Polarization Probes of New Physics in Lepton-Flavor-Violating Hyperon Production from $e^-N \to \tau^- Y$ Scattering

胡镇清

河南师范大学

第二十二届全国重味物理和CP破坏研讨会

2025年10月24日-28日

X. S. Yan, **Z. Q. Hu**, Q. Chang, and Y. D. Yang: 2506.23804.

Contents

- ► Motivation
- ► Theoretical Framework
- ► Phenomenological Analysis
- ► Experimental Prospects
- Summary

Motivation

Lepton flavor violation serves as one of the most important avenues for probing new physics. In this work, the focus is on processes such as $e^- \to \tau^-$, especially $e^- d \to \tau^- s$.

► High-energy regime:

- ► LHC. EPJC 80, 641 (2020)
- ► In the future, EIC. JHEP 03, 256 (2021)

► Low-energy regime:

- ► $\tau^- \to e^- K_S$ PLB **692**, 4 (2010)
- ► $\tau^- \to e^- K^{*0}$ JHEP **06**, 118 (2023)
- $ightharpoonup au^- o e^- \pi^- K^+$ *PLB* **719**, 346 (2013)

To address this gap, the quasi-elastic (QE) scattering process $e^- + N(n, p) \rightarrow \tau^- + Y(\Sigma^+, \Sigma^0, \Lambda^0)$ is proposed to probe the baryonic sector of these LFV interactions.

Theoretical Framework: The low-energy effective Lagrangian

The general low-energy effective Lagrangian involving $e^-d \to \tau^-s$ transitions can be written as

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \sum_{\alpha} g_{\alpha} O_{\alpha} + \text{h.c.},$$

where G_F is the Fermi constant, O_α is the semi-leptonic operator listed in Table, and g_α is the corresponding effective WC.

Coeff.	Operator	Coeff.	Operator
g_V^{LL}	$(\bar{\tau}\gamma_{\mu}P_{L}e)(\bar{s}\gamma^{\mu}P_{L}d)$	g_V^{RR}	$(\bar{\tau}\gamma_{\mu}P_{R}e)(\bar{s}\gamma^{\mu}P_{R}d)$
g_V^{LR}	$(\bar{\tau}\gamma_{\mu}P_{L}e)(\bar{s}\gamma^{\mu}P_{R}d)$	g_V^{RL}	$(\bar{\tau}\gamma_{\mu}P_{R}e)(\bar{s}\gamma^{\mu}P_{L}d)$
g_S^{LL}	$(\bar{\tau}P_Le)(\bar{s}P_Ld)$	g_S^{RR}	$(\bar{\tau}P_Re)(\bar{s}P_Rd)$
g_S^{LR}	$(\bar{\tau}P_Le)(\bar{s}P_Rd)$	g_S^{RL}	$(\bar{\tau}P_Re)(\bar{s}P_Ld)$
g_T^{LL}	$(\bar{\tau}\sigma_{\mu\nu}P_Le)(\bar{s}\sigma^{\mu\nu}P_Ld)$	g_T^{RR}	$(\bar{\tau}\sigma_{\mu\nu}P_Re)(\bar{s}\sigma^{\mu\nu}P_Rd)$

Theoretical Framework:Polarization vectors

The production density matrix ρ can be expanded in terms of the Pauli matrices σ^i as

$$\rho_{\lambda\lambda'} = \delta_{\lambda\lambda'}C + \sum_{i} \sigma^{i}_{\lambda\lambda'}\Sigma_{i} = C\left(\delta_{\lambda\lambda'} + \sum_{i} \sigma^{i}_{\lambda\lambda'}P_{i}\right).$$

To investigate the dependence of the polarization on the beam energy, we introduce the averaged polarization component along direction $\it i.$

$$\langle P_i^{\tau,Y} \rangle = \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} P_i^{\tau,Y}(q^2) \frac{d\sigma}{dq^2} dq^2}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\sigma}{dq^2} dq^2} \,.$$

Theoretical Framework: Two Forms of the Form Factor

Two forms of the form factor:

