

Revisiting semileptonic and leptonic B decays via $U(2)^5$ flavor symmetry:

SMEFT meets SM

Speaker: Min-Di Zheng (郑旻笛)

M.-C. Gao, X.-Q. Li, Y.-F. Wang, Y.-D. Yang, X.-B. Yuan, and M.-D. Zheng HFCPV2025, Beijing

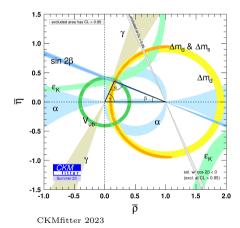
Min-Di Zheng (SRNU) HFCPV 2025 1/21

Outlines

- Motivation
- $U(2)^5$ flavor symmetry
- Matching with CKM in SM
- Flavor structures in SMEFT
- Numerical discussions and conclusions

Min-Di Zheng (SRNU)

$U(2)^5$ flavor symmetry



$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

"the success of the CKM picture be due to the existence of a suitable flavour symmetry appropriately broken in some definite direction, thus allowing a scale of new flavour physics phenomena sufficiently near to the Fermi scale to leave room for relatively small but nevertheless observable deviations from the SM in the flavour sector."

 $U(2)_q \otimes U(2)_u \otimes U(2)_d$: act on the first two generations of quarks $U(2)_{\ell} \otimes U(2)_{e}$: act the first two generations of leptons

A. Pomarol and D. Tommasini, hep-ph/9507462

R. Barbieri, G. R. Dvali and L. J. Hall, hep-ph/9512388

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & s_u s e^{-i\delta} \\ -\lambda & 1 - \lambda^2/2 & c_u s \\ -s_d s e^{i(\delta + \alpha_u - \alpha_d)} & -s c_d & 1 \end{pmatrix}$$

R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D. M. Straub, 1105,2296

.....

M. Bordone, C. Cornella, J. Fuentes-Martín and G. Isidori, 1805.09328

(In-Di Zheng (SRNU) HFCPV 2025 3/21

Plenty of literature on $U(2)^5$

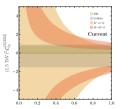
New physics in the third generation. A comprehensive SMEFT analysis and future prospects

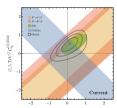
Lukas Allwicher.^a Claudia Cornella.^b Gino Isidori^a and Ben A. Stefanek ©c

- ^aPhysik-Institut, Universität Zürich,
- CH-8057 Zürich, Switzerland
- ^bPRISMA⁺ Cluster of Excellence & MITP, Johannes Gutenberg University,
- Mainz, Germany
- ^cPhysics Department, King's College London,
- Strand. London. WC2R 2LS. U.K.

E-mail: lukas.allwicher@physik.uzh.ch, claudia.cornella@uni-mainz.de, isidori@physik.uzh.ch, benjamin.stefanek@kcl.ac.uk

Abstract: We present a comprehensive analysis of electroweak, flavor, and collider bounds on the complete set of dimension-six SMEFT operators in the U(2)⁵-symmetric limit. This





L. Allwicher, C. Cornella, G. Isidori and B. A. Stefanek, 2311,00020

Correlating e'/e with hadronic B decays via $U(2)^3$ flavor symmetry

Andreas Crivellino, 1.2 Christian Grosso, 3.4 Stefan Pokorskio, 5 and Leonardo Vernazza

1 Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

² Physik-Institut, Universität Z\(\text{Urich}\), Winterthurerstrasse 190, CH-8057 Z\(\text{Urich}\), Switzerland
³ Dipartimento di Fisica dell'Universit\(\text{d}\) i Pisa and Istituto nazionale di fisica nucleare, Sezione di Pisa. Pisa Italy

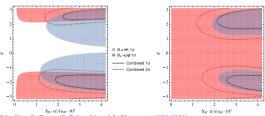
⁴Theoretical Physics Department, European Organization for Nuclear Research, 1211 Geneve 23, Switzerland

SInstitute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland

⁶Nikhef, Science Park 105, NL-1098 XG Amsterdam, Netherlands

(Received 19 September 2019; published 28 January 2020)

There are strong similarities between charge-parity (CP) violating observables in hadronic B decays (in particular ΔA_{CP}^{-} in $B \leftarrow K\pi$) and direct CP violation in kaon decays (e'): All these observables are very sensitive to new physics (NP) which is at the same time CP and isospin violating (i.e., NP with complex couplings which are different for up quarks and down quarks). Intriguingly, both the measurements of e'



