

LHCb实验上B介子两体纯重子衰变的研究进展

第22届全国重味物理和CP破坏研讨会

中国科学院大学任赞

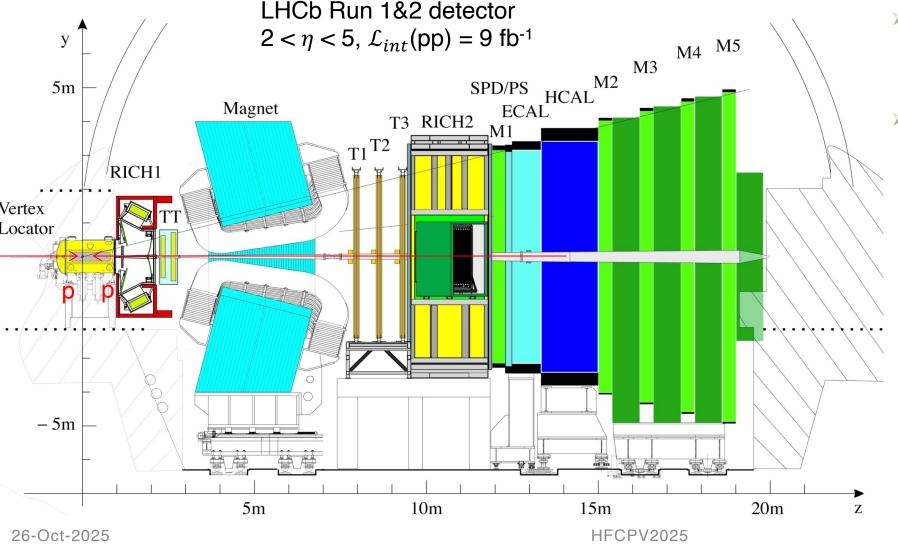
2025年10月26日 中国·北京

Outline

LHCb experiment

Two-body baryonic decay of *B* meson

- charmless
- charmed

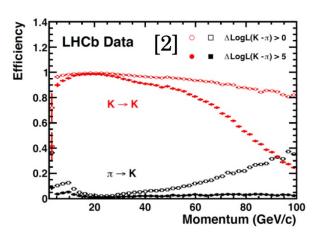


Summary & outlook

1

LHCb Run1&Run2 detector

Single-arm, forward. Specifically designed for heavy-flavour physics.

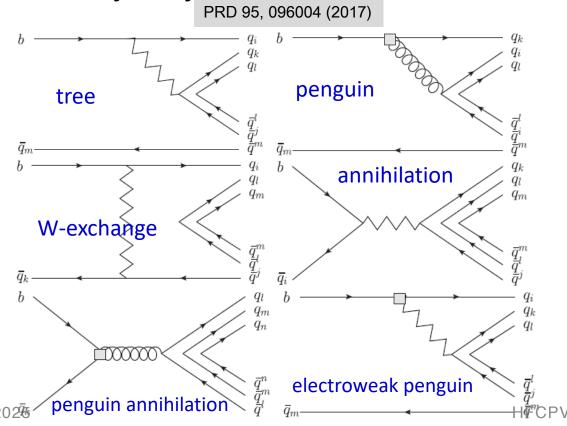


> Excellent tracking and vertexing

- $\sigma(p)/p < 1\% @ \epsilon_{\text{track}} > 96\%$
- $*\sigma(IP) = (15 + 29/p_T) \mu m$

> Excellent PID

- $\epsilon_{\text{PID}}(K) \approx 95\%$ @ MisID $(\pi \to K) \approx 5\%$
- $\epsilon_{\text{PID}}(\mu) \approx 97\%$ @ MisID $(\pi \to \mu) \approx 3\%$

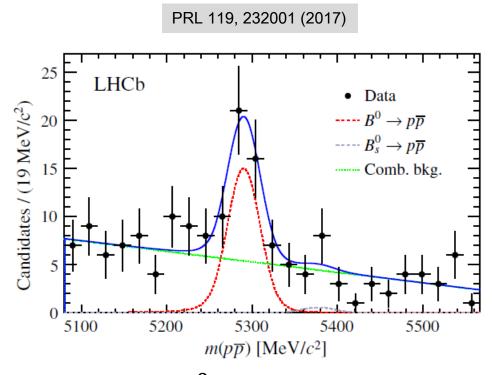

JINST3 (2008) S08005 IJMPA 30 (2015) 1530022

Two-body charmless baryonic decays of B meson

 Provides information on the dynamics of B decays and tests QCD based models of the hadronization process

