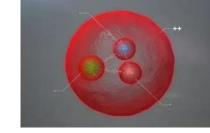


The Lifetime of Doubly Heavy Baryons from QCD Sum Rules

Improving HQE lifetime predictions for doubly charmed baryons

Presented by: Wuenqi


Collaborators: Zhen-Xing Zhao, Yi-Peng Xing

Contens

- 1 Research Motivation
- 2 Literature Review
- 3 Research Methodology
- 4 Our Results
- 5 Summary and Outlook

I. Research Motivation

- \triangleright Doubly charmed baryons $(\Xi_{cc}^+, \Xi_{cc}^{++}, \Omega_{cc}^+)$ test heavy-quark dynamics in the charm sector.
- To provide precise theoretical input for interpreting experimental results from facilities like LHCb.
- To offer reliable guidance for future searches of undiscovered doubly and triply heavy baryons.
- ➤ HQE successfully explains b-hadron lifetimes but is less accurate for c-hadrons due to poorly known four-quark operator matrix elements.

Our goal: compute them using QCD Sum Rule (QCDSR) rather than relying on phenomenological models.

II. Background: HQE Framework

$$\Gamma(H_Q) = \boxed{\Gamma_3 + rac{\Gamma_5}{m_Q^2}} + \boxed{rac{\Gamma_6}{m_Q^3}} + \cdots$$

 $ightharpoonup \Gamma_3$: free-quark decay

Spectator

Non-spectators

 $\triangleright \Gamma_5$: kinetic + chromomagnetic corrections

 $\succ \Gamma_6$: four-quark operators (dim-6) \rightarrow Weak Exchange & Pauli Interference

$$\Gamma(H_c \to f) = \frac{G_F^2 m_c^5}{192\pi^3} |V_{CKM}|^2 \{c_3(f)\langle H_c | \bar{c}c | H_c \rangle + c_5(f) \frac{\langle H_c | \bar{c}i\sigma_{\mu\nu}G^{\mu\nu}c | H_c \rangle}{m_c^2} + \sum_i c_6^{(i)}(f) \frac{\langle H_c | (\bar{c}\Gamma_i q)(\bar{q}\Gamma_i c) | H_c \rangle}{m_c^3} + \mathcal{O}(\frac{1}{m_c^4}) \}$$

HQE precision depends on accurate evaluation of dim-6 operator matrix elements.

III.Theoretical Context

- \triangleright Chang et al. (2007): HQE analysis for Ξ_{cc}^+ , Ξ_{cc}^{++} , Ω_{cc}^+ using model inputs.
- ➤ Lenz (2014): identified missing nonperturbative input as main uncertainty.
- ➤ Cheng et al. (2018): introduced dimension-7 corrections based on Chang et al. to estimate higher-order effects.

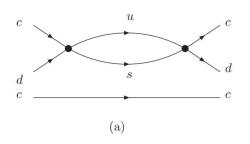
This work: QCDSR provides a first-principles evaluation, leading to improved lifetime predictions.

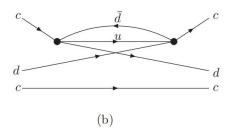
[1] Chang et al,2007., arXiv:0704.0016

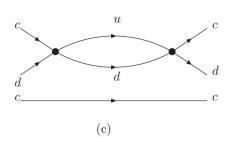
[2] Lenz, 2014, arXiv:1405.3601

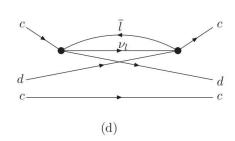
[3] Gershon et al 2018. arXiv:1809.08102

IV. Four-Quark Operator Structures

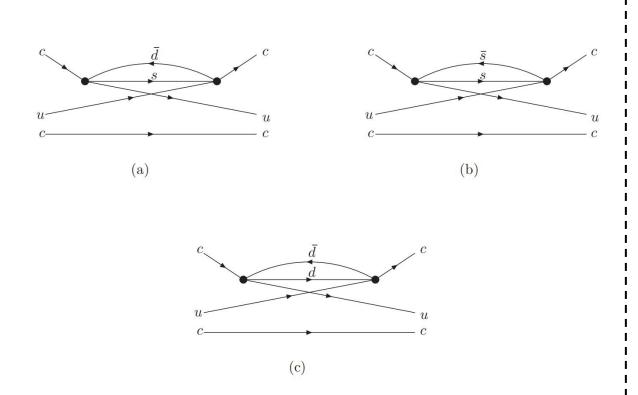

Four-quark operator : $\begin{aligned} O_1^q = & (\bar{c}\gamma_{\mu}(1-\gamma_5)q)(\bar{q}\gamma^{\mu}(1-\gamma_5)c) \\ O_2^q = & (\bar{c}_i\gamma_{\mu}(1-\gamma_5)q_j)(\bar{q}_j\gamma^{\mu}(1-\gamma_5)c_i) \\ O_3^q = & (\bar{c}(1-\gamma_5)q)(\bar{q}(1+\gamma_5)c) \\ O_4^q = & (\bar{c}_i(1-\gamma_5)q_j)(\bar{q}_j(1+\gamma_5)c_i) \end{aligned}$

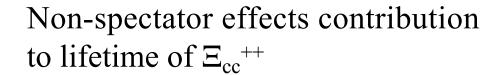

- > color structures:
- These appear in Weak Exchange (WE) and Pauli Interference (PI) processes, which dominate the lifetime differences among Ξ_{cc}^{++} , Ξ_{cc}^{+} and Ω_{cc}^{+} .