A. Crivellin, C. Gross, S. Pokorski and L. Vernazza, 1909.02101

Some issues need further research!

$$\begin{split} L_d &\approx \begin{pmatrix} c_d & -s_d \, e^{i\alpha_d} & 0 \\ s_d \, e^{-i\alpha_d} & c_d & s_b \\ -s_d \, s_b \, e^{-i(\alpha_d + \phi_q)} & -c_d \, s_b \, e^{-i\phi_q} & e^{-i\phi_q} \end{pmatrix}, \\ R_d &\approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{m_s}{m_b} \, s_b \\ 0 & -\frac{m_s}{m_b} \, s_b \, e^{-i\phi_q} & e^{-i\phi_q} \end{pmatrix}, \\ R_u &\approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{m_c}{m_t} \, s_t \\ 0 & -\frac{m_c}{m_t} \, s_t \, e^{-i\phi_q} & e^{-i\phi_q} \end{pmatrix}, \\ L_e &\approx \begin{pmatrix} c_e & -s_e & 0 \\ s_e & c_e & s_\tau \\ -s_e s_\tau & -c_e s_\tau & 1 \end{pmatrix}, \\ R_e &\approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{m_\mu}{m_\tau} \, s_\tau \\ 0 & -\frac{m_\mu}{m_\tau} \, s_\tau & 1 \end{pmatrix}, \end{split}$$

 $\mathcal{O}_{ledg} = (\bar{l}_{\alpha} e_{\beta})(\bar{d}_{i} q_{i})$ $\Lambda_c^{[ij\alpha\beta]} = (\Gamma_L^{\dagger})^{\alpha j} \times \Gamma_R^{i\beta}$, where, in the interaction basis $\Gamma_L^{i\alpha} = \begin{pmatrix} x_{q\ell} V_q^i (V_\ell^\alpha)^* & x_q V_q^i \\ x_\ell (V_\alpha^\alpha)^* & 1 \end{pmatrix}, \quad \Gamma_R = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$ $\hat{\Gamma}_L = e^{i\phi_q} egin{pmatrix} \Delta_{q\ell}^{de} & \Delta_{q\ell}^{d\mu} & \lambda_q^d \ \Delta_{q\ell}^{se} & \Delta_{q\ell}^{s\mu} & \lambda_q^s \ e^s & \mu & hr \end{bmatrix} pprox e^{i\phi_q} egin{pmatrix} 0 & 0 & \lambda_q^d \ 0 & \Delta_{q\ell}^{s\mu} & \lambda_q^s \ 0 & \Delta_{q\ell}^{s\mu} & \lambda_q^s \ \end{pmatrix},$ $\hat{\Gamma}_R pprox e^{i\phi_q} \left(egin{matrix} 0 & 0 & 0 \ 0 & 0 & -rac{m_s}{m_b} \, s_b \ & \cdots \end{array}
ight) \, .$
$$\begin{split} \lambda_q^s &= O(|V_q|)\,, & \lambda_\ell^\mu &= O(|V_\ell|)\,, \\ x_{q\ell}^{b\tau} &= O(1)\,, & \Delta_{q\ell}^{s\mu} &= O(\lambda_q^s \lambda_\ell^\mu)\,, \end{split}$$
 $\frac{\lambda_q^d}{\lambda_s^s} = \frac{\Delta_{q\ell}^{d\alpha}}{\Delta_s^{s\alpha}} = \frac{V_{td}^*}{V^*}, \qquad \frac{\lambda_\ell^e}{\lambda_l^{\mu}} = \frac{\Delta_{q\ell}^{ie}}{\lambda_l^{i\mu}} = s_e.$

with $V_{CKM} = L_u^{\dagger} L_d$.

