The complicated QED corrections in the simplest B decays

Si-Hong Zhou (周四红) Inner Mongolia University(内蒙古大学)

第二十二届全国重味物理和CP破坏研讨会@北京大学

24-28 Oct. 2025

Based on:

Complete analysis on QED corrections to $B \to \tau^+ \tau^-$ JHEP 10 (2023) 073

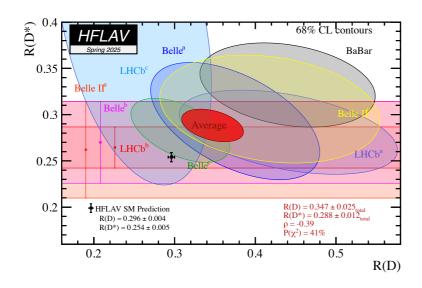
in collaboration with Y.K. Huang, Y.L. Shen and X.C. Zhao

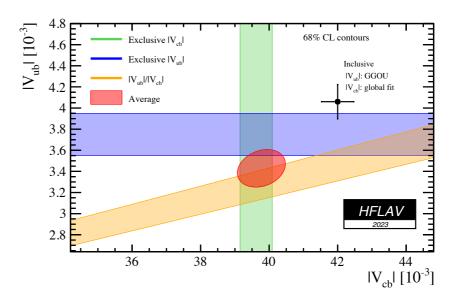
Impact of structure-dependent QED effects on $|V_{ub}|$ extraction

in preparation with Y.L. Shen, C. Wang and Y.B. Wei

Why QED corrections in flavor physics?

- Flavour physics in high precision in experiments and theoretic aspects
 - ightharpoonup experimental data from e^+e^- "B-factories" and hadron colliders, Belle II, BESIII and LHC.
 - ▶ QCD corrections in α_s and $1/m_b$ and controllable hadronic input parameters
- "Flavour Anomalies": deviations between theory and experiment for some flavor observables in recent years e.g. $R(D^{(*)})$, $|V_{ub}|$, $|V_{cb}|$, ...



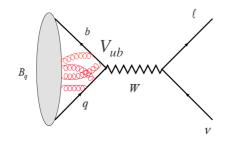


QED corrections are important in high precision process

$$\alpha_{\rm em} \sim \alpha_s^3 \sim 0.01$$

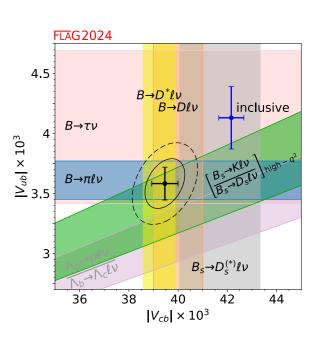
Why QED corrections in Leptonic B decay? $B_{d,s} \to \tau^+\tau^-, B_u \to \tau\nu$

- B decay modes receive large uncertainties from the B meson light-cone distribution amplitudes (LCDA)
- $B_{d,s} \to \ell^+ \ell^-$ is highly suppressed in the SM and can be computed with a good precision!
- $B_{\mu} \to \ell \nu$ for determination of $|V_{\mu b}|$ largely unaffected by hadronic uncertainties



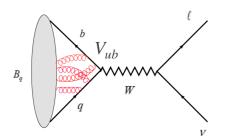
$$\langle 0 | \bar{u} \gamma^{\mu} \gamma_5 b | B_u(p) \rangle = i f_B p^{\mu}$$

$$f_B = (190.0 \pm 1.3) \text{MeV [FLAG 2024]}$$



Why QED corrections in Leptonic B decay? $B_{d,s} \to \tau^+\tau^-, B_u \to \tau\nu$

- B decay modes receive large uncertainties from the B meson light-cone distribution amplitudes (LCDA)
- $B_{d,s} \to \ell^+ \ell^-$ is highly suppressed in the SM and can be computed with a good precision!
- $B_{\mu} \to \ell \nu$ for determination of $|V_{\mu b}|$ largely unaffected by hadronic uncertainties

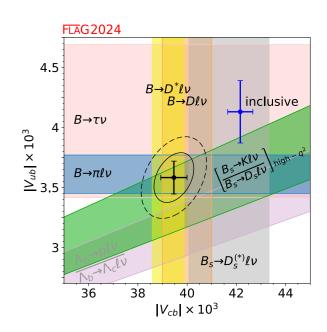


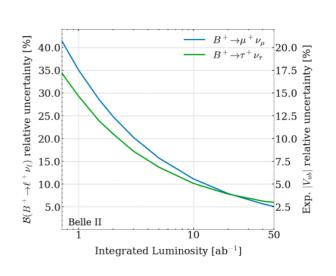
$$\langle 0 | \bar{u} \gamma^{\mu} \gamma_5 b | B_u(p) \rangle = i f_B p^{\mu}$$

$$f_B = (190.0 \pm 1.3) \text{MeV [FLAG 2024]}$$

Especially for
$$B_{\nu} \to \tau \nu \ (B_{\tau} \sim 10^{-5}, \ B_{\mu} \sim 10^{-7}, \ B_{\mu} \sim 10^{-12})$$

- ► Recently, Belle II measured its branching fractivarXiv: 2502.04885 $\mathcal{B}^{(\exp)}(B_{\nu} \to \tau \nu) = (1.24 \pm 0.41(stat.) \pm 0.19(syst.)) \times 10^{-4}$ and updated the value $|V_{ub}| = (4.41^{+0.74}_{-0.89}) \times 10^{-3}$
 - Belle II will measure the τ channels with 5-7 % uncertainty [Belle II Physics Book]
- \Rightarrow QED correction in $B_u \rightarrow \tau \nu$ become important

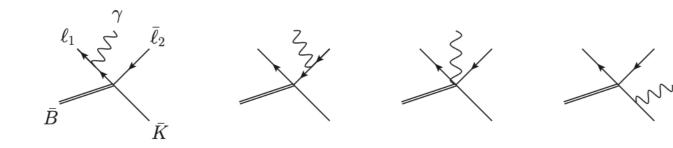




ultra-soft photon approximation

In most cases, QED analyses focused solely on ultra-soft photon approximation

e.g. $\bar{B} \to \bar{K}\ell^+\ell^-$ [G. Isidori, etc. JHEP 12,104 (2020)]