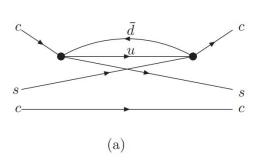

V. Strategy and Improvements

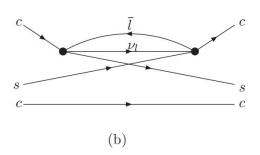

Aspect	Chang (2007)	This Work
Matrix elements	Model-based	Computed via QCDSR
Input parameters	Fixed	Extracted self-consistently
Errors	Model dependence	Controlled via Borel stability
Accuracy	Moderate	Improved, closer to data

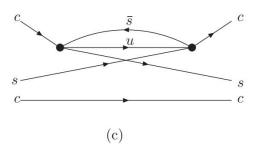
Non-spectator effects contribution to lifetime of Ξ_{cc}^{+}

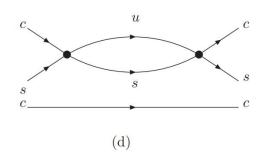


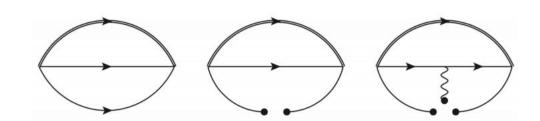

$$\hat{\Gamma}_{WE} = \frac{1}{2m_H} \frac{G_F^2}{2} |V_{cs}|^2 |V_{ud}|^2 \frac{1}{(2\pi)^2} 4 \times (16AP^2 + 4BP^2)$$


$$\times \left[(c_1^2 + c_2^2) \bar{c}^i \gamma_\alpha (1 - \gamma_5) c^i \bar{d}^j \gamma^\alpha (1 - \gamma_5) d^j + 2c_1 c_2 \bar{c}^i \gamma_\alpha (1 - \gamma_5) d^i \bar{d}^j \gamma^\alpha (1 - \gamma_5) c^j \right]$$




V. Strategy and Improvements





Non-spectator effects contribution to lifetime of Ω_{cc}^{+}

> the two-point correlation function:

$$\Pi(p) = i \int d^4x e^{i \cdot px} \langle 0 | T\{J(x)\bar{J}(0)\} | 0 \rangle$$

$$\Pi^{had}(p) = \lambda_{+}^{2} \frac{\not p + M_{+}}{M_{+}^{2} - p^{2}} + \lambda_{-}^{2} \frac{\not p - M_{-}}{M_{-}^{2} - p^{2}} \cdots$$

$$\Pi^{QCD}(p) = A(p^{2})\not p + B(p^{2})$$

$$\Pi^{QCD}(p) = A(p^2) p + B(p^2)$$

$$\lambda_{+}^{2} = \frac{\int ds [\rho^{B}(s) + (M_{-})\rho^{A}(s)] \exp(-\frac{s}{T_{+}^{2}})}{(M_{+} + M_{-})} \exp(\frac{M_{+}^{2}}{T_{+}^{2}})$$

$$M_{+}^{2} = \frac{\int ds [\rho^{B}(s) + (M_{-})\rho^{A}(s)] s \exp(-\frac{s}{T_{+}^{2}})}{\int ds [\rho^{B}(s) + (M_{-})\rho^{A}(s)] \exp(-\frac{s}{T_{+}^{2}})}$$

Borel window and threshold s_0

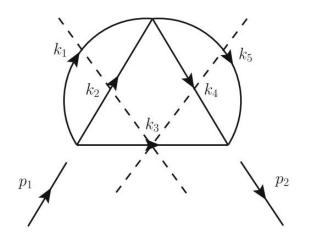
 \triangleright Construct the three-point correlation function using the interpolating current for Ξ_{cc} :

$$\Pi(p_1, p_2) = i^2 \int d^4x d^4y e^{ip' \cdot x - ip \cdot y} < 0 | T\{J(x)\Gamma_6 \bar{J}(y)\} | 0 >$$

$$J_{\Xi_{cc}} = \varepsilon_{abc} \left(Q_a^T C \gamma^{\mu} Q_b \right) \gamma_{\mu} \gamma_5 u_c$$