Theoretical framework

• $U(2)^5$ symmetry:

$$U(2)^5 = U(2)_q \otimes U(2)_u \otimes U(2)_d \otimes U(2)_\ell \otimes U(2)_e.$$

• Quantum number (q, u, d, ℓ, e) :

$$q = \begin{pmatrix} q_{12} \sim (2, 1, 1, 1, 1) \\ q_{3} \sim (1, 1, 1, 1, 1) \end{pmatrix}, \quad u = \begin{pmatrix} u_{12} \sim (1, 2, 1, 1, 1) \\ u_{3} \sim (1, 1, 1, 1, 1) \end{pmatrix}, \quad d = \begin{pmatrix} d_{12} \sim (1, 1, 2, 1, 1) \\ d_{3} \sim (1, 1, 1, 1, 1) \end{pmatrix}, \quad e = \begin{pmatrix} \ell_{12} \sim (1, 1, 1, 1, 1, 1) \\ \ell_{3} \sim (1, 1, 1, 1, 1, 1) \end{pmatrix},$$

• Minimal spurions:

$$\Delta_e \sim (1, 1, 1, 2, \bar{2}) , \qquad \Delta_u \sim (2, \bar{2}, 1, 1, 1) , \qquad \Delta_d \sim (2, 1, \bar{2}, 1, 1) .$$

$$V_\ell \sim (1, 1, 1, 2, 1) , \qquad V_q \sim (2, 1, 1, 1, 1)$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● のQで

Yukawa interaction

• Yukawa matrices:

$$\begin{split} Y_u &= |y_t| \begin{pmatrix} U_q^\dagger O_u^\intercal \, \hat{\Delta}_u & |V_q| \, |x_t| \, e^{i\phi_q} \, \vec{n} \\ 0 & 1 \end{pmatrix}, \qquad Y_d = |y_b| \begin{pmatrix} U_q^\dagger \hat{\Delta}_d & |V_q| \, |x_b| \, e^{i\phi_q} \, \vec{n} \\ 0 & 1 \end{pmatrix}, \\ Y_e &= |y_\tau| \begin{pmatrix} O_e^\intercal \, \hat{\Delta}_e & |V_\ell| \, |x_\tau| \, \vec{n} \\ 0 & 1 \end{pmatrix} \end{split}$$

- ▶ Diagonal positive 2×2 matrices: $\hat{\Delta}_{u,d,e}$, $\vec{n} = (0,1)^T$, $\hat{\Delta}_d^{1,2} = \epsilon_{d,s}$, $|V_q||x_b| = \epsilon_b$
- Unitary U_q and Orthogonal $O_{u,e}$ matrices:

$$U_q = \begin{pmatrix} c_d & s_d e^{i\alpha_d} \\ -s_d e^{-i\alpha_d} & c_d \end{pmatrix}, \qquad O_u = \begin{pmatrix} c_u & s_u \\ -s_u & c_u \end{pmatrix}, \qquad O_e = \begin{pmatrix} c_e & s_e \\ -s_e & c_e \end{pmatrix}$$

Diagonalization

• Unitary transformations:

$$L_f^{\dagger} Y_f R_f = \operatorname{diag}(Y_f) = \hat{Y}_f, \quad \text{with } f = u, d, e,$$

• Arbitrary phase:

$$P_u = \begin{pmatrix} -e^{i\phi_x} & 0 & 0 \\ 0 & -e^{i\phi_y} & 0 \\ 0 & 0 & e^{i\phi_z} \end{pmatrix}, \qquad P_d = \begin{pmatrix} -e^{i\phi_a} & 0 & 0 \\ 0 & -e^{i\phi_b} & 0 \\ 0 & 0 & e^{i\phi_c} \end{pmatrix},$$

$$P_f^{\dagger} L_f^{\dagger} Y_f R_f P_f = P_f^{\dagger} \hat{Y}_f P_f = \hat{Y}_f$$

$$L_f' = L_f P_f, \qquad R_f' = R_f P_f$$

Results

• General CKM:

$$V_{\text{CKM}} = \begin{pmatrix} c_u e^{i\alpha_d - i\theta + i\phi_a - i\phi_x} & s_u e^{-i\theta + i\phi_b - i\phi_x} & x_{bt} \lambda e^{i\phi_c - i\phi_x} \\ -s_u e^{i\alpha_d - i\delta + i\phi_a - i\phi_y} & c_u e^{-i\delta + i\phi_b - i\phi_y} & x_{bt} \chi e^{i\phi_c - i\phi_y} \\ -x_{bt} s_d e^{i\phi_a - i\phi_z} & -x_{bt} c_d e^{i\phi_b - i\phi_z} & e^{i\phi_c - i\phi_z} \end{pmatrix} + \mathcal{O}(\epsilon^2)$$