- ▶ pointlike B meson when photons are extremely low-energy ("ultrasoft")
- ▶ ultra-soft photon approximation assume pointlike photon couplings to charged hadrons up to energy scales of $\mathcal{O}(m_R)$
- The result is just the pure-QCD amplitude timing with Bloch-Nordsieck factor

$$\sim \exp(-\frac{\alpha_{\rm em}}{\pi} \ln \frac{m_B}{\Delta E})$$

Beyond ultra-soft photon approximation

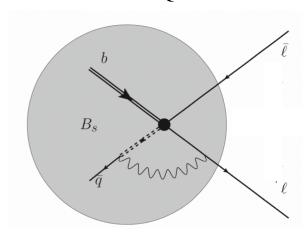
- When scale $\Lambda_{\rm QCD} < \mu < m_b$, the photon emitting from lepton can recoil against the light spectator quark which is then delocalized along the light cone
 - The hadronic currents become non-local, the corresponding hadronic matrix element becomes

$$\langle 0 | \bar{q}_s(vn_-) Y(vn_-,0) \frac{h_+}{2} P_L h_v(0) | B \rangle$$

is light cone distribution $\sim \phi_B(\omega)$, and it is the structure-dependent QED effects

$$r_{\rm photon} \sim 1/\sqrt{m_b \Lambda_{\rm QCD}}$$

$$r_{\rm meson} \sim 1/\Lambda_{\rm QCD}$$



[Fig from Robert Szafron's talk]

Beyond ultra-soft photon approximation

- When scale $\Lambda_{\rm QCD} < \mu < m_b$, the photon emitting from lepton can recoil against the light spectator quark which is then delocalized along the light cone
 - The hadronic currents become non-local, the corresponding hadronic matrix element becomes

$$\langle 0 | \bar{q}_s(vn_-) Y(vn_-,0) \frac{h_+}{2} P_L h_v(0) | B \rangle$$

is light cone distribution $\sim \phi_B(\omega)$, and it is the structure-dependent QED effects

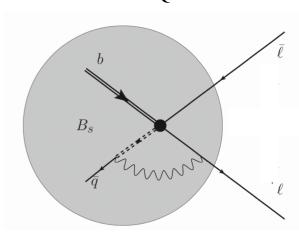
Soft photon interacting with final charged lepton can decouple from lepton to introduce a **Wilson line** $S_{n_-}^{(\ell)\dagger}$

$$\bar{q}_s(vn_-) \, Y(vn_-,0) \, \frac{\hbar_+}{2} \, P_L \, h_v(0) \, \rightarrow \, \bar{q}_s(vn_-) \, Y(vn_-,0) \, \frac{\hbar_+}{2} \, P_L \, h_v(0) \, S_{n_-}^{(\ell)\dagger}$$

=> B-LCDAs need to be redefined [M. Beneke, etc. 2022]

$$r_{\rm photon} \sim 1/\sqrt{m_b \Lambda_{\rm QCD}}$$

$$r_{\rm meson} \sim 1/\Lambda_{\rm QCD}$$



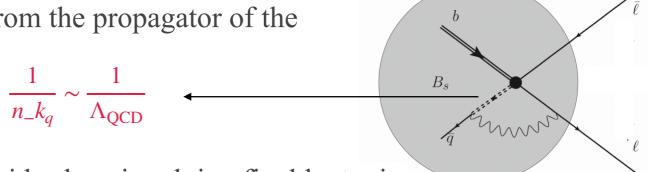
[Fig from Robert Szafron's talk]

Thus charged leptonic B decays become as complicated as non-leptonic decays when photon in $\Lambda_{\rm QCD} < \mu < m_b$

$$f_B \rightarrow \text{B-LCDA} \rightarrow \text{QED-redefined B-LCDA}$$

Virtual QED corrections can reach $\mathcal{O}(1\%)$ accuracy

- When scale $\Lambda_{\rm QCD} < \mu < m_b$, the photon emitting from lepton can recoil against the light spectator quark which is then delocalized along the light cone
 - ► Power enhanced effects arising from the propagator of the resolved spectator quark



More QED Logarithms appear besides logs involving final leptonic scale and soft photon cut ΔE

$$\ln \frac{m_{\ell}}{\Delta E}$$
, $\ln \frac{m_B}{m_{\ell}}$, $\ln \frac{m_b}{\Lambda_{\rm OCD}}$

=> the expansion parameter is $\frac{\alpha_{\rm em}}{\pi} \log^2$, rather than just $\frac{\alpha_{\rm em}}{\pi}$

$$\frac{1}{\Lambda_{\rm OCD}} + \frac{\alpha_{\rm em}}{\pi} \log^2$$

Power enhancement in $B_{d,s} \to \ell^+ \ell^-$

- Power enhanced effects exist in $B_{d,s} \to \ell^+ \ell^-$ and overcome its helicity suppression m_ℓ/m_b
- Thus $B_{d,s} \to \ell^+ \ell^-$ is a leading power process, and we only need to calculate this power enhancement term
 - ▶ Non-local time ordered products have to be evaluated

$$\left\langle 0 \mid \int d^4x \, \mathrm{e}^{i\,q\,x} \, T\left\{ j_{\mathrm{QED}}(x), \mathcal{L}_{\Delta B=1}(0) \right\} \mid B \right\rangle$$

The dynamical enhancement by a power of $m_b/\Lambda_{\rm QCD}$ and by large logarithms $\ln m_b \Lambda_{\rm QCD}/m_\ell^2$

=> 1% of Br $(B_s \to \mu^+ \mu^-)$, four times the size of previous estimates of NLO QED effects $\alpha_{\rm em}/\pi \sim 0.3\%$ [M. Beneke, etc. 17 & 19]

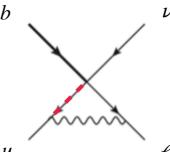
=> 0.4% of Br $(B_s \to \tau^+ \tau^-)$ due to hard-collinear scale tau mass in $\ln m_b \Lambda_{\rm QCD}/m_\tau^2$ [Y.K.Huang, Y.L.Shen, X.C.Zhao, SHZ 23]

