠ ,

Le ≈
⎛
⎝ ce −se 0

se ce sτ
−sesτ −cesτ 1

⎞
⎠ ,

Re ≈
⎛
⎜⎝

1 0 0
0 1

mμ

mτ
sτ

0 −mμ

mτ
sτ 1

⎞
⎟⎠ ,

(9)

with Lu = Ld V †
CKM. Here we have taken advantage of the con-

straints imposed by fermions masses and CKM matrix elements 
to eliminate various parameters appearing in L f and R f .2 These 
further imply that sd and αd are constrained by sd/cd = |Vtd/Vts|
and αd = arg(V ∗

td/V ∗
ts), and that st = sb − V cb . The light-family lep-

tonic mixing (se), appearing in O e , cannot be expressed in terms of 
measurable quantities. Two additional mixing angles which remain 
unconstrained are sb/cb = |xb| |Vq| and sτ /cτ = |xτ | |V�|. Finally, φq
is an unconstrained O (1) phase, that becomes unphysical in the 
limit sb → 0 (or, equivalently, xb → 0). This limit is phenomenolog-
ically required in models where �F = 2 operators are generated at 
tree-level around the TeV scale: in such case one needs to impose 
a mild alignment to the down basis, i.e. |sb| � 0.1 ε , to satisfy the 
constraints from Bs,d-meson mixing [21–23].

3. Impact of U (2)5 on the EFT for semileptonic B decays

Having defined the flavor symmetry and its symmetry break-
ing terms from the SM Yukawa sector, we are ready to analyze 
its implications beyond the SM. Assuming no new degrees of free-
dom below the electroweak scale, we can describe NP effects in 
full generality employing the so-called SMEFT. We limit the atten-
tion to dimension-six four-fermion operators bilinear in quark and 
lepton fields,3 that we write generically as

LEFT = − 1

v2

∑
k,[i jαβ]

C[i jαβ]
k O[i jαβ]

k + h.c. , (10)

2 The removal of unphysical parameters presented in App. A corrects a similar 
analysis presented in [21], where it was erroneously concluded that the parameter 
αd is unconstrained.

3 We neglect operators which modify the effective couplings of W and Z bosons. 
These are highly constrained and cannot induce sizable LFU violating effects.

with VCKM = L†
uLd.

Oledq = (l̄αeβ)(d̄iqj)

J. Fuentes-Martín et al. / Physics Letters B 800 (2020) 135080 3

where v ≈ 246 GeV is the SM Higgs vev, {α, β} are lepton-flavor 
indices, and {i, j} are quark-flavor indices. The operators in the 
Warsaw basis [24] with a non-vanishing tree-level matrix element 
in semileptonic B decays are

O(1)
�q = (�̄α

L γ μ�
β
L )(q̄i

Lγμq j
L) ,

O(3)
�q = (�̄α

L γ μτ I�
β
L )(q̄i

Lγμτ Iq j
L) ,

O�d = (�̄α
L γ μ�

β
L )(d̄i

Rγμd j
R) ,

Oqe = (q̄i
Lγ

μq j
L)(ēα

Rγμeβ
R) ,

Oed = (ēα
Rγ μeβ

R)(d̄i
Rγμd j

R) ,

O�edq = (�̄α
L eβ

R)(d̄i
Rq j

L) ,

O(1)
�equ = (�̄

a,α
L eβ

R)εab(q̄
a,i
L u j

R) ,

O(3)
�equ = (�̄

a,α
L σμνeβ

R)εab(q̄
b,i
L σμνu j

R) ,

(11)

where τ I are the Pauli matrices and {a, b} are SU (2)L indices. Our 
main hypothesis is to reduce the number of C[i jαβ]

k retaining only 
those corresponding to U (2)5 invariant operators, up to the inser-
tion of one or two powers of the leading U (2)q × U (2)� spurions 
in (5).

A first strong simplification arises by neglecting subleading spu-
rions with non-trivial transformation properties under U (2)u,d,e . 
Since we are interested in processes of the type b → c(u)�ν̄ and 
b → s(d)��̄(′) , this implies that only the operators O(1)

�q , O(3)
�q , Oqe

and O�edq can yield a relevant contribution. Among those, Oqe can 
significantly contribute at tree-level only to b → sτ τ̄ transitions: 
since the latter are currently poorly constrained (see sect. 4.3), we 
do not consider this operator for simplicity. We are thus left with 
the following effective Lagrangian

LEFT = − 1

v2

[
C V 1 �

[i jαβ]
V 1

O(1)
�q + C V 3 �

[i jαβ]
V 3

O(3)
�q

+(2 C S �
[i jαβ]
S O�edq + h.c.)