- $\bullet \epsilon = m_d/m_s, \quad \epsilon_s \sim \epsilon_b \approx \mathcal{O}(\epsilon), \quad \lambda e^{i\theta} = (c_d s_u + s_d c_u e^{i\alpha_d}), \quad \chi e^{i\delta} = (c_d c_u s_d s_u e^{i\alpha_d})$
- Matching with SM Wolfstein parameterization:

$$V_{\text{CKM}} = \begin{pmatrix} c_u & s_u & x_{bt}(c_u s_d e^{i\alpha_d} + s_u c_d) \\ -s_u & c_u & x_{bt}(c_u c_d - s_u s_d e^{i\alpha_d}) \\ -x_{bt} s_d e^{-i\alpha_d} & -x_{bt} c_d & 1 \end{pmatrix} + \mathcal{O}(\epsilon^2)$$

where $x_{bt} = \epsilon_b - \epsilon_t$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 990

Matching with SM Wolfstein parameterization

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4),$$

$$V_{\text{CKM}}^{\text{U(2)}} = \begin{pmatrix} c_u & s_u & x_{bt}(c_u s_d e^{i\alpha_d} + s_u c_d) \\ -s_u & c_u & x_{bt}(c_u c_d - s_u s_d e^{i\alpha_d}) \\ -x_{bt} s_d e^{-i\alpha_d} & -x_{bt} c_d & 1 \end{pmatrix} + \mathcal{O}(\epsilon^2)$$

We set

•
$$s_d \approx \mathcal{O}(\lambda)$$
, then $x_{bt} \approx \mathcal{O}(|V_{\text{CKM}}^{ts}|) \approx \mathcal{O}(\lambda^2)$

•
$$\lambda = s_u$$
, $A = \frac{x_{bt}c_d}{s_u^2}$, $\rho = 1 + \frac{x_{bt}s_d\cos\alpha_d}{x_{bt}c_ds_u}$, $\eta = -\frac{x_{bt}s_d\sin\alpha_d}{x_{bt}c_ds_u}$

We can get

•
$$-x_{bt}s_de^{-i\alpha_d} = A\lambda^3(1-\rho-i\eta) = V_{\text{CKM}}^{td}$$

•
$$|s_d| = |V_{\text{CKM}}^{td} c_d / A \lambda^2|$$
, $e^{-i\alpha_d} = (V_{\text{CKM}}^{td} / V_{\text{CKM}}^{ts})(c_d / s_d)$

1011012121212

Matching with SM Wolfstein parameterization

Use power counting for λ :

$$V_{\text{CKM}} = \begin{pmatrix} c_u & s_u & x_{bt}(c_u s_d e^{i\alpha_d} + s_u c_d) \\ -s_u & c_u & x_{bt}(c_u c_d - s_u s_d e^{i\alpha_d}) \\ -x_{bt} s_d e^{-i\alpha_d} & -x_{bt} c_d & 1 \end{pmatrix} + \mathcal{O}(\epsilon^2)$$

$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & V_{\text{CKM}}^{ub} \\ -\lambda & 1 - \lambda^2/2 & V_{\text{CKM}}^{cb} \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4),$$

$$V_{\text{CKM}}^{ub} = (A\lambda^3 + x_{bt} s_d \cos \alpha_d) + ix_{bt} s_d \sin \alpha_d + \mathcal{O}(\lambda^4)$$

$$= A\lambda^3 (\rho - i\eta) + \mathcal{O}(\lambda^4)$$

$$V_{\text{CKM}}^{cb} = A\lambda^2 + \mathcal{O}(\lambda^4)$$

Min-Di Zheng (SRNU)