$B_u \to \ell \nu$ is a subleading power process

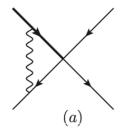
Power enhancement happens for $B_{d,s} \to \ell^+ \ell^-$ with $\gamma^{\mu}(1 + \gamma_5)$, but not for $B_{\mu} \to \ell \nu$ with left-handed currents $\gamma^{\mu}(1 - \gamma_5)$ by cancellation

$$[\bar{q}_{s} \gamma_{\perp}^{\mu} \gamma_{\perp}^{\nu} \frac{\hbar_{-}}{2} (1 - \gamma_{5}) h_{\nu}] [\bar{\ell}_{c} \gamma_{\perp \mu} \gamma_{\perp \nu} (1 - \gamma_{5}) \nu_{\bar{c}}] = 0$$

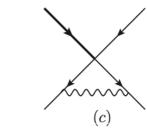
=> No power enhanced effect in $B_u \to \ell \nu$!



riangle We need to consider all power suppressed contributions to $B_u \to \ell \nu$



NLP Local contribution

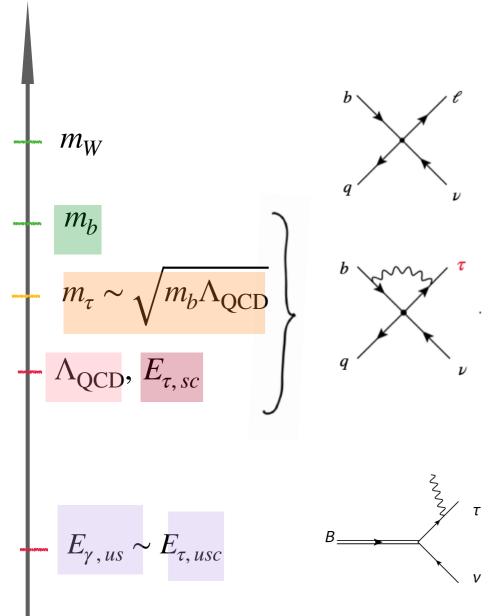


NL calculated to NLP

- mixed (QED+QCD) and NLP are the main challenges for EFTs in building the factorization theorem
 - ► endpoint divergences in NLP? [Feldmann, Gubernari, Huber, Neubert, Seitz 2022; Hurth, Neubert, Szafron 2023, Neubert etc. 2023]
 - ▶ QED IR regulator in EFTs?

A muti-scale process

focus on $B_u \to \tau \nu$ new scales appear in the present of QED effects



 $rac{*}{2}$ For $\mu > m_b$, Fermi theory

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} V_{ub} [\bar{q} \gamma_{\mu} (1 - \gamma_5) b] [\bar{\ell} \gamma^{\mu} (1 - \gamma_5) \nu]$$

Intermediate scale $\Lambda_{\rm QCD} < \mu < m_b$, virtual photons can resolve the substructure of B meson which be dependent on final lepton $(e, \mu, \text{or } \tau)$

different effective field-theory constructions for different final lepton scale

 $\mu \ll \Lambda_{\rm QCD}$ ultra-soft photon approximation

In this talk, we focus on the virtual QED corrections to $B_u \to \tau \, \nu$

modes and EFTs

2 Relevant momentum modes $p \sim (n_+ p, n_- p, p_\perp)$ for **virtual** QED corrections

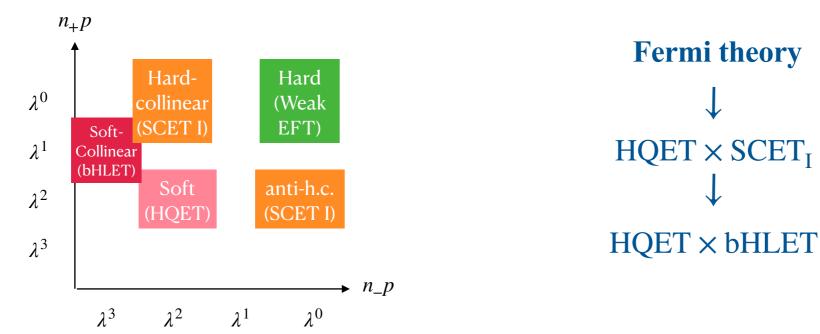
- $\blacktriangleright \text{ Hard } (\lambda^0, \lambda^0, \lambda^0)$
- ► Hard-collinear $(\lambda^0, \lambda^2, \lambda)$
- Soft $(\lambda^2, \lambda^2, \lambda^2)$
- Soft-collinear $\lambda^2(1/b, b, 1) \sim (\lambda, \lambda^3, \lambda^2)$

Expansion parameters:

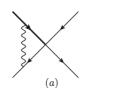
$$\lambda^2 = \frac{\Lambda_{\rm QCD}}{m_b}$$

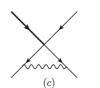
$$b = \frac{m_{\tau}}{m_b} \sim \lambda$$

* Factorization requires a number of different EFT constructions



The factorized amplitude can be expressed as $\mathcal{A}^{\text{virtual}} = \sum_{i} H_{i} J_{i} S_{i} + \sum_{i} \int_{u} H_{j} \int_{\omega} J_{j} S_{j}$





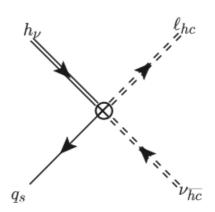
Fermi theory \rightarrow HQET \times SCET_I ($\mu < m_b$)

Integrating out hard modes to reach to $HQET \times SCET_I$

Field redefinition of heavy quark field [Heavy Quark Physics]

$$b(x) \to e^{-im_b v \cdot x} (1 + \mathcal{O}(\lambda^2)) h_v(x)$$

[Bauer, Fleming, Pirjol and Stewart, 01'], [Beneke, Chapovsky, Diehl and Feldmann, 02'], [Becher, Broggio and Ferroglia, 14']

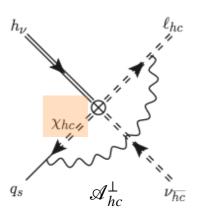


$$\mathcal{E}(x) = \frac{h_{-} h_{+}}{4} \mathcal{E}_{C}(x), \quad \nu(x) = \frac{h_{+} h_{-}}{4} \nu_{\bar{C}}(x)$$