• Scattering process: $N \to Y$

Decay process: $Y \rightarrow N$

The hadronic matrix elements $H_a^{L,R}$ for the $N \to Y$ transitions can be parameterized in terms of form factors. For the vector and axial-vector currents, their matrix elements are given by:

$$\begin{split} \langle Y(p')|\bar{\mathfrak{s}}\gamma_{\mu}d|\, N(p)\rangle &= \bar{u}(p')\left[\gamma_{\mu}f_{1}(q^{2}) + i\sigma_{\mu\nu}\frac{q^{\nu}}{2m_{Y}}f_{2}(q^{2}) + \frac{q_{\mu}}{m_{Y}}f_{3}(q^{2})\right]u(p)\,,\\ \langle Y(p')|\bar{\mathfrak{s}}\gamma_{\mu}\gamma_{5}d|\, N(p)\rangle &= \bar{u}(p')\left[\gamma_{\mu}g_{1}(q^{2}) + i\sigma_{\mu\nu}\frac{q^{\nu}}{m_{Y}}g_{2}(q^{2}) + \frac{q_{\mu}}{m_{Y}}g_{3}(q^{2})\right]\gamma_{5}u(p)\,. \end{split}$$

$$\begin{split} \left\langle Y(p')|\bar{s}d|N(p)\right\rangle &= \bar{u}(p')\left[\frac{m_Y-m_N}{m_s-m_d}f_1(q^2) + \frac{q^2}{M_Y(m_s-m_d)}f_3(q^2)\right]u(p),\\ \left\langle Y(p')|\bar{s}\gamma_5d|N(p)\right\rangle &= \bar{u}(p')\left[\frac{m_Y+m_N}{m_d+m_s}g_1(q^2) + \frac{q^2}{M_Y(m_d+m_s)}g_3(q^2)\right]\gamma_5u(p)\,. \end{split}$$

Theoretical Framework: Two Forms of the Form Factor

 $f_i(q^2)$ are related to the form factors $G_{E,M}^{p,n}$, and $G_{E,M}^{p,n}$ can be parameterized in the following three ways:

- Galster *NPB* **32**, 221 (1971)
- BBBA *NPB* **159**, 127 (2006)
- BHLT *PRD* **102**, 074012 (2020)

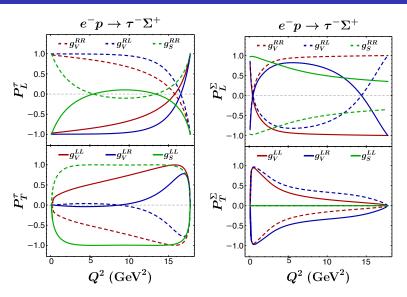
For the hadronic matrix elements of $Y \rightarrow N$, the following two parameterizations are considered:

■ QCDSR JHEP 06, 122 (2024)

■ χ PT JHEP **04**, 104 (2019)

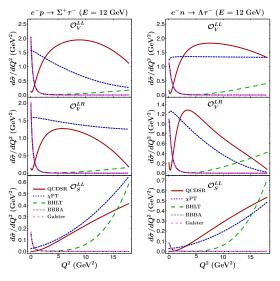
Form factors	f_1	f_2	f ₃	g ₁	g ₂	g 3
BBBA	√	✓	0	✓	0	✓
BHLT	\checkmark	\checkmark	0	\checkmark	0	\checkmark
Galster	\checkmark	\checkmark	0	\checkmark	0	\checkmark
QCDSR	\checkmark	\checkmark	0	\checkmark	0	0
χ PT	\checkmark	0	0	\checkmark	0	\checkmark

Phenomenological Analysis: Generic features of polarization observables



The electron beam energy of E=12 GeV, $e^-p \to \tau^-\Sigma^+$, BBBA parametrization.

Phenomenological Analysis: Differential cross section



The scaling factor κ .