Comparison with the literature $(\mathcal{O}(\epsilon))$

$$L_{d} = \begin{pmatrix} c_{d} & -s_{d} e^{i\alpha_{d}} & 0 \\ s_{d} e^{-i\alpha_{d}} & c_{d} & \epsilon_{b} \epsilon \\ -s_{d} \epsilon_{b} \epsilon e^{-i(\phi_{q} + \alpha_{d})} & -c_{d} \epsilon_{b} \epsilon e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{d} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{m_{s}}{m_{b}} s_{b} \\ 0 & -\frac{m_{s}}{m_{b}} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{m_{c}}{m_{c}} s_{t} \\ 0 & -\frac{m_{c}}{m_{t}} s_{t} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$L_{d} = \begin{pmatrix} c_{d} & -s_{d} e^{i\alpha_{d}} & 0\\ s_{d} e^{-i\alpha_{d}} & c_{d} & s_{b}\\ -s_{d} s_{b} e^{-i(\alpha_{d} + \phi_{q})} & -c_{d} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{d} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \frac{m_{s}}{m_{b}} s_{b}\\ 0 & -\frac{m_{s}}{m_{b}} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \frac{m_{c}}{m_{t}} s_{t}\\ 0 & -\frac{m_{c}}{m_{t}} s_{t} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

D. A. Faroughy, G. Isidori, F. Wilsch and K. Yamamoto, 2005.05366

Min-Di Zheng (SRNU) HFCPV 2025 12 / 21

Comparison with the literature $(\mathcal{O}(\epsilon))$

$$L_{d} = \begin{pmatrix} c_{d} & -s_{d} e^{i\alpha_{d}} & 0 \\ s_{d} e^{-i\alpha_{d}} & c_{d} & \epsilon_{b} \epsilon \\ -s_{d} \epsilon_{b} \epsilon e^{-i(\phi_{q} + \alpha_{d})} & -c_{d} \epsilon_{b} \epsilon e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{d} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \epsilon_{s} \epsilon_{b} c_{d} \\ 0 & -\epsilon_{s} \epsilon_{b} c_{d} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{m_{s}}{m_{b}} s_{b} \\ 0 & -\chi \epsilon_{c} \epsilon_{t} \epsilon^{2} e^{-i(\phi_{q} + \delta)} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{m_{s}}{m_{b}} s_{b} \\ 0 & -\frac{m_{s}}{m_{b}} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{m_{c}}{m_{t}} s_{t} \\ 0 & -\frac{m_{c}}{m_{t}} s_{t} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$L_{d} = \begin{pmatrix} c_{d} & -s_{d} e^{i\alpha_{d}} & 0\\ s_{d} e^{-i\alpha_{d}} & c_{d} & s_{b}\\ -s_{d} s_{b} e^{-i(\alpha_{d} + \phi_{q})} & -c_{d} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{d} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \frac{m_{s}}{m_{b}} s_{b}\\ 0 & -\frac{m_{s}}{m_{b}} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$R_{u} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \frac{m_{c}}{m_{t}} s_{t}\\ 0 & -\frac{m_{c}}{m_{t}} s_{t} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

D. A. Faroughy, G. Isidori, F. Wilsch and K. Yamamoto, 2005.05366

Min-Di Zheng (SRNU) HFCPV 2025 13 / 21

SMEFT

• Semileptonic and leptonic decays at tree-level:

$$\begin{split} \mathcal{Q}_{lq}^{(1)} = & (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t), & \qquad \mathcal{Q}_{lq}^{(3)} = (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t), \\ \mathcal{Q}_{ld} = & (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t), & \qquad \mathcal{Q}_{qe} = & (\bar{q}_p \gamma^\mu q_r) (\bar{e}_s \gamma^\mu e_t), \\ \mathcal{Q}_{ed} = & (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t), & \qquad \mathcal{Q}_{ledq} = & (\bar{l}_p^j e_r) (\bar{d}_s q_t^j), \\ \mathcal{Q}_{lequ}^{(1)} = & (\bar{l}_p^j e_r) \varepsilon_{ik} (\bar{q}_s^k u_t), & \qquad \mathcal{Q}_{lequ}^{(3)} = & (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{ik} (\bar{q}_s^k \sigma^{\mu\nu} u_t), \end{split}$$

• Quark and lepton bilinear:

$$\Gamma_{qq}\bar{q}\gamma^{\mu}q, \qquad \Gamma_{dd}\bar{d}\gamma^{\mu}d, \qquad \Gamma_{dq}\bar{d}q, \qquad \Gamma_{qu}\bar{q}u, \qquad \Gamma_{qu}\bar{q}\sigma^{\mu}u,$$

$$\Gamma_{ll}\bar{l}\gamma_{\mu}l, \qquad \Gamma_{ee}\bar{e}\gamma_{\mu}e, \qquad \Gamma_{le}\bar{l}e, \qquad \Gamma_{le}\bar{l}\sigma_{\mu\nu}e,$$