Spectator light quark can also be hard-coll. firstly

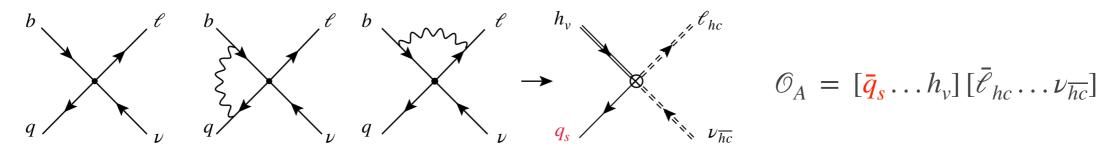
$$q(x) = \frac{h_- h_+}{4} \chi_C(x)$$

$$h_v, q_s \sim \lambda^3$$
 $\ell_{hc}, \nu_{\overline{hc}}, \chi_{hc}^{(q)} \sim \lambda$ $\mathcal{A}_{hc}^{\perp} \sim \lambda$

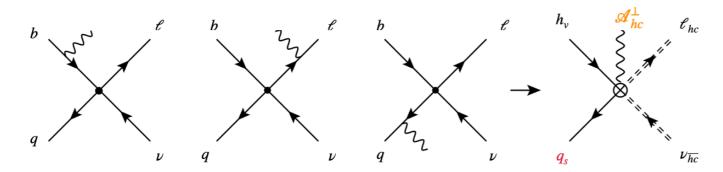


Fermi theory \rightarrow HQET \times SCET_I ($\mu < m_b$)

- Arr Construction of HQET imes SCET_I operators: Local and Nonlocal operators
 - ightharpoonup local operator with soft spectator \mathcal{O}_A

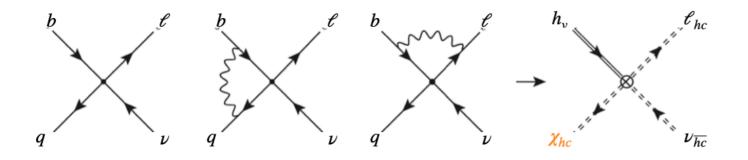


▶ local operator with soft spectator and hard-collinear photon \mathcal{O}_B



$$\mathcal{O}_B = [\bar{q}_s \dots h_v] [\bar{\ell}_{hc} \dots \nu_{\overline{hc}}] \quad \mathcal{A}_{hc}^{\perp}$$

ightharpoonup nonlocal operator with hard-collinear spectator \mathcal{O}_{χ}



$$\mathcal{O}_{\chi} = [\chi_{hc} \dots h_{v}] [\bar{\ell}_{hc} \dots \nu_{\overline{hc}}]$$

 * hard functions $H_{i,j}$ are obtained from the above matching $\mathscr{A}^{\text{virtual}} = \sum_i H_i J_i S_i + \sum_j \int_u H_j \int_{\omega} J_j S_j$

$SCET_I \rightarrow bHLET \ (\mu < \sqrt{m_b \Lambda_{QCD}})$

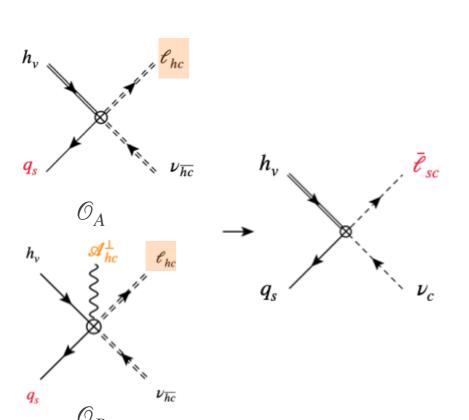
lower the virtuality to remove the hard-collinear mode to reach to bHLET

heavy tau filed become to a soft-collinear (sc) field in boosted HLET

after integrating m_{τ} [Fleming, Hoang, Mantry and Stewart, 07'], [Dai, Kim and Leibovich, 21']

$$\ell_{hc} \to e^{-im_{\ell}v_{\ell} \cdot x} (1 + b \frac{h_{+}}{2}) \stackrel{\ell_{sc}}{\downarrow}$$

soft scale to τ , boosted in the B frame with $b = \frac{m_{\tau}}{m_{h}}$



$$\mathcal{J}_{m}^{A,B} = \left[\bar{q}_{s} \frac{\hbar_{+}}{2} P_{L} h_{v}\right] S_{n_{-}}^{(\ell)\dagger} \left[\overline{\ell}_{sc} P_{L} \nu_{\overline{c}}\right]$$

$$Local \ operators$$

 \triangle hard-collinear functions J_i are obtained from the above matching

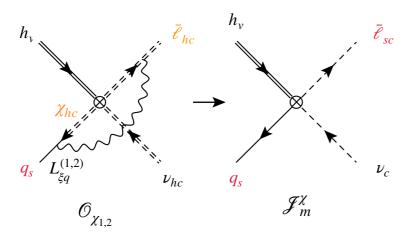
$$\mathcal{A}^{\text{virtual}} = \sum_{i} H_{i} J_{i} S_{i} + \sum_{j} \int_{u} H_{j} \int_{\omega} J_{j} S_{j}$$

$SCET_I \rightarrow HQET \times bHLET \ (\mu < \sqrt{m_b \Lambda_{QCD}})$

 $\chi_{hc}^{(q)} \rightarrow q_s$ by inserting the following NLP and NNLP interactions [Beneke, Garny, Szafron, Wang, 18']

$$\mathcal{L}^{(1)}_{\xi q}(x) = \bar{q}_s(x_-) [W_{\xi C} W_C]^\dagger(x) \, i \ D_{C \perp} \, \xi_C(x) + \text{h.c.} \label{eq:Lindblad}$$

$$\mathcal{L}_{\xi q}^{(2)}(x) \, = \, \bar{q}_s(x_-) \left[W_{\xi,\,hc} \, W_{hc} \right]^\dagger(x) \, \left(i \, n_- D_{hc} \, + \, i \, D_{hc\perp} (i \, n_+ D_{hc})^{-1} \, i \, D_{hc\perp} \right) \, \frac{\hbar_+}{2} \, \xi_{hc}(x) \, + \, \dots \label{eq:local_energy}$$