]
,

(12)

where CV i ,S control the overall strength of the NP effects and 
�V i ,S are tensors that parametrize the flavor structure. They are 
normalized by setting �[3333]

V i ,S = 1, which is the only term surviv-

ing in the exact U (2)5 limit.
Let us consider first the structure of �[i jαβ]

S , which is particu-
larly simple. Neglecting U (2)d,e breaking spurions, it factorizes to

�
[i jαβ]
S = (�

†
L)

α j × �
iβ
R , (13)

where, in the interaction basis,

�iα
L =

(
xq�V i

q(V α
� )∗ xq V i

q

x�(V α
� )∗ 1

)
, �R =

(
0 0
0 1

)
. (14)

Here xq,�,q� are O (1) coefficients and we have neglected higher-
order terms in Vq,� (that would simply redefine such coefficients). 
Moving to the mass-eigenstate basis of down quarks and charged 
leptons, where

qi
L =

(
V ∗

ji u j
L

di
L

)
, �α

L =
(

να
L

eα
L

)
, (15)

we have �L → �̂L ≡ L†
d �L Le and �R → �̂R ≡ R†

d �R Re [see (9)], 
with the new matrices assuming the following explicit form in 3 ×
3 notation

�̂L = eiφq

⎛
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μ
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⎞
⎟⎠ . (16)

The (complex) parameters xbτ
q� , λi

q , λα
� , and �αi

q� are a combination 
of the spurions in (14) and the rotation terms from Ld,e , that sat-
isfy

λs
q = O (|Vq|) , λ

μ
� = O (|V�|) ,

xbτ
q� = O (1) , �

sμ
q� = O (λs

qλ
μ
� ) ,

λd
q
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q

= �dα
q�

�sα
q�
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td

V ∗
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,
λe

�

λ
μ
�

= �ie
q�

�
iμ
q�

= se . (17)

On the r.h.s. of the first line of (16) we have neglected tiny terms 
suppressed by more than two powers of |Vq,�| or sd,e .

If we consider at most one power of Vq and one power of V� , 
then also �[i jαβ]

V i
factorizes into

�
[i jαβ]
V i

= (�
V i
L

†
)α j × (�

V i
L )iβ , (18)

where �V 1
L and �V 3

L have the same structure as �L with, a pri-
ori, different O (1) coefficients for the spurions. Moving to the 
basis (15), �̂V i

L assumes the same structure as �̂L in (16), with pa-
rameters which can differ by O(1) overall factors, but that obey the 
same flavor ratios as in (17). Corrections to the factorized structure 
in (18) arises only to second order in Vq or V� , generating terms 
which are either irrelevant or can be reabsorbed in a redefinition 
of the observable parameters in the processes we are interested in 
(see sect. 4).

3.1. Matching to the U1 leptoquark case

The EFT in (12), with factorized flavor couplings as in (13) and 
(18), nicely matches the structure generated by integrating out a 
U1 vector leptoquark, transforming as (3, 1)2/3 under the SM gauge 
group. As noted first in [16], this field provides indeed an excel-
lent mediator to build in a natural, and sufficiently general way, 
an EFT for semileptonic B decays built on the U (2)5 flavor sym-
metry broken only by the leading Vq and V� spurions (see [20–23,
25–30] for other phenomenological analysis of the U1 leptoquark 
in B physics).