Min-Di Zheng (SRNU)

Power-counting of spurions

$$\Delta_e \sim (1, 1, 1, 2, \bar{2}) , \qquad \Delta_u \sim (2, \bar{2}, 1, 1, 1) , \qquad \Delta_d \sim (2, 1, \bar{2}, 1, 1) ,$$

$$V_\ell \sim (1, 1, 1, 2, 1) , \qquad V_q \sim (2, 1, 1, 1, 1)$$

$$\mathcal{L}_{\text{eff}} = C_S(\bar{l}_p^j \bar{d}_s) \Lambda_{pstr}(q_t^j e_r) + \cdots$$

$$\Lambda_{pstr} = A\{V_q^{\dagger n'_q}, V_q^{n_q}, V_l^{\dagger n'_l}, V_l^{n_l}, \Delta_d^{\dagger n'_d}, \Delta_d^{n_d}, \Delta_u^{n_d}, \Delta_u^{\dagger n'_u}, \Delta_u^{n_u}, \Delta_e^{\dagger n'_e}, \Delta_e^{n_e}\}$$

$$\sim (f(n_q + n_d + n_u - n'_q - n'_d - n'_u), f(n'_u - n_u), f(n'_d - n_d),$$

$$f(n_l + n_e - n'_l - n'_e), f(n'_e - n_e))$$

- quantum-number function: $f(-1) = \overline{2}$, f(0) = 1, and f(1) = 2.
- fermion-generation variables: Q, D, L, E = 1 (first two generations) or 0 (the 3rd one).

$$n_q + n_d - n'_q - n'_d = -Q,$$
 $n_l + n_e - n'_l - n'_e = L,$ $n'_d - n_d = D,$ $n'_u - n_u = 0$ $n'_e - n_e = -E,$

15/21

Min-Di Zheng (SRNU) HFCPV 2025

Wilson coefficients

$$\begin{split} & [\Lambda_{lq}^{(1)}]_{prst} \sim [\Lambda_{\ell q}^{(3)}]_{prst} = \begin{pmatrix} a_l & x_l V_l \\ x_l^* V_l^\dagger & a_l' \end{pmatrix}_{pr} \times \begin{pmatrix} a_q & x_q V_q \\ x_q^* V_q^\dagger & a_q' \end{pmatrix}_{st}, \\ & [\Lambda_{ld}]_{prst} = \begin{pmatrix} a_l & x_l V_l \\ x_l^* V_l^\dagger & a_l' \end{pmatrix}_{pr} \times \begin{pmatrix} a_d & \Delta_d^\dagger x_{dq} V_q \\ V_q^\dagger x_{dq}^\dagger \Delta_d & a_d' \end{pmatrix}_{st}, \\ & [\Lambda_{qe}]_{prst} = \begin{pmatrix} a_q & x_q V_q \\ x_q^* V_q^\dagger & a_q' \end{pmatrix}_{pr} \times \begin{pmatrix} a_e & \Delta_e^\dagger x_{el} V_l \\ V_l^\dagger x_{el}^\dagger \Delta_e & a_e' \end{pmatrix}_{st}, \\ & [\Lambda_{ed}]_{prst} = \begin{pmatrix} a_e & \Delta_e^\dagger x_{el} V_l \\ V_l^\dagger x_{el}^\dagger \Delta_e & a_e' \end{pmatrix}_{pr} \times \begin{pmatrix} a_d & \Delta_d^\dagger x_{dq} V_q \\ V_q^\dagger x_{dq}^\dagger \Delta_d & a_d' \end{pmatrix}_{st}, \\ & [\Lambda_{ledq}]_{prst} = \begin{pmatrix} x_e \Delta_e & x_l V_l \\ V_l^\dagger x_{el}^\dagger \Delta_e & x_e' \end{pmatrix}_{pr} \times \begin{pmatrix} x_d \Delta_d^\dagger & \Delta_d^\dagger x_{dq} V_q \\ x_q V_q^\dagger & x_d' \end{pmatrix}_{st}, \\ & [\Lambda_{lequ}]_{prst} \sim [\Lambda_{lequ}^{(3)}]_{prst} = \begin{pmatrix} x_e \Delta_e & x_l V_l \\ V_l^\dagger x_{el}^\dagger \Delta_e & x_e' \end{pmatrix}_{pr} \times \begin{pmatrix} x_u \Delta_u & x_q V_q \\ V_q^\dagger x_{ud}^\dagger \Delta_u & x_u' \end{pmatrix}_{st}. \end{split}$$