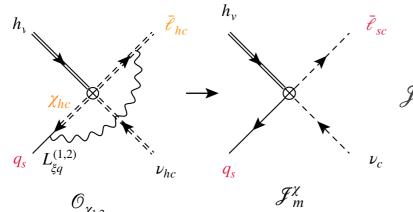
$$\mathcal{J}_{m}^{\chi}(v) = \left[\bar{q}_{s}(v \, n_{-}) \, Y(v \, n_{-}, 0) \, \frac{h_{+}}{2} \, P_{L} \, h_{v}(0) \right] S_{n_{-}}^{(\ell)\dagger}(0) \left[\bar{\ell}_{sc}(0) \, P_{L} \, \nu_{\overline{c}}(0) \right]$$
 non-local operators

$$SCET_I \rightarrow HQET \times bHLET \ (\mu < \sqrt{m_b \Lambda_{QCD}})$$

 $\chi_{hc}^{(q)} \rightarrow q_s$ by inserting the following NLP and NNLP interactions

$$\mathcal{L}_{\xi q}^{(1)}(x) = \bar{q}_s(x_-)[W_{\xi C}W_C]^{\dagger}(x) i D_{C\perp} \xi_C(x) + \text{h.c.}$$

$$\mathcal{L}_{\xi q}^{(2)}(x) = \bar{q}_s(x_-) \left[W_{\xi,hc} W_{hc} \right]^{\dagger}(x) \left(i \, n_- D_{hc} + i \, D_{hc\perp} (i \, n_+ D_{hc})^{-1} i \, D_{hc\perp} \right) \frac{h_+}{2} \, \xi_{hc}(x) + \dots$$



$$\mathcal{J}_{m}^{\chi}(v) = \left[\bar{q}_{s}(v \, n_{-}) \, Y(v \, n_{-}, 0) \, \frac{h_{+}}{2} \, P_{L} \, h_{v}(0)\right] \, S_{n_{-}}^{(\ell)\dagger}(0) \left[\bar{\ell}_{sc}(0) \, P_{L} \, \nu_{\bar{c}}(0)\right]$$

$$non-local \, operators$$

 * hard-collinear functions J_i are obtained from the above matchings

$$\mathcal{A}^{\text{virtual}} = \sum_{i} H_{i} J_{i} S_{i} + \sum_{j} \int_{u} H_{j} \int_{\omega} J_{j} S_{j} \quad \text{endpoint div.} (1/u \to \infty, \text{ when } u \to 0) ? \quad B_{d,s} \to \mu^{+} \mu^{-} B_{u} \to \mu \nu$$

$$\int_{\chi,1}^{(1)} dt = \frac{\alpha_{\text{em}}}{\pi} Q_{\ell} Q_{u} \frac{m_{\ell}}{n_{\perp} p_{\ell}} u \left[\ln \frac{\mu^{2}}{\bar{u}^{2} m_{h} n_{-} p_{\ell}} - \frac{1+r}{r} \ln(1+r) \right] \theta(u) \theta(\bar{u}) \quad r = \frac{u}{\bar{u}} \frac{\omega m_{B}}{m_{\ell}^{2}}$$
Neubert etc. 2023

=> No endpoint div. in $B_u \to \tau \nu$ when convoluting to hard function due to massive tauon!

subtractions scheme independence

Numerical prediction

The non-radiative QED corrections to branching fraction of $B_u \to \tau \nu$ for central values of the parameters

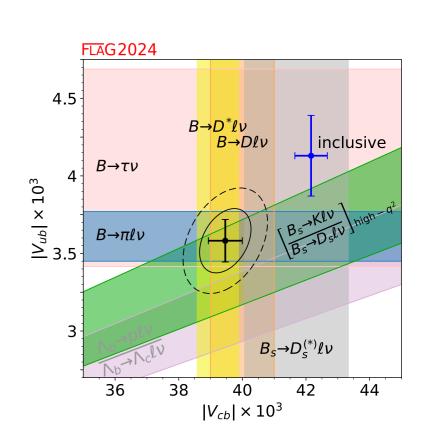
Br⁽⁰⁾
$$(B_u \to \tau \nu) = \left(0.89_{\text{(LO)}} - 0.01_{\text{(NLO)}}\right) \times 10^{-4}$$

NLP+NLO+LL QED virtual correction changes the branching fraction by $\sim 1\,\%$ be comparable with QCD uncertainties $\,\delta f_B^2 \sim 1.4\,\%$

Determining the CKM matrix element using the latest data from Belle II

$$|V_{ub}| = \left[\left(4.41 + 0.01_{\delta_{QED}} \right) \pm 0.03(\text{th.})_{-0.91}^{+0.73} (\text{exp.}) \right] \times 10^{-3}$$

the experimental uncertainty would reduce to $\sim 0.08 \times 10^{-3}$ based on $\sim 50\,\mathrm{ab^{-1}}$ of electron-positron collision data



Summary

- **QED** corrections are important in high precision process
- riangle QED corrections in $B_{d,s} \to \tau^+ \tau^-, B_u \to \tau \nu$
- A Charged leptonic B decays become as complicated as non-leptonic decays
- $\red{2}$ Subleading power factorization formula for QED corrections to $B_u \to \tau \nu$ derived in SCET, HQET and bHLET
 - ▶ no endpoint divergences in this factorization at NLP (due to tau mass)
 - => subtractions scheme independence
 - ▶ NLP+NLO+LL QED virtual correction changes the branching fraction by $\sim 1\,\%$, are critical for $|V_{ub}|$ determination.