Writing the interaction between the U1 field and SM fermions 
in the basis of (15) as [20]

LU1 = gU√
2

[
β iα

L (q̄ i
Lγμ�α

L ) + β iα
R (d̄ i

Rγμeα
R )

]
Uμ

1 + h.c. , (19)

the flavor symmetry hypothesis imply a parametric structure for 
β

jα
L and β iα

R identical to that of �̂iα
L and �̂iα

R in (16). Normalizing 
gU such that βbτ

L = 1, and integrating out the U1 field, leads to 
the following (tree-level) matching conditions for the parameters 
of LEFT

�
V 1
L = �

V 3
L = �L , C V ≡ C V 1 = C V 3 = g2

U v2

4M2
U

> 0 , (20)

and

C S

C V
= −2βR ,λs

q = βsτ
L ,λ

μ
� = β

bμ
L ,�

sμ
q� = β

sμ
L , (21)
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where v ≈ 246 GeV is the SM Higgs vev, {α, β} are lepton-flavor 
indices, and {i, j} are quark-flavor indices. The operators in the 
Warsaw basis [24] with a non-vanishing tree-level matrix element 
in semileptonic B decays are

O(1)
�q = (�̄α

L γ μ�
β
L )(q̄i

Lγμq j
L) ,

O(3)
�q = (�̄α

L γ μτ I�
β
L )(q̄i
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L) ,
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L γ μ�

β
L )(d̄i

Rγμd j
R) ,
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μq j
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L u j
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b,i
L σμνu j

R) ,

(11)

where τ I are the Pauli matrices and {a, b} are SU (2)L indices. Our 
main hypothesis is to reduce the number of C[i jαβ]

k retaining only 
those corresponding to U (2)5 invariant operators, up to the inser-
tion of one or two powers of the leading U (2)q × U (2)� spurions 
in (5).

A first strong simplification arises by neglecting subleading spu-
rions with non-trivial transformation properties under U (2)u,d,e . 
Since we are interested in processes of the type b → c(u)�ν̄ and 
b → s(d)��̄(′) , this implies that only the operators O(1)

�q , O(3)
�q , Oqe

and O�edq can yield a relevant contribution. Among those, Oqe can 
significantly contribute at tree-level only to b → sτ τ̄ transitions: 
since the latter are currently poorly constrained (see sect. 4.3), we 
do not consider this operator for simplicity. We are thus left with 
the following effective Lagrangian
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,
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where CV i ,S control the overall strength of the NP effects and 
�V i ,S are tensors that parametrize the flavor structure. They are 
normalized by setting �[3333]

V i ,S = 1, which is the only term surviv-

ing in the exact U (2)5 limit.
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)
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(
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. (14)

Here xq,�,q� are O (1) coefficients and we have neglected higher-
order terms in Vq,� (that would simply redefine such coefficients). 
Moving to the mass-eigenstate basis of down quarks and charged 
leptons, where

qi
L =
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di
L

)
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(

να
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)
, (15)
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d �R Re [see (9)], 
with the new matrices assuming the following explicit form in 3 ×
3 notation
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The (complex) parameters xbτ
q� , λi

q , λα
� , and �αi

q� are a combination 
of the spurions in (14) and the rotation terms from Ld,e , that sat-
isfy
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q = O (|Vq|) , λ

μ
� = O (|V�|) ,

xbτ
q� = O (1) , �

sμ
q� = O (λs

qλ
μ
� ) ,

λd
q

λs
q

= �dα
q�

�sα
q�

= V ∗
td

V ∗
ts

,
λe

�

λ
μ
�

= �ie
q�

�
iμ
q�

= se . (17)

On the r.h.s. of the first line of (16) we have neglected tiny terms 
suppressed by more than two powers of |Vq,�| or sd,e .

If we consider at most one power of Vq and one power of V� , 
then also �[i jαβ]

V i
factorizes into
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V i
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V i
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)α j × (�

V i
L )iβ , (18)

where �V 1
L and �V 3

L have the same structure as �L with, a pri-
ori, different O (1) coefficients for the spurions. Moving to the 
basis (15), �̂V i

L assumes the same structure as �̂L in (16), with pa-
rameters which can differ by O(1) overall factors, but that obey the 
same flavor ratios as in (17). Corrections to the factorized structure 
in (18) arises only to second order in Vq or V� , generating terms 
which are either irrelevant or can be reabsorbed in a redefinition 
of the observable parameters in the processes we are interested in 
(see sect. 4).

3.1. Matching to the U1 leptoquark case

The EFT in (12), with factorized flavor couplings as in (13) and 
(18), nicely matches the structure generated by integrating out a 
U1 vector leptoquark, transforming as (3, 1)2/3 under the SM gauge 
group. As noted first in [16], this field provides indeed an excel-
lent mediator to build in a natural, and sufficiently general way, 
an EFT for semileptonic B decays built on the U (2)5 flavor sym-
metry broken only by the leading Vq and V� spurions (see [20–23,
25–30] for other phenomenological analysis of the U1 leptoquark 
in B physics).