Discriminate models and extract both tree and penguin amplitudes of charmless

two-body baryonic decays

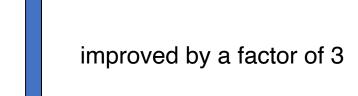


- $B^0 \to p\bar{p}$ and $B^+ \to p\bar{\Lambda}$ as inputs to predict other $B \to \mathfrak{B}_1\mathfrak{B}_2$
- Baryonic B decays are also interesting in the study of CP violation
- Pure penguin modes are expected to be sensitive to new physics contributions

Search for $B_{(s)}^0 \to p\bar{p}$ decay

- First observation of $B^0 \to p\bar{p}$ with Run 1 data
- $\mathcal{B}(B^0 \to p\bar{p}) = (1.25 \pm 0.27 \pm 0.18) \times 10^{-8}$
- $\mathcal{B}(B_s^0 \to p\bar{p}) < 1.5 \times 10^{-8} @90\% \text{ CL}$
- Some predictions expect $B_s^0 \to p\bar{p}$ to be further suppressed (**negligible** penguin-level gluon-exchange and annihilation contributions)

PRD 89, 056003 (2014), PRD 95, 096004 (2017)



- Other predictions expect $B_s^0 \to p\bar{p}$ rates is similar to that of $B^0 \to p\bar{p}$ (penguin-level gluon-exchange and annihilation contributions can not be neglected)

 JHEP2004, 035 (2020)
- Updated search for $B_s^0 \to p\bar{p}$ decay is needed

Search for $B_s^0 \to p\bar{p}$ with Run 2 data

- $N(B^0 \to p\bar{p}) = 98 \pm 11(16.2\sigma)$
- $N(B_s^0 \to p\bar{p}) = 4 \pm 5(0.9\sigma)$
- $\mathcal{B}(B^0 \to p\bar{p}) = (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8}$
 - Consistent with Run 1
- Upper Limit on $\mathcal{B}(B_s^0 \to p\bar{p})$
 - $< 15 \times 10^{-9} @90\%$ CL (Run 1)

- $< 4.5(5.1) \times 10^{-9} @90\% (95\%)$ CL (Run 2)
- \rightarrow $\mathcal{B}(B_s^0 \to p\bar{p})$ is further suppressed!

PRD108 (2023) 12007 Data LHCb 6 fb^{-1} Total fit $B^0 \rightarrow p\overline{p}$ $B_s^0 \rightarrow p\overline{p}$ ····· Comb. bkg. 5300 $m(p\overline{p})$ [MeV/ c^2] LHCb **≓**0.03 10.02 **≓**0.015 **∃**0.01 0.005

 $\mathcal{B}(B_s^0 \to p\overline{p}) \times 10^{-9}$

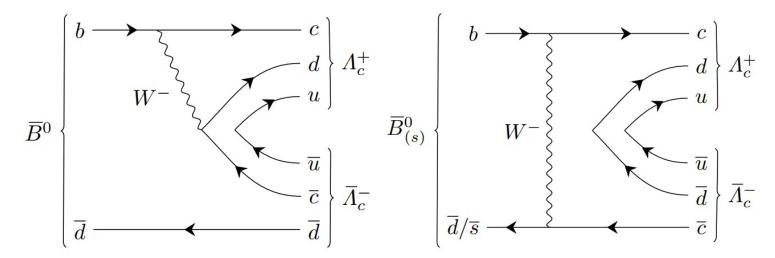
26-Oct-2025 HFCPV2025

Two-body charmed baryonic decays of B meson

- Before this work, the only observed decays are $B^0 \to \bar{\Xi}_c^- \Lambda_c^+$ and $B^+ \to \bar{\Xi}_c^0 \Lambda_c^+$
 - Both are dominated by W-emission topology。