Backup slides

Generalized decay constant and LCDA

After two-step matching, we reach to the factorized amplitude

$$A_{B\to\tau\nu}^{\text{virtual}} \sim H_{A,B} J_{A,B} \langle \tau^- \nu \, | \, \mathcal{J}_m^{A,B} \, | \, \bar{B}_u \rangle + \int_0^1 du \, H_{\chi}(u) \int_0^\infty d\omega \, J_{\chi}(u;\omega) \, \langle \tau^- \nu \, | \, \mathcal{J}_m^{\chi} \, | \, \bar{B}_u \rangle$$

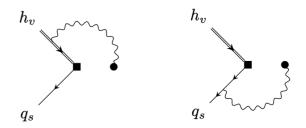
$$m_{\tau} \sim \sqrt{m_b \Lambda_{\rm QCD}}$$

$$\Lambda_{\rm OCD}, E_{\tau,sc}$$

$$\mathcal{J}_{m}^{A,B} = \left[\bar{q}_{s} \frac{h_{+}}{2} P_{L} h_{v} \right] S_{n_{-}}^{(\ell)\dagger} \left[\bar{\ell}_{sc} P_{L} \nu_{\bar{c}} \right]$$

$$\mathcal{J}_{m}^{A,B} = \left[\bar{q}_{s} \frac{h_{+}}{2} P_{L} h_{v} \right] S_{n_{-}}^{(\ell)\dagger} \left[\bar{\ell}_{sc} P_{L} \nu_{\bar{c}} \right]$$

$$\mathcal{J}_{m}^{\chi}(v) = \left[\bar{q}_{s}(v n_{-}) Y(v n_{-}, 0) \frac{h_{+}}{2} P_{L} h_{v}(0) \right] S_{n_{-}}^{(\ell)\dagger}(0) \left[\bar{\ell}_{sc}(0) P_{L} \nu_{\bar{c}}(0) \right]$$



Soft photon decoupling from lepton

QED-generalized decay constant and LCDA [M. Beneke, etc. 2022]

$$\mathcal{F}_{B} \equiv \frac{\langle 0 | \bar{q}_{s} \frac{n_{+}^{\prime}}{2} P_{L} h_{v} S_{n_{-}}^{(\ell)\dagger} | B \rangle \longrightarrow \text{IR div.}}{\langle 0 | [S_{v_{B}}^{(B)}(0) S_{n_{-}}^{(\ell)\dagger}(0)] | 0 \rangle} \longrightarrow \text{Redefination}$$

new nonperturbative hadronic parameters

$$\mathcal{F}_{B}\Phi_{B}(v) \equiv \frac{\langle 0 | \bar{q}_{s}(v n_{-}) Y(v n_{-}, 0) \frac{n_{+}^{\prime}}{2} P_{L} h_{v}(0) S_{n_{-}}^{(\ell)\dagger}(0) | B \rangle}{\langle 0 | [S_{v_{B}}^{(B)}(0) S_{n_{-}}^{(\ell)\dagger}(0)] | 0 \rangle}$$

It is interesting to determine in Lattice or to estimate in QCD SR

Decay amplitude including virtual QED corrections at NLP+NLO

$$\begin{split} i\,\mathcal{A}^{\text{virtual}} &= -\frac{i}{4}\,m_{B_u}\bar{u}_{sc}\left(p_\ell\right)\,P_L\,v_{\overline{c}}\left(p_\nu\right)\,\left[\sum_{i=A,1}^{B,(1,2)}H_i(\mu)\,J_i(\mu)\,\mathcal{F}_{B_u}(\mu)\,+\right.\\ &\left.\left.\sum_{j=\chi,1}^{\chi,2}\int_0^1du\,H_j(u,\mu)\,\int_0^\infty\,d\omega\,J_j(u;\omega,\mu)\,\mathcal{F}_{B_u}(\mu)\,\Phi_B(\omega,\mu)\,\right] \end{split}$$

$$\mathcal{A}^{\text{virtual}} = \frac{G_F}{\sqrt{2}} V_{ub} \, m_B \, f_B \, \bar{u}_{sc} \, P_L \, v_{\bar{c}} \times \frac{\alpha}{4\pi} \, Q_\ell \, b \, \left\{ 2 \, Q_b \, \left[(L - 2 \ln s - s - 1) \, L - \frac{1}{2} \, L^2 + 2 \ln^2 s + \frac{s^2 - 2}{s - 1} \ln s + 2 \, \text{Li}_2(1 - s) - s - 1 + \frac{\pi^2}{12} \right] - 6 \, (2 \, Q_b - Q_\ell) - Q_\ell \, \left(\frac{1}{2} \, L'^2 + \frac{\pi^2}{12} \right) + 4 \, \int_0^1 du \, (\bar{u} \, Q_b + Q_u) \ln \frac{\mu^2}{\bar{u}^2 \, m_\tau^2} - 4 \, Q_u \, \int_0^1 du \, \int_0^\infty d\omega \, \phi_B^+(\omega) \, (1 + \bar{u}) \, \left[\ln \frac{\mu^2}{\bar{u}^2 \, m_\tau^2} - \frac{1 + r}{r} \ln(1 + r) + \frac{1}{(1 + \bar{u}) \, \bar{u} \, r} \ln(1 + r) \right] \right\}$$

22

- Large (double) logarithms L, L'
- $\phi_B^+(\omega)$ demonstrates explicitly the structure-dependent QED effects

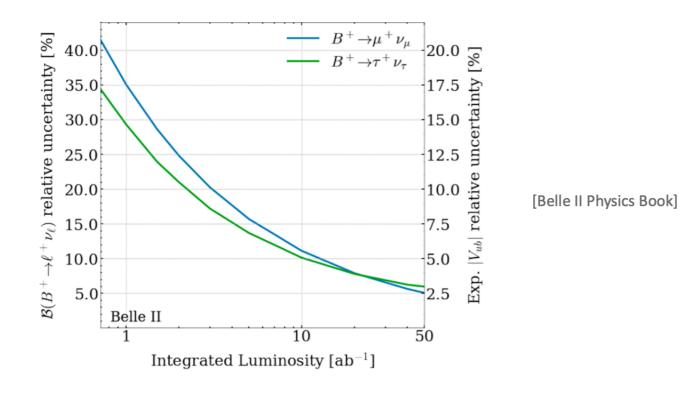
• $\phi_B^+(\omega)$:

$$\phi_{+}^{B}(\omega,\mu) = N \frac{\omega}{\omega_{0}^{2}} e^{-\omega/\omega_{0}} + \theta(\omega - \omega_{t}) \frac{C_{F}\alpha_{s}}{\pi\omega}$$