Writing the interaction between the U1 field and SM fermions 
in the basis of (15) as [20]

LU1 = gU√
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the flavor symmetry hypothesis imply a parametric structure for 
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L and β iα

R identical to that of �̂iα
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R in (16). Normalizing 
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L = 1, and integrating out the U1 field, leads to 
the following (tree-level) matching conditions for the parameters 
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where v ≈ 246 GeV is the SM Higgs vev, {α, β} are lepton-flavor 
indices, and {i, j} are quark-flavor indices. The operators in the 
Warsaw basis [24] with a non-vanishing tree-level matrix element 
in semileptonic B decays are

O(1)
�q = (�̄α
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(11)

where τ I are the Pauli matrices and {a, b} are SU (2)L indices. Our 
main hypothesis is to reduce the number of C[i jαβ]

k retaining only 
those corresponding to U (2)5 invariant operators, up to the inser-
tion of one or two powers of the leading U (2)q × U (2)� spurions 
in (5).

A first strong simplification arises by neglecting subleading spu-
rions with non-trivial transformation properties under U (2)u,d,e . 
Since we are interested in processes of the type b → c(u)�ν̄ and 
b → s(d)��̄(′) , this implies that only the operators O(1)

�q , O(3)
�q , Oqe

and O�edq can yield a relevant contribution. Among those, Oqe can 
significantly contribute at tree-level only to b → sτ τ̄ transitions: 
since the latter are currently poorly constrained (see sect. 4.3), we 
do not consider this operator for simplicity. We are thus left with 
the following effective Lagrangian
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where CV i ,S control the overall strength of the NP effects and 
�V i ,S are tensors that parametrize the flavor structure. They are 
normalized by setting �[3333]

V i ,S = 1, which is the only term surviv-
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Here xq,�,q� are O (1) coefficients and we have neglected higher-
order terms in Vq,� (that would simply redefine such coefficients). 
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leptons, where
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we have �L → �̂L ≡ L†
d �L Le and �R → �̂R ≡ R†
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with the new matrices assuming the following explicit form in 3 ×
3 notation
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of the spurions in (14) and the rotation terms from Ld,e , that sat-
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On the r.h.s. of the first line of (16) we have neglected tiny terms 
suppressed by more than two powers of |Vq,�| or sd,e .

If we consider at most one power of Vq and one power of V� , 
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in (18) arises only to second order in Vq or V� , generating terms 
which are either irrelevant or can be reabsorbed in a redefinition 
of the observable parameters in the processes we are interested in 
(see sect. 4).
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The EFT in (12), with factorized flavor couplings as in (13) and 
(18), nicely matches the structure generated by integrating out a 
U1 vector leptoquark, transforming as (3, 1)2/3 under the SM gauge 
group. As noted first in [16], this field provides indeed an excel-
lent mediator to build in a natural, and sufficiently general way, 
an EFT for semileptonic B decays built on the U (2)5 flavor sym-
metry broken only by the leading Vq and V� spurions (see [20–23,
25–30] for other phenomenological analysis of the U1 leptoquark 
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Theoretical framework

U(2)5 symmetry:

U(2)5 = U(2)q ⊗ U(2)u ⊗ U(2)d ⊗ U(2)` ⊗ U(2)e.

Quantum number (q, u, d, `, e):

q =

(
q12 ∼ (2, 1, 1, 1, 1)
q3 ∼ (1, 1, 1, 1, 1)

)
, u =

(
u12 ∼ (1, 2, 1, 1, 1)
u3 ∼ (1, 1, 1, 1, 1)

)
, d =

(
d12 ∼ (1, 1, 2, 1, 1)
d3 ∼ (1, 1, 1, 1, 1)

)

` =

(
`12 ∼ (1, 1, 1, 2, 1)
`3 ∼ (1, 1, 1, 1, 1)

)
, e =

(
e12 ∼ (1, 1, 1, 1, 2)
e3 ∼ (1, 1, 1, 1, 1)

)
,

Minimal spurions:

∆e ∼ (1, 1, 1, 2, 2̄) , ∆u ∼ (2, 2̄, 1, 1, 1) , ∆d ∼ (2, 1, 2̄, 1, 1) .