PRD 100 (2019) 3, 031101, PRL 122 (2019) 8, 082001

- LHCb measured the upper limits on $\mathcal{B}(B_{(s)}^0 \to \Lambda_c^+ \overline{\Lambda}_c^-)$ decays
 - using 3fb⁻¹ pp Run 1 data


PR112 (2014) 202001

• $\mathcal{B}(\bar{B}^0 \to \Lambda_c^+ \bar{\Lambda}_c^-) < 1.6 \times 10^{-5}$ at 95% CL

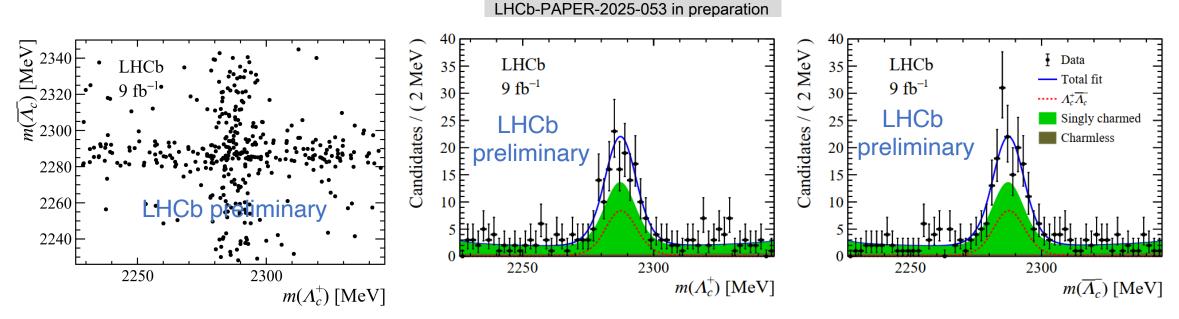
• $\mathcal{B}(\bar{B}_s^0 \to \Lambda_c^+ \bar{\Lambda}_c^-) < 8.0 \times 10^{-5}$ at 95% CL

suggests a tension with naïve U-spin symmetry

→ Need an investigation with larger statistics!

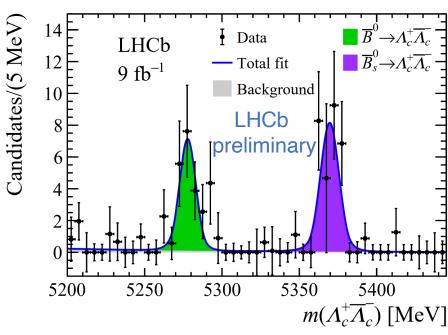
 $\bar{B}_s^0 \to \Lambda_c^+ \bar{\Lambda}_c^-$ can only proceed via W-exchange/annihilation diagram.

- Full Run1&2 data is used, corresponding to $\mathcal{L} = 9 \text{fb}^{-1}$
- The $\bar{B}^0 \to D_s^- D^+$ and $\bar{B}_s^0 \to D_s^+ D_s^-$ decays chosen as normalization modes.


$$\mathcal{B}(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-}) = \mathcal{B}(\overline{B}^{0} \to D_{s}^{-} D^{+}) \cdot \frac{\mathcal{B}_{D_{s}^{+}} \mathcal{B}_{D^{+}}}{\mathcal{B}_{\Lambda_{c}^{+}}^{2}} \cdot \frac{N(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-})}{N(\overline{B}^{0} \to D_{s}^{-} D^{+})} \cdot \frac{\epsilon(\overline{B}^{0} \to D_{s}^{-} D^{+})}{\epsilon(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-})},$$

$$\mathcal{B}(\overline{B}_{s}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-}) = \mathcal{B}(\overline{B}_{s}^{0} \to D_{s}^{+} D_{s}^{-}) \cdot \frac{\mathcal{B}_{D_{s}^{+}}^{2}}{\mathcal{B}_{\Lambda_{c}^{+}}^{2}} \cdot \frac{N(\overline{B}_{s}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-})}{N(\overline{B}_{s}^{0} \to D_{s}^{+} D_{s}^{-})} \cdot \frac{\epsilon(\overline{B}_{s}^{0} \to D_{s}^{+} D_{s}^{-})}{\epsilon(\overline{B}_{s}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-})},$$

- Event selection based on:
 - tracking quality, vertex quality, vertex separation, flight distance, IP, ...
 - kinematic variables
 - PID information
 - Vetoes on cross-feed among D_s^{\pm} , D^{\pm} , Λ_c^{\pm} due to charged tracks' misidentification.
- Challenges in analysis techniques:
 - The singly-charmed and charmless decays dominate the physical backgrounds.
 - Correlations among m(B), $m(pK^-\pi^+)$, and $m(\bar{p}K^+\pi^-)$ for singly-charmed components also be of huge influence.