$$\times \left[\left(\frac{1}{2} - \ln \frac{\omega}{\mu} \right) + \frac{4\bar{\Lambda}_{DA}}{3\omega} \left(2 - \ln \frac{\omega}{\mu} \right) \right], (29)$$

which exhibits a negative radiation tail for $\omega \gg \mu$

Seung J. Lee and Matthias Neubert hep-ph/ 0509350



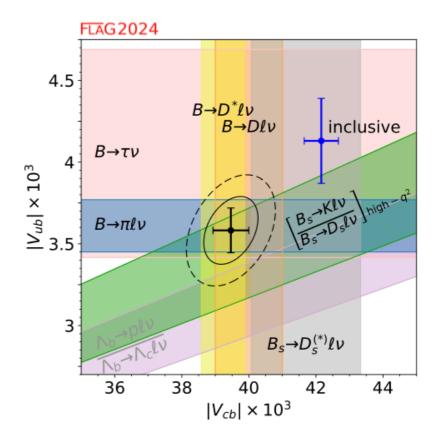
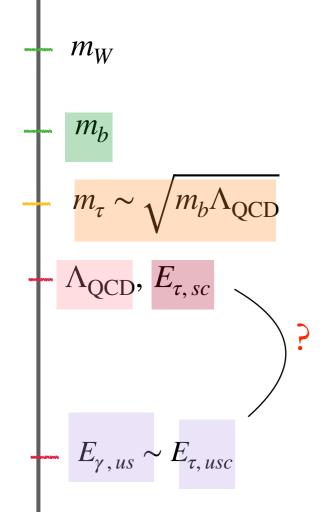


Figure 1: Projection of uncertainties on the branching fractions $\mathcal{B}(B^+ \to \mu^+ + \nu_\mu)$ and $\mathcal{B}(B^+ \to \tau^+ + \nu_\tau)$. The corresponding uncertainty on the experimental value of $|V_{ub}|$ is shown on the right-hand vertical axis.

HQET × bHLET \rightarrow Low-energy theory ($\mu < \Lambda_{\rm QCD}$)



 $\mu < \Lambda_{\rm QCD}$, the hadronic *B* meson can be described as a heavy scalar effective theory (HSET)

$$\Phi_B(x) \to e^{-im_B v_B \cdot x} h_{v_B}(x) \qquad m_B v_B \sim \mu_s$$

 $\mu < \mu_{sc}$, soft-coll. (sc) field in bHLET turned into ultra-soft-coll. one (usc) in bHLET-2

$$\ell_{sc} \to e^{-im_{\ell}v_{\ell}' \cdot x} \ell_{usc} \qquad m_{\ell}v_{\ell}' \sim \mu_{sc}$$

$$E_{\gamma,us} < \Delta E \sim [10 - 100] \,\mathrm{MeV}$$

riangleq HQET imes bHLET o HSET imes bHLET_{II} $\mu \sim \Lambda_{\text{QCD}}$

power parameters: $\lambda_E^2 = \frac{E_{\gamma, us}}{m_b} \sim \frac{\Lambda_{\rm QCD}^2}{m_b^2} = \lambda^4$

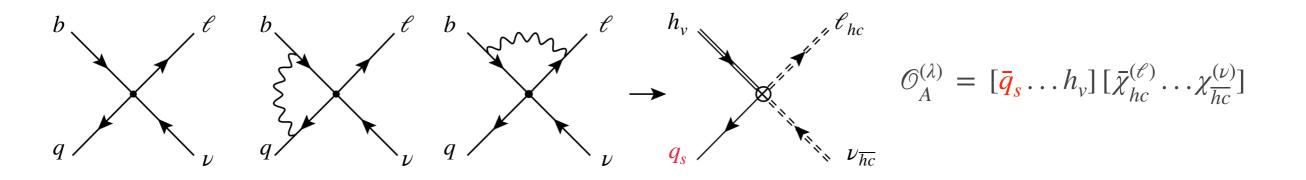
- Ultra-soft $p \sim (\lambda_E^2, \lambda_E^2, \lambda_E^2)$
- Ultra-soft-collinear $p \sim \lambda_E^2(1/b, b, 1)$
 - \rightarrow ultrosoft scale to τ boosted in the B frame

Construction of HQET × SCET_I operator

only two irreducible Dirac structures

1. local operator with soft spectator \mathcal{O}_A

$$[\bar{\ell}_{hc} \Gamma_{\ell} P_L \nu_{\overline{hc}}]$$
 with $\Gamma_{\ell} = 1, \gamma_{\mu}^{\perp}$

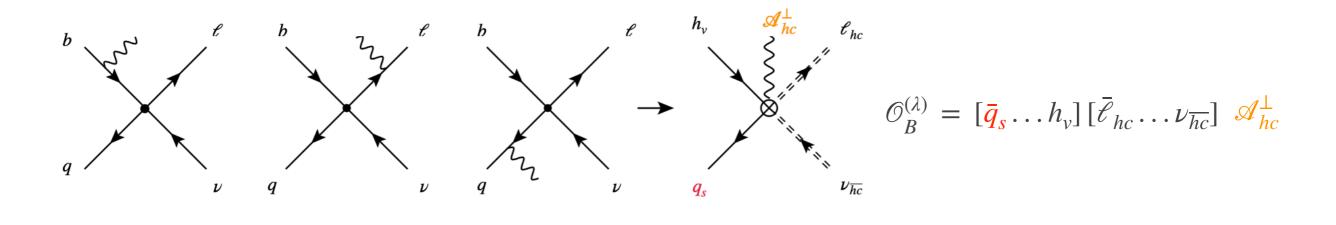


$$\mathcal{O}_{A,1}^{(9)} = m_{\ell} \left[\bar{q}_s \frac{\hbar_+}{2} P_L h_v \right] \left[\bar{\ell}_{hc} \frac{1}{i n_+ \overleftarrow{\partial}_{hc}} P_L \nu_{\overline{hc}} \right]$$

$$\mathcal{O}_{A,2}^{(8)} = [\bar{q}_s \gamma_{\mu \perp} P_L h_v] [\bar{\ell}_{hc} \gamma_{\perp}^{\mu} P_L \nu_{\overline{hc}}] \qquad \times$$