V` ∼ (1, 1, 1, 2, 1) , Vq ∼ (2, 1, 1, 1, 1)
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Yukawa interaction

(Q̄q, Q̄3)

(
Y 2×2
d Y 2×1

d
Y 1×2
d Y 33

d

)(
dq
d3

)
H

(
Y 2×2
d Y 2×1

d
Y 1×2
d Y 33

d

)
∼
(

2⊗ 2̄ 2⊗ 1
1⊗ 2̄ 1⊗ 1̄

)
(q ⊗ d)

Yukawa matrices:

Yu = |yt|
(
U †qO

ᵀ
u ∆̂u |Vq| |xt| eiφq ~n
0 1

)
, Yd = |yb|

(
U †q ∆̂d |Vq| |xb| eiφq ~n

0 1

)
,

Ye = |yτ |
(
Oᵀ
e ∆̂e |V`| |xτ |~n
0 1

)

I Diagonal positive 2× 2 matrices: ∆̂u,d,e, ~n = (0, 1)T , ∆̂1,2
d = εd,s, |Vq||xb| = εb

I Unitary Uq and Orthogonal Ou,e matrices:

Uq =

(
cd sd e

iαd

−sd e−iαd cd

)
, Ou =

(
cu su
−su cu

)
, Oe =

(
ce se
−se ce

)
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Diagonalization

Unitary transformations:

L†fYfRf = diag(Yf ) = Ŷf , withf = u, d, e,

Arbitrary phase:

Pu =



−eiφx 0 0

0 −eiφy 0
0 0 eiφz


 , Pd =



−eiφa 0 0

0 −eiφb 0
0 0 eiφc


 ,

P †fL
†
fYfRfPf = P †f ŶfPf = Ŷf

I L′f = LfPf , R′f = RfPf
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Results

General CKM:

VCKM =



cue

iαd−iθ+iφa−iφx sue
−iθ+iφb−iφx xbtλe

iφc−iφx

−sueiαd−iδ+iφa−iφy cue
−iδ+iφb−iφy xbtχe

iφc−iφy

−xbtsdeiφa−iφz −xbtcdeiφb−iφz eiφc−iφz


+O(ε2)

I ε = md/ms, εs ∼ εb ≈ O(ε), λeiθ = (cdsu + sdcue
iαd), χeiδ = (cdcu − sdsueiαd)

Matching with SM Wolfstein parameterization:
I φz = φb = φc, φx = φb − θ, φy = φb − δ, φa = φb − αd

VCKM =




cu su xbt(cusde
iαd + sucd)

−su cu xbt(cucd − susdeiαd)
−xbtsde−iαd −xbtcd 1


+O(ε2)

where xbt = εb − εt
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Matching with SM Wolfstein parameterization

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4),

V
U(2)

CKM =




cu su xbt(cusde
iαd + sucd)

−su cu xbt(cucd − susdeiαd)
−xbtsde−iαd −xbtcd 1


+O(ε2)

We set

sd ≈ O(λ), then xbt ≈ O(|V ts
CKM|) ≈ O(λ2)

λ = su, A = xbtcd
s2u

, ρ = 1 + xbtsd cosαd
xbtcdsu

, η = −xbtsd sinαd
xbtcdsu

We can get

−xbtsde−iαd = Aλ3(1− ρ− iη) = V td
CKM

|sd| = |V td
CKMcd/Aλ

2|, e−iαd = (V td
CKM/V

ts
CKM)(cd/sd)
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Matching with SM Wolfstein parameterization

Use power counting for λ:

VCKM =




cu su xbt(cusde
iαd + sucd)

−su cu xbt(cucd − susdeiαd)
−xbtsde−iαd −xbtcd 1


+O(ε2)

=




1− λ2/2 λ V ub
CKM

−λ 1− λ2/2 V cb
CKM

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4),

V ub
CKM =(Aλ3 + xbtsd cosαd) + ixbtsd sinαd +O(λ4)

=Aλ3(ρ− iη) +O(λ4)

V cb
CKM =Aλ2 +O(λ4)
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Comparison with the literature (O(ε))

Ld =




cd −sd eiαd 0
sd e
−iαd cd εbε

−sdεbεe−i(φq+αd) −cdεbεe−iφq e−iφq




Rd =

(
1 0 0
0 1 0
0 0 e−iφq

)