- A two-step fit to separate the genuine $\Lambda_c^+\overline{\Lambda}_c^-$ candidates from backgrounds
 - 1st step: a 2D fit to $\Lambda_c^+ \overline{\Lambda}_c^-$ mass distribution in **each** B mass bin
 - → PDF is constructed from $S_{\Lambda_c^+}S_{\overline{\Lambda}_c^-}$, $S_{\Lambda_c^+}B_{\overline{\Lambda}_c^-}$ / $B_{\Lambda_c^+}S_{\overline{\Lambda}_c^-}$, and $B_{\Lambda_c^+}B_{\overline{\Lambda}_c^-}$ components (S=peaking signal, B=background)
 - → yield and corresponding uncertainty for **doubly charmed** component is determined (bin-by-bin).

The $\Lambda_c^+ - \overline{\Lambda}_c^-$ mass distributions with the fit results overlaid, where results from all individual m(R) bins are combined to improve visibility.

- A two-step fit to separate the genuine $\Lambda_c^+\overline{\Lambda}_c^-$ candidates from backgrounds
 - 2nd step: Fit to the resulting $m(\Lambda_c^+ \overline{\Lambda}_c^-)$ distribution from the previous step
 - Clear signal peaks are seen.

LHCb-PAPER-2025-053 in preparation

Signal yields:

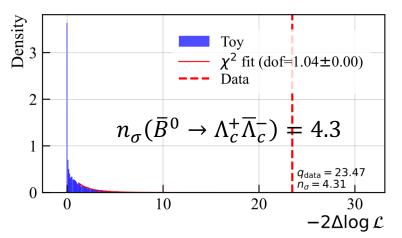
$$N(\bar{B}^0 \to \Lambda_c^+ \bar{\Lambda}_c^+) \stackrel{b}{=} 19.0^{+5.0}_{-5.2}$$

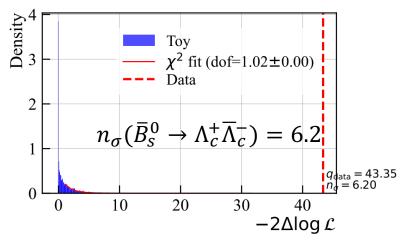
 $N(\bar{B}_s^0 \to \Lambda_c^+ \bar{\Lambda}_c^+) = 25.1 \pm 6.7$

 For normalization decay modes, a similar approach is used to extra the signal yields.

$$N(\bar{B}^0 \to D_s^- D^+) = 26171 \pm 164$$

 $N(\bar{B}_s^0 \to D_s^+ D_s^-) = 2926 \pm 65$


- Systematic uncertainties from numerous and complex sources are carefully evaluated.
- The fit strategy is also cross-checked by pseudo-experiments and found to be credible.


LHCb-PAPER-2025-053 in preparation

Source	$\frac{\mathcal{B}(\bar{B}^0 \to \Lambda_c^+ \bar{\Lambda}_c^-)}{\mathcal{B}(\bar{B}^0 \to D_s^- D^+)}$	$\frac{\mathcal{B}(\bar{B}_s^0 \to \Lambda_c^+ \bar{\Lambda}_c^-)}{\mathcal{B}(\bar{B}_s^0 \to D_s^+ D_s^-)}$
Λ_c^+ mass resolution	2.1%	4.3%
$\overline{B}_{(s)}^0$ mass resolution	0.2%	0.5%
Fit bias and binning scheme	5.7%	1.2%
Λ_c^+ or $D_{(s)}^+$ lineshape	0.2%	0.2%
$\bar{B}^0_{(s)}$ signal lineshape	3.6%	0.5%
Background lineshape	1.4%	7.1%
Lineshape of misidentified decay	_	0.1%
Simulated sample size	1.7%	1.8%
Tracking efficiency	1.3%	1.6%
PID correction	0.7%	0.9%
Kinematical correction	0.2%	0.3%
Λ_c^+ Dalitz plot and polarization correction	3.6%	4.3%
\overline{B}_s^0 lifetime difference	<u> </u>	0.6%
Total	8.4%	9.9%