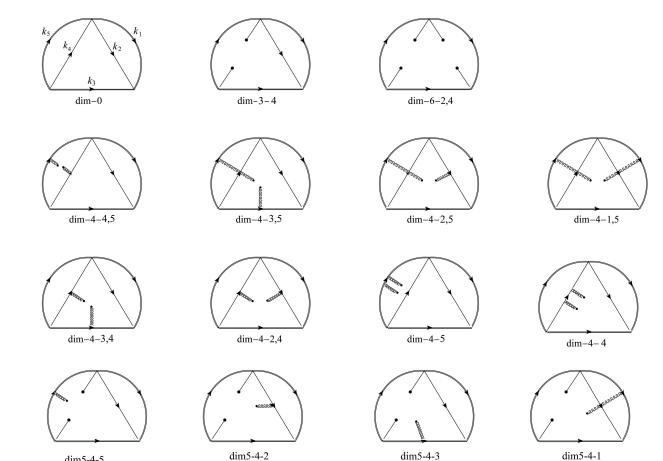
- > Expand via OPE: perturbative + condensate terms.
- > apply a double Borel transform to suppress continuum contributions.

hardon level:


$$\Pi^{\text{had}}(p_1, p_2) = \lambda_H^2 \frac{(\not p_2 + M)(a + b\gamma_5)(\not p_1 + M)}{(p_2^2 - M^2)(p_1^2 - M^2)} + \cdots$$

QCD level:

$$\Pi^{QCD}(p_1, p_2) = A_1 \not p_2 \not p_1 + A_2 \not p_2 + A_3 \not p_1 + A_4 + A_5 \not p_2 \gamma_5 \not p_1 + A_6 \not p_2 \gamma_5 + A_7 \gamma_5 \not p_1 + A_8 \gamma_5$$



$$A_i(p_1^2, p_2^2, q^2) = \iint ds_1 ds_2 \frac{\rho_{A_i}(s_1, s_2, q^2)}{(s_1 - p_1^2)(s_2 - p_2^2)}$$

$$\langle H_Q | \Gamma_6 | H_Q \rangle = \bar{u}(q, s)(a + b\gamma_5)u(q, s) = 2am_H$$

Eur. Phys. J. C (2024) 84:48 https://doi.org/10.1140/epjc/s10052-023-12299-9

THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

On the four-quark operator matrix elements for the lifetime of Λ_b

Zhen-Xing Zhao^{1,a}, Xiao-Yu Sun¹, Fu-Wei Zhang¹, Zhi-Peng Xing^{2,b}

12

dim5-4-5

¹ School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China

² Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China

VII. Our Result

$$ightharpoonup$$
 Input: $m_c = 1.56 \text{GeV}, m_{u(d)} = 0.0 \text{GeV}, m_s = 0.107 \text{GeV}$ $\mu = 1 \text{GeV}$

> Predicted lifetimes (in ps):

baryon	Ξ_{cc}^{++}	Ω_{cc}^{+}	Ξ_{cc}^{+}	
$\tau(ps)$	0.330	0.257	0.108	This work
$ au(\mathrm{ps})$	0.52	0.22	0.19	Chang
$ au(\mathrm{ps})$	0.520	0.078	0.057	Cheng (dim-6)
$ au(\mathrm{ps})$	0.298	0.206	0.044	Cheng (dim-7)
$ au(\mathrm{ps})$	0.256 ± 0.027			Experiment

Note: We present the results of a preliminary calculation in this work.

Results are consistent with the experimental value of Ξ_{cc}^{++} from LHCb.

^[1] Chang et al., 2007, arXiv:0704.0016

^[5] Cheng et al., 2018, arXiv:1807.00916

VIII. Discussion: Lattice QCD and Beyond

- \triangleright Lattice QCD (Mathur & Padmanath, 2018) predicts M $_{\Omega cc}$ =3.712GeV, but no lifetime yet.
- Four-quark operator calculations remain difficult, and QCDSR currently provides the only available non-model estimate.
- Future synergy between Lattice QCD and QCDSR will be essential for cross-validation.

IX. Theoretical Uncertainties

 \triangleright OPE truncation (dimension \leq 6)

> Condensate parameter uncertainties

 \triangleright Borel window and threshold s_0

> Scale dependence (μ varied from 0.8 to 1.2 GeV)

X. Summary

➤ Computed four-quark operator matrix elements via QCDSR.

 \triangleright Improved HQE predictions for Ξ_{cc}^{+} , Ξ_{cc}^{++} , Ω_{cc}^{+} .

 \triangleright Results for Ξ_{cc}^{++} are close to LHCb data.

> QCDSR provides a reliable nonperturbative input to HQE.

XI. Outlook

- > Include NLO corrections and operator mixing.
- > Apply renormalization-scale evolution to match HQE scheme.
- \triangleright Extend to Singly heavy baryons (Λ_b, Λ_c) .
- \triangleright Using theoretical results to explain the Ω_c puzzle.
- ➤ Anticipate future LHCb/Belle measurements to validate results.
- These improvements will enhance the predictive power of HQE and deepen our understanding of charm-quark dynamics.

感谢各位的聆听!