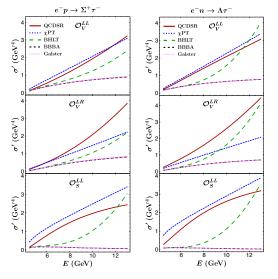
	$\rho \to \Sigma^+$	
NP	QCDSR	χ PT
g_V^{LL}	10	2
$egin{smallmatrix} egin{smallmatrix} egin{small$	10	2
g_S^{LL}	1000	10

NP	QCDSR	χ PT
g_V^{LL}	20	5
g_V^{LR}	15	5
g_S^{LL}	2000	10

 $n \to \Lambda$

 $\sigma = \kappa G_F^2 |g_\alpha|^2 \tilde{\sigma}/(16\pi m_N^2)$, κ is a dimensionless scaling factor.

Phenomenological Analysis: Total cross section



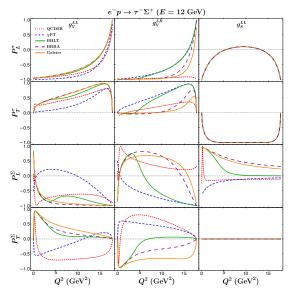
The scaling factor κ' .

	$p \to \Sigma^+$	
NP	QCDSR	χ PT
g_V^{LL}	100	10
g_V^{LR}	50	25
g_S^{LL}	1500	15
	$n \longrightarrow \Lambda$	

	11 / 11	
NP	QCDSR	χ PT
g_V^{LL}	200	40
g_V^{LL} g_V^{LR}	50	25
g ^{LL} g _S	3000	10

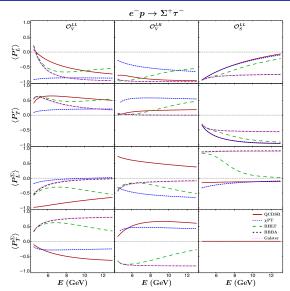
 $\sigma = \kappa' G_F^2 |g_\alpha|^2 \tilde{\sigma}/(16\pi m_N^2), \; \kappa' \; \text{is a dimensionless scaling factor}.$

Phenomenological Analysis: Polarization observables



Polarization observables $P_{L,T}$ of τ^- and Σ^+ in the process $\mathrm{e}^- p \to \tau^- \Sigma^+$.

Phenomenological Analysis: Average polarizations



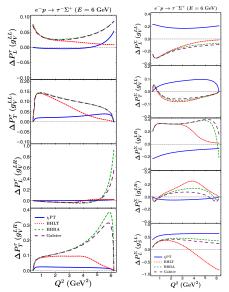
The average polarization observables $\langle P_{L,T} \rangle$ at an electron beam energy of E=12 GeV.

Phenomenological Analysis: Average polarizations

Identification of vector NP operators, and distinction between distinct model families: {QCDSR, χ PT} and {BBBA, BHLT, Galster}.

Model	NP	Sign of $\langle P_L^{ au} angle$	Sign of $\langle P^\Sigma_{\mathcal{T}} \rangle$
	g_V^{LL}	-	-
QCDSR	g_V^{LR}	-	+
χ PT	g_V^{RR}	+	+
	g_V^{RL}	+	_
BBBA	g_V^{LL}	-	+
BHLT	g_V^{LR}	_	_
Galster	g_V^{RR}	+	-
	g_V^{RL}	+	+

Phenomenological Analysis: Effects of g₃



Effects of g_3 , $\Delta P_{L,T}^{\tau} \equiv P_{L,T}^{\tau} - P_{L,T}^{\tau}(g_3 = 0)$.

Experimental Setup

- ► JLab SoLID, $\mathcal{L} = 1.2 \times 10^{37} \,\text{cm}^{-2}\text{s}^{-1}$. *PRC* **109**, 065206 (2024)
- $ightharpoonup dN/dt = \mathcal{L}\sigma.$

Constraints on Wilson Coefficients

- ► $\mathcal{B}(\tau^- \to e^- K_S) < 2.6 \times 10^{-8}$ PLB **692**, 4 (2010)
- ► $\mathcal{B}(\tau^- \to e^- K^{*0}) < 1.9 \times 10^{-8}$ JHEP **06**, 118 (2023)
- ► $\mathcal{B}(\tau^- \to e^- \pi^- K^+) < 3.1 \times 10^{-8}$ PLB **719**, 346 (2013)

The $\tau^- \to e^- K^{*0}$ decay provides the most restrictive constraint on the vector coefficients: PLB **797**, 134842 (2019)

$$|g_V^\alpha| < 2.77 \times 10^{-4} \quad (\alpha = \text{LL, LR, RL, RR}) \,. \label{eq:gV}$$

On the other hand, the strongest constraint on the scalar coefficients comes from the $\tau^- \to e^- \pi^- K^+$ decay: PLB **797**, 134842 (2019)

$$|g_S^{\alpha}| < 4.09 \times 10^{-4}$$
 ($\alpha = LL, LR, RL, RR$).