↓□▶ ↓□▶ ↓ □▶ ↓ □ ▶

Rotating to the mass basis

$$\mathcal{Q}_{lq}^{(1)} = (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t):$$

$$\begin{split} \hat{\Gamma}^{ee} &= \begin{pmatrix} a_l - s_e^2 k_{l\tau}' \epsilon_\tau^2 & -c_e s_e k_{l\tau}' \epsilon_\tau^2 & s_e k_{l\tau} \epsilon_\tau \\ -c_e s_e k_{l\tau}' \epsilon_\tau^2 & a_l - c_e^2 k_{l\tau}' \epsilon_\tau^2 & c_e k_{l\tau} \epsilon_\tau \\ s_e k_{l\tau} \epsilon_\tau & c_e k_{l\tau} \epsilon_\tau & a_l' + k_{l\tau}' \epsilon_\tau^2 \end{pmatrix}, \\ \hat{\Gamma}^{dd} &= \begin{pmatrix} a_q - s_d^2 k_{qb}' \epsilon_b^2 & -c_d s_d k_{qb}' K_{ds}^* \epsilon_b^2 & s_d k_{qb} K_{ds}^* \epsilon_b \\ -c_d s_d k_{qb}' K_{ds} \epsilon_b^2 & a_q - c_d^2 k_{qb}' \epsilon_b^2 & c_d k_{qb} \epsilon_b \\ s_d k_{qb} K_{ds} \epsilon_b & c_d k_{qb} \epsilon_b & a_q' + k_{qb}' \epsilon_b^2 \end{pmatrix}, \\ \hat{\Gamma}^{\nu\nu} &= \begin{pmatrix} a_l & 0 & 0 \\ 0 & a_l & \frac{x_l}{x_\tau} \epsilon_\tau \\ 0 & \frac{x_l}{x_\tau} \epsilon_\tau & a_l' \end{pmatrix}, \\ \hat{\Gamma}^{uu} &= \begin{pmatrix} a_q - \lambda^2 \epsilon_t (\frac{2x_q \epsilon_b}{x_b} + x_{qq} \epsilon_t) & -\lambda \chi e^{-i(\delta-\theta)} \epsilon_t (\frac{2x_q \epsilon_b}{x_b} + x_{qq} \epsilon_t) & \lambda e^{i\theta} (\frac{x_q \epsilon_b}{x_b} + x_{qq} \epsilon_t) \\ -\lambda \chi e^{i(\delta-\theta)} \epsilon_t (\frac{2x_q \epsilon_b}{x_b} + x_{qq} \epsilon_t) & a_q - \chi^2 \epsilon_t (\frac{2x_q \epsilon_b}{x_b} + x_{qq} \epsilon_t) & \chi e^{i\delta} (\frac{x_q \epsilon_b}{x_b} + x_{qq} \epsilon_t) \\ \lambda e^{-i\theta} (\frac{x_q \epsilon_b}{x_b} + x_{qq} \epsilon_t) & \chi e^{-i\delta} (\frac{x_q \epsilon_b}{x_b} + x_{qq} \epsilon_t) & a_q' + \epsilon_t (\frac{2x_q \epsilon_b}{x_b} + x_{qq} \epsilon_t) \end{pmatrix}, \end{split}$$

where $k_{l\tau} = a_l - a'_l + \frac{x_l}{x_\tau}$, $k'_{l\tau} = a_l - a'_l + \frac{2x_l}{x_\tau}$, $k_{qb} = a_q - a'_q + \frac{x_q}{x_b}$, $k'_{qb} = a_q - a'_q + \frac{2x_q}{x_b}$, $x_{qq} = a_q - a'_q$.