Construction of $HQET \times SCET_I$ operator

2. local operator with soft spectator and hard-collinear photon \mathcal{O}_B

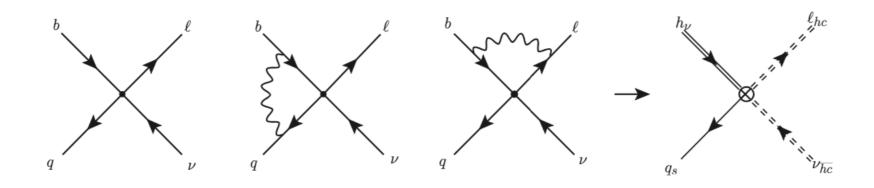


$$\mathcal{O}_{B,1}^{(9)} = \frac{1}{i \, n_{+} \partial_{hc}} \left[\bar{q}_{s} \frac{\hbar_{-}}{2} \gamma_{\mu \perp} \, \mathcal{A}_{hc \perp}^{(b)} P_{L} h_{v} \right] \left[\bar{\ell}_{hc} \gamma_{\perp}^{\mu} P_{L} \nu_{\overline{hc}} \right]$$

$$\mathcal{O}_{B,2}^{(9)} = \left[\bar{q}_s \ \mathcal{A}_{hc\perp}^{(q)} \frac{1}{i n_+ \overleftarrow{\partial}_{hc}} \frac{h_+}{2} \gamma_{\mu\perp} P_L h_v\right] \left[\bar{\mathcal{E}}_{hc} \ \gamma_{\perp}^{\mu} P_L \nu_{\overline{hc}}\right]$$

$$\mathcal{O}_{B,3}^{(9)} = \frac{1}{i \, n_+ \partial_{hc}} \left[\bar{q}_s \, \frac{\hbar_+}{2} \, P_L \, h_v \right] \left[\bar{\ell}_{hc} \, \, \mathcal{U}_{hc\perp}^{(\ell)} \, P_L \, \nu_{\overline{hc}} \right]$$

Fermi theory \rightarrow HQET \times SCET_I



$$Q_{1} = [\bar{u}\gamma^{\mu}P_{L}b][\bar{\ell}\gamma_{\mu}P_{L}\nu]$$

$$\mathcal{O}_{A,1}^{(9)} = m_{\ell}[\bar{q}_{s}\frac{\hbar_{+}}{2}P_{L}h_{v}][\bar{\ell}_{hc}\frac{1}{in_{+}\overleftarrow{\partial}_{hc}}P_{L}\nu_{\overline{hc}}]$$

$$E_{1} = [\bar{u}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_{L}b][\bar{\ell}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_{L}\nu] - 16Q_{1}$$

$$\mathcal{O}_{E} = [\bar{q}_{s}\frac{\hbar_{+}}{2}\gamma_{\perp}^{\mu}\gamma_{\perp}^{\nu}P_{L}h_{v}][\bar{\ell}_{hc}\gamma_{\perp\nu}\gamma_{\perp\mu}P_{L}\nu_{\overline{hc}}]$$
evanescent operator

$$\langle Q_{1} \rangle = \langle \mathcal{O}_{A,1} \rangle$$

$$\langle E_{1} \rangle = 6 (D - 4) \langle \mathcal{O}_{A,1} \rangle - 3 \langle \mathcal{O}_{E} \rangle \sim \mathcal{O}(\epsilon) A_{E1,A1}^{(0)}$$

$$H_{A,1}^{(1)} = A_{1,(A,1)}^{(1)} + Z_{ext}^{(1)} A_{1,(A,1)}^{(0)} + Z_{(A,1)j}^{(1)} A_{j,(A,1)}^{(0)} - H_{A,1}^{(0)} (\mu_{b}) Z_{(A,1)(A,1)}^{(1)}$$

$$Z_{A1,E1} = \frac{1}{2 \cdot \epsilon} Q_{\ell} (Q_{\ell} + 2 \cdot Q_{u})$$

$$Y(x,y) = \exp \left[i e Q_q \int_y^x dz_\mu A_s^\mu(z) \right] \mathcal{P} \exp \left[i g_s \int_y^x dz_\mu G_s^\mu(z) \right],$$

$$Y_{\pm}(x) = \exp\left[-i e Q_{\ell} \int_0^{\infty} ds \, n_{\mp} A_s \left(x + s n_{\mp}\right)\right].$$

$$S_r^{'(i)}(x) = \exp \left[-i e Q_i \int_0^\infty ds \, r \cdot A_{us}(x + s \cdot r) \right]$$

$$C_r^{(i)}(x) = \exp \left[-i e Q_i \int_0^\infty ds \, r \cdot A_{usc}(x + s \cdot r) \right]$$

Why QED corrections in flavor physics?

- Compared to QCD corrections, QED corrections can lead to certain short-distance contribution which can mimic new physics.
 - ▶ e.g. QED corrections to $B_u \to \tau \nu$ have effects on $|V_{ub}|$ extraction
- B decay modes receive large uncertainties from the B-LCDA, QED and QCD at low energies introduce new LCDA.
- Theoretic calculation on soft photon radiation to consistent with phenomenological analyses of experimental data.
 - ► Soft real photons contribution can be simulated with MC tools such as PHOTOS in [P. Golonka, Z. Was, hep-ph/0506026]

Summary

- **QED** corrections are important in high precision process
- Charged leptonic B decays become as complicated as non-leptonic decays
- \clubsuit Subleading power factorization formula for QED corrections to $B_u \to \tau \nu$ derived in SCET, HQET and bHLET
 - ▶ no endpoint divergences in this factorization at NLP (due to tau mass)
 - => subtractions scheme independence
 - ► Structure depended QED corrections arising from hard, hard-collinear photons exchange → important source of large logarithmic corrections
 - ► Soft photon still resolve the B meson structure (decoupling from leptonic field) to produce generalized B decay constant and LCDA \rightarrow new hadronic parameters
 - ► NLP+NLO+LL QED virtual correction changes the branching fraction by $\sim 1\,\%$, are critical for $|V_{ub}|$ determination.

Thank you