Experimental Prospects: Event Rate Projections

$e^-p \to \tau^-\Sigma^+$					
Model	QCDSR	χ PT	BHLT	BBBA	Galster
$g_V^{LL,RR}$	6.73	0.668	0.0473	0.0206	0.0211
$g_V^{LR,RL}$	3.90	1.20	0.0425	0.0185	0.0190
g_{S}^{α}	183	2.46	0.117	0.00372	0.00389
$e^- n o au^- \Lambda$					
Model	QCDSR	χ PT	BHLT	BBBA	Galster
$g_V^{LL,RR}$	13.3	2.91	0.0731	0.0181	0.0181
$g_V^{LR,RL}$	4.61	1.28	0.0758	0.0159	0.0159
$g_{\mathcal{S}}^{\alpha}$	481	1.88	0.136	0.00208	0.00209

Summary

- Theoretical Framework and Model Dependence
 - Cross section
 - Polarization observables
- Resolving Theoretical Ambiguities Using Polarization Observables
 - Distinguish different form factor models
 - Identify potential vector operators
- Impact of the g₃ Form Factor
 - Scalar operators
- Experimental Outlook
 - Projected annual event rates

Acknowledgements

Thank you!

Back up: τ - and Y-production density matrix

Within the framework of the effective Lagrangian \mathcal{L}_{eff} , the scattering amplitude \mathcal{M} for the QE processes $e^- + \mathcal{N} \to \tau^- + \mathcal{Y}$, with nucleons $\mathcal{N} = n$, p and hyperons $\mathcal{Y} = \Lambda, \Sigma^0, \Sigma^+$, takes the general form

$$\mathcal{M} = -\frac{4G_F}{\sqrt{2}} \sum_{a=S,V,T} \left(H_a^L L_a^L + H_a^R L_a^R \right) \,. \label{eq:mass_model}$$

Starting from this amplitude, we construct the spin density matrix for the produced τ lepton.

$$\begin{split} \rho_{\lambda,\lambda'}^{\tau} &= \sum_{r,s,t} \mathcal{M}(\lambda) \mathcal{M}^*(\lambda') = 8G_F^2 \sum_{r,s,t} \sum_{a,a'} \left\{ H_a^L H_{a'}^{L*} L_a^L(\lambda) L_{a'}^{L*}(\lambda') \right. \\ &+ H_a^R H_{a'}^{R*} L_a^R(\lambda) L_{a'}^{R*}(\lambda') \right\}. \end{split}$$

To explicit evaluate the $L_a^{L,R}(\lambda)L_{a'}^{L,R*}(\lambda')$, we employ the Bouchiat-Michel formula.

$$u_{\lambda'}(k')\bar{u}_{\lambda}(k') = \frac{1}{2} \left[\delta_{\lambda\lambda'} + \sum_{i=1}^{3} \gamma_5 \sharp_i \sigma^i_{\lambda\lambda'} \right] (k' + m_{\tau}).$$

In the vector channel, the functions $D_{1,2}^{V}(q^2)$ and $F_{1,2}^{V}(q^2)$ are given by

$$F^V_{1,2}(q^2) = f^p_{1,2}(q^2) + \frac{1}{2} f^n_{1,2}(q^2) \,, \qquad \qquad D^V_{1,2}(q^2) = -\frac{3}{2} f^n_{1,2}(q^2) \,.$$

Here, $f_{1,2}^{p,n}(q^2)$ represent the Dirac (i=1) and Pauli (i=2) form factors for the proton and neutron. Each $f_{1,2}^{p,n}(q^2)$ is, in turn, composed of the standard electromagnetic form factors, $F_{1,2}^{p,n}(q^2)$, and a contribution from the strange-quark vector current, $F_{1,2}^s(q^2)$:

$$f_{1,2}^{n,p} = \left(\frac{1}{2} - 2\sin^2\theta_W\right) F_{1,2}^{n,p} - \frac{1}{2}F_{1,2}^{p,n} - \frac{1}{2}F_{1,2}^s.$$

where θ_W is the weak mixing angle.