Rotating to the mass basis

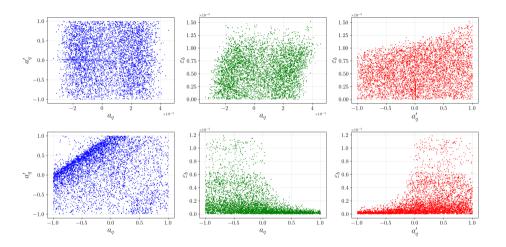
$$Q_{ledq} = (\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$$
:

$$\begin{split} \hat{\Gamma}^{e_L e} &= \begin{pmatrix} x_e \epsilon_e & 0 & -k_{\mu\tau} s_e \epsilon_\tau \\ 0 & x_e \epsilon_\mu & -k_{\mu\tau} c_e \epsilon_\tau \\ 0 & (x_e - k'_{\mu\tau}) c_e \epsilon_\mu \epsilon_\tau & x'_e + (-k_{\mu\tau} + \frac{x'_e}{2}) \epsilon_\tau^2 \end{pmatrix}, \\ (\hat{\Gamma}^{dd_L})^\dagger &= \begin{pmatrix} x_d \epsilon_d & 0 & -k_{sb} K_{ds}^* c_d \epsilon_b \\ 0 & x_d \epsilon_s & -k_{sb} c_d \epsilon_b \\ 0 & (x_d - k'_{sb}) c_d \epsilon_s \epsilon_b & x'_d + (-k_{sb} + \frac{x'_d}{2}) \epsilon_b^2 \end{pmatrix}, \\ \hat{\Gamma}^{\nu e} &= \begin{pmatrix} x_e c_e \epsilon_e & -x_e s_e \epsilon_\mu & 0 \\ x_e s_e \epsilon_e & x_e c_e \epsilon_\mu & \frac{x_l}{x_\tau} \epsilon_\tau \\ 0 & -k'_{\mu\tau} c_e \epsilon_\mu \epsilon_\tau & x'_e \end{pmatrix}, \\ (\hat{\Gamma}^{du_L})^\dagger &= \begin{pmatrix} x_d c_u \epsilon_d & x_d s_u \epsilon_s & c_d (s_u + c_u K_{ds}^*) (\frac{x_q}{x_b} \epsilon_b - x'_d \epsilon_l) \\ -x_d s_u \epsilon_d & x_d c_u \epsilon_s & c_d (c_u - s_u K_{ds}^*) (\frac{x_q}{x_b} \epsilon_b - x'_d \epsilon_l) \\ 0 & -c_d k'_{sb} \epsilon_b \epsilon_s + x_d c_d \epsilon_l \epsilon_s & x'_d + \frac{x_q}{x_b} \epsilon_b \epsilon_s - \frac{x'_d}{2} \epsilon_l^2 \end{pmatrix}, \end{split}$$

where $K_{ds} = V_{td}/V_{ts}$, $k_{\mu\tau} = x'_e - \frac{x_l}{x_\tau}$, $k_{sb} = x'_d - \frac{x_q}{x_b}$, $k'_{\mu\tau} = x'_e - \frac{x_{el}}{x_\tau}$, $k'_{sb} = x'_d - \frac{x_{dq}}{x_b}$.

Min-Di Zheng (SRNU)

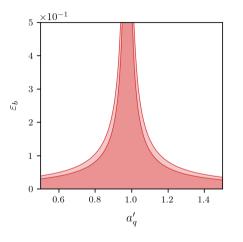
Numerical discussions

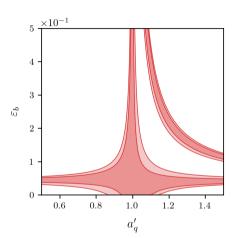


Parameters of $C_{lg}^{(1)}$ constrained by the leptonic processes of $b \to d\ell^+\ell^-$ (upper) and the $b \to s\ell^+\ell^-$ (lower).

Min-Di Zheng (SRNU) HFCPV 2025 19/21

Numerical discussions





Parameters of C_{ledq} constrained by the leptonic processes of $b \to s\tau^+\tau^-$ process (left) and $b \to u\tau\nu$ (right).

Min-Di Zheng (SRNU) HFCPV 2025 20 / 21

Conclusions

In the $U(2)^5$ flavor symmetry framework, we obtain the following analytical results with strict power counting:

- the CKM of $U(2)^5$ matching with Standard model.
- \bullet the flavour structures in Wilson coefficients of semileptonic and leptonic B decays.

Then some numerical calculations are also performed.

Thank you!!

Min-Di Zheng (SRNU) HFCPV 2025 21/21