Significances after considering systematics:

- First observation of $\bar{B}_s^0 \to \Lambda_c^+ \bar{\Lambda}_c^-$ and first evidence of $\bar{B}^0 \to \Lambda_c^+ \bar{\Lambda}_c^-$.
- The measured branching fractions:

LHCb-PAPER-2025-053 in preparation

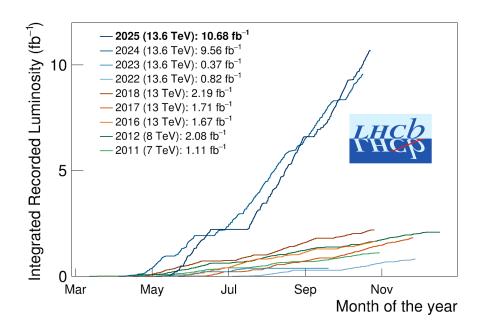
$$\mathcal{B}(\overline{B}{}^{0} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{-}) = (1.01^{+0.27}_{-0.28} \pm 0.08 \pm 0.15) \times 10^{-5},$$

$$\mathcal{B}(\overline{B}{}^{0}_{s} \to \Lambda_{c}^{+} \overline{\Lambda}_{c}^{+}) = (5.0 \pm 1.3 \pm 0.5 \pm 0.8) \times 10^{-5},$$

Uncertainties are statistical, systematic, and external contributions from branching fractions of intermediate D_s^{\pm} , D^{\pm} , Λ_c^{\pm} decays and normalization channels.

Results and discussion

- The observation of $\bar{B}_s^0 \to \Lambda_c^+ \bar{\Lambda}_c^-$ decay represents the first experimental verification of the W-exchange process in baryonic B decays.
- The measured BF for $\bar{B}^0 \to \Lambda_c^+ \bar{\Lambda}_c^-$ decay is in tension with the simple $SU(3)_f$ symmetry prediction arising solely from the *W*-emission diagram.


$$SU(3)_f$$
 symmetry prediction = $|V_{cd}/V_{cs}|^2(\tau_{B^0}/\tau_{B^+})\mathcal{B}(B^- \to \Xi_c^0 \overline{\Lambda}_c^-) = (4.7 \pm 1.1) \times 10^{-5}$

A rough comparison with theoretical predictions

- The measured $\mathcal{B}(\bar{B}_{(s)}^0 \to \Lambda_c^+ \bar{\Lambda}_c^-)$ is well consistent with some theoretical predictions, like pQCD.
 - while others are not.
 - The relative uncertainty of the theoretical calculation is relatively large.
 - Need more investigation.

Summary & outlook

- With the 9fb⁻¹ pp data collected by LHCb detector, $\bar{B}^0 \to \Lambda_c^+ \bar{\Lambda}_c^-$ is seen for the 1st time as an evidence, and $\bar{B}_s^0 \to \Lambda_c^+ \bar{\Lambda}_c^-$ is observed.
- LHCb Run3: $\sim 25 \text{ fb}^{-1} pp \text{ data}$
 - 2× trigger efficiency for hadrons

JINST 19 (2024) P05065

- In LHCb, more studies on 2-body (charmed or charmless) baryonic B decays are ongoing:
 - improved measurement of $B^+ \to p \overline{\Lambda}$ (coming soon!) with Run2 data
 - improved measurement of $\bar B^0 \to \Lambda_c^+ \bar p$ and search for $\bar B^0 \to \Lambda_c^+ \bar p$
 - search for $\bar{B}_{(s)}^0 \to \Xi_c^+ \bar{\Xi}_c^-$
 - search for $B_s^0 \to \Xi_c^- \Lambda_c^+$ with Run3 data
 -

Thanks!