Ru =

(
1 0 0
0 1 0
0 0 e−iφq

)

Ld =




cd −sd eiαd 0
sd e
−iαd cd sb

−sd sb e−i(αd+φq) −cd sb e−iφq e−iφq




Rd =




1 0 0
0 1 ms

mb
sb

0 −msmb sb e
−iφq e−iφq




Ru =




1 0 0
0 1 mc

mt
st

0 −mcmt st e
−iφq e−iφq




D. A. Faroughy, G. Isidori, F. Wilsch and K. Yamamoto,

2005.05366
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Comparison with the literature (O(ε))

Ld =




cd −sd eiαd 0
sd e
−iαd cd εbε

−sdεbεe−i(φq+αd) −cdεbεe−iφq e−iφq




Rd =

(
1 0 0
0 1 εsεbcd
0 −εsεbcde−iφq e−iφq

)

Ru =

(1 0 0
0 1 χεcεtε

2eiδ

0 −χεcεtε2e−i(φq+δ) e−iφq

)

Ld =




cd −sd eiαd 0
sd e
−iαd cd sb

−sd sb e−i(αd+φq) −cd sb e−iφq e−iφq




Rd =




1 0 0
0 1 ms

mb
sb

0 −msmb sb e
−iφq e−iφq




Ru =




1 0 0
0 1 mc

mt
st

0 −mcmt st e
−iφq e−iφq




D. A. Faroughy, G. Isidori, F. Wilsch and K. Yamamoto,

2005.05366
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SMEFT

Semileptonic and leptonic decays at tree-level:

Q(1)
lq =(l̄pγµlr)(q̄sγ

µqt), Q(3)
lq =(l̄pγµτ

I lr)(q̄sγ
µτ Iqt),

Qld =(l̄pγµlr)(d̄sγ
µdt), Qqe =(q̄pγ

µqr)(ēsγ
µet),

Qed =(ēpγµer)(d̄sγ
µdt), Qledq =(l̄jper)(d̄sq

j
t ),

Q(1)
lequ =(l̄jper)εik(q̄

k
sut), Q(3)

lequ =(l̄jpσµνer)εik(q̄
k
sσ

µνut),

Quark and lepton bilinear:

Γqq q̄γ
µq, Γddd̄γ

µd, Γdqd̄q, Γquq̄u, Γquq̄σ
µu,

Γll l̄γµl, Γeeēγµe, Γle l̄e, Γle l̄σµνe,
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Power-counting of spurions

∆e ∼ (1, 1, 1, 2, 2̄) , ∆u ∼ (2, 2̄, 1, 1, 1) , ∆d ∼ (2, 1, 2̄, 1, 1) ,

V` ∼ (1, 1, 1, 2, 1) , Vq ∼ (2, 1, 1, 1, 1)

Leff = CS(l̄jpd̄s)Λpstr(q
j
t er) + · · ·

Λpstr =A{V †n
′
q

q , V
nq
q , V

†n′l
l , V nl

l ,∆
†n′d
d ,∆nd

d ,∆
†n′u
u ,∆nu

u ,∆†n
′
e

e ,∆ne
e }

∼ (f(nq + nd + nu − n′q − n′d − n′u), f(n′u − nu), f(n′d − nd),
f(nl + ne − n′l − n′e), f(n′e − ne))

quantum-number function: f(−1) = 2̄, f(0) = 1, and f(1) = 2.
fermion-generation variables: Q, D, L, E = 1 (first two generations) or 0 (the 3rd
one).

nq + nd − n′q − n′d = −Q, nl + ne − n′l − n′e = L,

n′d − nd = D, n′u − nu = 0 n′e − ne = −E.
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Wilson coefficients