The electromagnetic pieces are then related to the Sachs' electric and magnetic form factors via

$$F_1^{p,n}(q^2) = \frac{G_E^{p,n}(q^2) + \tau \; G_M^{p,n}(q^2)}{1+\tau} \; , \qquad F_2^{p,n}(q^2) = \frac{G_M^{p,n}(q^2) - G_E^{p,n}(q^2)}{1+\tau} \; .$$

where $\tau = -q^2/(4m_N^2)$ and m_N denotes the nucleon mass.

Each form factor can be decomposed into two functions, $D(q^2)$ and $F(q^2)$, weighted by the appropriate Clebsch-Gordan coefficients,

$$f_i(q^2) = aF_i^V(q^2) + bD_i^V(q^2),$$

 $g_i(q^2) = aF_i^A(q^2) + bD_i^A(q^2), \quad i = 1, 2, 3,$

where the coefficients a and b for each $N \to Y$ transition are listed in Table.

Transitions	а	Ь
$n \to \Lambda$	$-\frac{3}{\sqrt{6}}$	$-\frac{1}{\sqrt{6}}$
$n \to \Sigma^0$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$
$ ho ightarrow \Sigma^+$	-1	1

The electromagnetic current which is a vector current is written using the charge operator $e = I_3 + \frac{Y}{2} = \lambda_3 + \frac{1}{2\sqrt{3}}\lambda_8$ as:

$$j_{\mu}^{\text{em}} = V_{\mu}^3 + \frac{1}{\sqrt{3}} V_{\mu}^8$$

In general, the expression for the matrix element of the transition between the two states of baryons (say B_i and B_k), through the SU(3) octet (V_i or A_i) of currents can be written as:

$$\langle B_i | V_j | B_k \rangle = i f_{ijk} F^V + d_{ijk} D^V$$

 $\langle B_i | A_j | B_k \rangle = i f_{ijk} F^A + d_{ijk} D^A$

 F^V and D^V are determined from the experimental data on the electromagnetic form factors, and F^A and D^A are determined from the experimental data on semileptonic decays of neutron and hyperons.

The physical baryon octet states are written in terms of their octet state B_i as:

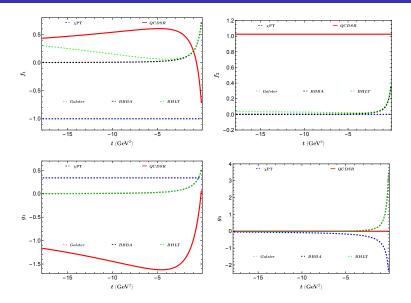
$$p = \frac{1}{\sqrt{2}}(B_4 + iB_5), \qquad n = \frac{1}{\sqrt{2}}(B_6 + iB_7),$$

$$\Sigma^{\pm} = \frac{1}{\sqrt{2}}(B_1 \pm iB_2), \qquad \Xi^{-} = \frac{1}{\sqrt{2}}(B_4 - iB_5),$$

$$\Xi^{0} = \frac{1}{\sqrt{2}}(B_6 - iB_7), \qquad \Sigma^{0} = B_3, \quad \Lambda^{0} = B_8.$$

The matrix element for the electromagnetic transition between two octet states B_i and B_k is defined as:

$$\langle B_i | V_3 + \frac{1}{\sqrt{3}} V_8 | B_k \rangle = i \left[f_{i3k} + \frac{1}{\sqrt{3}} f_{i8k} \right] F^V + \left[d_{i3k} + \frac{1}{\sqrt{3}} d_{i8k} \right] D^V$$



Form factor: $e^-p \to \tau^-\Sigma^+$.