[Λ
(1)
lq ]prst ∼ [Λ

(3)
`q ]prst =

(
al xlVl

x∗l V
†
l a′l

)

pr

×
(

aq xqVq
x∗qV

†
q a′q

)

st

,

[Λld]prst =

(
al xlVl

x∗l V
†
l a′l

)

pr

×
(

ad ∆†dxdqVq
V †q x

†
dq∆d a′d

)

st

,

[Λqe]prst =

(
aq xqVq
x∗qV

†
q a′q

)

pr

×
(

ae ∆†exelVl
V †l x

†
el∆e a′e

)

st

,

[Λed]prst =

(
ae ∆†exelVl

V †l x
†
el∆e a′e

)

pr

×
(

ad ∆†dxdqVq
V †q x

†
dq∆d a′d

)

st

,

[Λledq]prst =

(
xe∆e xlVl

V †l x
†
el∆e x′e

)

pr

×
(
xd∆

†
d ∆†dxdqVq

xqV
†
q x′d

)

st

,

[Λ
(1)
lequ]prst ∼ [Λ

(3)
lequ]prst =

(
xe∆e xlVl

V †l x
†
el∆e x′e

)

pr

×
(

xu∆u xqVq
V †q x

†
uq∆u x′u

)

st

.
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Rotating to the mass basis
Q(1)
lq = (l̄pγµlr)(q̄sγ

µqt):

Γ̂ee =

(
al − s2ek′lτ ε2τ −cesek′lτ ε2τ seklτ ετ
−cesek′lτ ε2τ al − c2ek′lτ ε2τ ceklτ ετ
seklτ ετ ceklτ ετ a′l + k′lτ ε

2
τ

)
,

Γ̂dd =




aq − s2dk′qbε2b −cdsdk′qbK∗dsε2b sdkqbK
∗
dsεb

−cdsdk′qbKdsε
2
b aq − c2dk′qbε2b cdkqbεb

sdkqbKdsεb cdkqbεb a′q + k′qbε
2
b


 ,

Γ̂νν =

(al 0 0
0 al

xl
xτ
ετ

0 xl
xτ
ετ a′l

)
,

Γ̂uu =




aq − λ2εt( 2xqεb
xb

+ xqqεt) −λχe−i(δ−θ)εt( 2xqεb
xb

+ xqqεt) λeiθ(
xqεb
xb

+ xqqεt)

−λχei(δ−θ)εt( 2xqεb
xb

+ xqqεt) aq − χ2εt(
2xqεb
xb

+ xqqεt) χeiδ(
xqεb
xb

+ xqqεt)

λe−iθ(
xqεb
xb

+ xqqεt) χe−iδ(
xqεb
xb

+ xqqεt) a′q + εt(
2xqεb
xb

+ xqqεt)


 ,

where klτ = al − a′l + xl
xτ

, k′lτ = al − a′l + 2xl
xτ

, kqb = aq − a′q +
xq
xb

, k′qb = aq − a′q +
2xq
xb

, xqq = aq − a′q.
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Rotating to the mass basis
Qledq = (l̄jper)(d̄sq

j
t ):

Γ̂eLe =



xeεe 0 −kµτseετ

0 xeεµ −kµτ ceετ
0 (xe − k′µτ )ceεµετ x′e + (−kµτ +

x′
e

2 )ε2τ


 ,

(Γ̂ddL)† =



xdεd 0 −ksbK∗dscdεb

0 xdεs −ksbcdεb
0 (xd − k′sb)cdεsεb x′d + (−ksb +

x′
d

2 )ε2b


 ,

Γ̂νe =

(
xeceεe −xeseεµ 0
xeseεe xeceεµ

xl
xτ
ετ

0 −k′µτ ceεµετ x′e

)
,

(Γ̂duL)† =



xdcuεd xdsuεs cd(su + cuK

∗
ds)(

xq
xb
εb − x′dεt)

−xdsuεd xdcuεs cd(cu − suK∗ds)(
xq
xb
εb − x′dεt)

0 −cdk′sbεbεs + xdcdεtεs x′d +
xq
xb
εbεs − x′

d

2 ε
2
t


 ,

where Kds = Vtd/Vts, kµτ = x′e − xl
xτ

, ksb = x′d −
xq
xb

, k′µτ = x′e − xel
xτ

, k′sb = x′d −
xdq
xb

.
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Numerical discussions

Parameters of C
(1)
lq constrained by the leptonic processes of b→ d`+`− (upper) and the b→ s`+`− (lower).
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Numerical discussions

Parameters of Cledq constrained by the leptonic processes of b→ sτ+τ− process (left) and b→ uτν (right).
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Conclusions

In the U(2)5 flavor symmetry framework, we obtain the following analytical results with
strict power counting:

the CKM of U(2)5 matching with Standard model.

the flavour structures in Wilson coefficients of semileptonic and leptonic B decays.

Then some numerical calculations are also performed.

Thank you !!
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